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Abstract

Geometry and geography can play an important role
in recognition tasks in computer vision. To aid in study-
ing connections between geometry and recognition, we in-
troduce NYC3DCars, a rich dataset for vehicle detection
in urban scenes built from Internet photos drawn from the
wild, focused on densely trafficked areas of New York City.
Our dataset is augmented with detailed geometric and ge-
ographic information, including full camera poses derived
from structure from motion, 3D vehicle annotations, and
geographic information from open resources, including road
segmentations and directions of travel. NYC3DCars can
be used to study new questions about using geometric in-
formation in detection tasks, and to explore applications of
Internet photos in understanding cities. To demonstrate the
utility of our data, we evaluate the use of the geographic in-
formation in our dataset to enhance a parts-based detection
method, and suggest other avenues for future exploration.

1. Introduction

Methods for 3D reconstruction and for object recognition

have each, separately, seen significant advances in recent

years. Yet there has been relatively little recent work explor-

ing the intersection of these two areas despite evidence that

explicit 3D reasoning can aid in recognition tasks [15]. We

believe that new datasets that combine structure from motion

(SfM)-style models with recognition methods can result in

fruitful new approaches to scene understanding that lever-

age detailed camera and scene geometry. Towards this end,

we present a new vehicle recognition dataset, NYC3DCars,

comprised of challenging urban photos from the wild, and

augmented with rich geometric and geographic information.

Our dataset enables the study of new questions about the

use of rich geometric data in recognition tasks, and for new

applications in geography-aware vision, where image under-

standing is grounded in a geographic setting.

In particular, NYC3DCars consists of over two thou-

sand annotated Internet photos from New York City, from

a wide range of viewpoints, times of day, and camera mod-

els. The dataset includes (1) camera viewpoints for the

Figure 1. NYC3DCars images and geometry. (a) An overhead

view showing the 3D SfM model overlaid on a map. Black points

represent 3D scene points, and a red heat map shows the distribution

of reconstructed camera positions (note that they tend to appear on

sidewalks). The map is color-coded according to our geographic

data. (b) A view of the SfM model from the perspective of one of

the reconstructed images. The point cloud, and other camera frusta,

are visible outside the frame of the central photo. (c) Several other

reconstructed photos, illustrating the diversity in our data. Each

image has a red horizon line, obtained from the camera extrinsics,

overlaid, as well as axes specifying global east (red), north (green),

and up (blue). Please zoom in for best results.

photo collection solved for using SfM, anchored in a geo-

graphic coordinate system; (2) detailed ground truth 3D
vehicle annotations, including 3D pose and vehicle type;

and (3) geographic data associated with roads, sidewalks,

and buildings in the surrounding scene, drawn from online

resources. This data is illustrated in Figures 1, 2, and 4.

Compared to existing datasets with vehicle pose information,

ours has a richer variety of photos, and comes with detailed

geographic data. Our dataset can serve as a benchmark for

pose-sensitive vehicle detection in the wild, a problem we

evaluate in Section 6. Moreover, our data, with its rich anno-

tations and geometric information, can be used to explore a

range of research questions in computer vision:

New methods. Given multiple images of the same scene

from different viewpoints and times, can we improve detec-

tion methods using information estimated from SfM? SfM

can immediately provide information such as horizons and
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focal lengths useful in geometric reasoning, as well as ad-

ditional information in the form of 3D scene structure. At

the same time, open geographic data is proliferating online

with sources such as OpenStreetMap. How useful is this rich

3D data for recognition problems? Our dataset provides a

testbed for studying such questions.

New applications in urban scene understanding. Vision

methods are largely unplugged from the real world, in that

geographic information about the world is largely untapped

in vision, and, conversely, vision methods estimate properties

of images, but generally do not tie these back to observations

about the world. Because our data is georeferenced, our

dataset can be used to explore new applications of geography-

aware vision, in which image observations can be related

to real-world coordinates. For instance, a vehicle detected

in an image can be placed at a real position on a street,

and detections aggregated across many Internet photos can

potentially be used to study traffic patterns or other large-

scale phenomena, leveraging Internet photos as a new source

of data for understanding cities.

We perform an initial study of how aspects of our data can

be used to improve object detection, namely by incorporating

geographic data (such as roadbed polygons and directions of

travel) into a detection pipeline. We show promising results

for this task, but believe the true power of our dataset will

be in enabling the study of a range of geometric approaches.

In summary, our paper makes two main contributions:

first, the NYC3DCars dataset itself, and the methodology for

creating it, including a new online 3D annotation toolkit1;

and second, a study of how the information in our dataset

can be used within a detection framework. We close with a

discussion of biases and other limitations of our dataset, as

well as directions for its future applications.

2. Related Work

Detection datasets. Several datasets and benchmarks have

been influential in vision in recent years. Notably, the PAS-

CAL VOC benchmarks, with their wide variety of images,

have driven work in recognition [4]. Our work incorpo-

rates much more detailed geometry than PASCAL, includ-

ing 3D vehicle poses, as in related datasets [23, 19, 10].

Among these, perhaps the most closely related is the re-

cent KITTI dataset [7]. However, KITTI is focused on the

goal of autonomous driving, and so the images are all cap-

tured from the top of a vehicle with the same camera. We

also provide vehicles with precise 3D pose, but for much

more unconstrained imagery drawn from the Web, with the

wide variety in viewpoint, illumination, image resolution,

and other factors more typical of benchmarks such as VOC.

Others have also presented 3D annotated vehicle datasets

1Dataset and tools available at nyc3d.cs.cornell.edu.

(e.g., [23, 19, 10]), but these generally contain carefully cap-

tured images that lack the variety of our own data. Our

dataset also incorporates new types of geographic informa-

tion, such as road data.

Geometry and recognition. Our dataset provides a frame-

work for exploring new ways to combine explicit 3D reason-

ing with recognition methods. Our geographic data—with its

roads, sidewalks, etc.—can be considered a “stage” within

which one can reason about objects and their placement in

the scene. This idea is related to prior methods that infer geo-

metric properties and use them in image understanding tasks,

for both outdoor [14, 15, 24] and indoor [12, 6] scenes. Our

work allows for similar reasoning, but leverages much richer

information derived from SfM and from geographic data

sources. Hays and Efros augment images with coarse geo-

graphic data, such as elevation and population density [11],

based on a rough global position. Our work is based on

precise camera viewpoints, and allows for reasoning based

on much more specific, pixel-level information, such as road

segment polygons (see Figure 4). Hejrati and Ramanan pro-

pose a 3D detection approach [13], but the models are trained

entirely with 2D annotations. Finally, other work combines

multi-view reasoning with object recognition [3, 2], gener-

ally for images taken at the same time. In contrast, we build

models from photos taken from widely varying times, and

so individual objects will differ from photo to photo.

3. The NYC3DCars Dataset

In creating NYC3DCars, we decided to start from a vi-

brant urban area—Times Square in New York City—and

create a dataset of photos in the wild for which we have both

detailed ground truth 3D vehicle annotations, as well as geo-

graphic data describing streets and other static elements of

the city. To our knowledge, ours is the first detection dataset

of real-world Internet imagery along with camera poses and

detailed 3D annotations. Beyond the dataset itself, a key

contribution is a Web-based 3D labeling interface, available

online. NYC3DCars consists of three components:

1. A set of Flickr photos of NYC and 3D structure from

motion (SfM) models reconstructed from these photos

and georegistered to the world. These photos span a va-

riety of viewpoints, camera models, illuminations, and

times of year. Each photograph has computed extrinsics

and intrinsics in a geographic coordinate system.

2. 3D ground truth vehicles labeled in a set of photos, with

each vehicle annotated with a geolocation, orientation,

vehicle type, and level of occlusion.

3. Geographic data describing roads, sidewalks, medi-

ans, elevation, etc., obtained from www.nyc.gov and

www.openstreetmap.org.

We now describe each of these components in turn.
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3.1. Input Photos and SfM Model

To begin, we downloaded 14,000 geotagged photos taken

around Times Square from Flickr; these photos were taken

between the years 2000 and 2008, by over 1,000 distinct

photographers. Using these photos as input, we ran an SfM

pipeline to reconstruct 3D camera geometry and a 3D point

cloud [1]. Of the 14,000 input photos, 5,186 images were

reconstructed, along with 567K 3D points. This 3D model

was georegistered by downloading geotagged Google Street

View photos from the same area, adding these to the SfM

reconstruction [16], then using these photos as anchors to

roughly align the model to the world via absolute orienta-

tions. Finally, we ran the Iterated Closest Point algorithm

(ICP) between the 3D SfM point cloud and a publicly avail-

able aerial LIDAR scan of Manhattan to refine the alignment.

The reconstruction is shown in Figure 1, along with sev-

eral images from the dataset. This dataset can also serve as

an index for georegistering new photos, through 2D-to-3D

matching techniques [16].

For each photo, the SfM reconstruction (or a later regis-

tration to the SfM model) gives us its extrinsics—its position

and orientation, in a geographic coordinate system—as well

as intrinsics including focal length and radial distortion pa-

rameters. This information is already very useful in detection

problems, e.g., in determining the horizon, or in detailed rea-

soning involving depth or perspective. Moreover, the fact

that the data is georegistered allows us to draw on additional

sources of geographic data for detection, as described below.

3.2. Annotated 3D Vehicles

Our goal is to provide a richly annotated set of ground

truth vehicles that can be used for detection tasks, but also

for recovering and evaluating the 3D position and pose of

detected cars. To create such ground truth, we designed a

new Web-based tool for 3D vehicle annotation.

We considered several existing annotation tools, but

found that none met our specific goals. Many, such as La-

belMe [22], provide for labeling of 2D regions, but not 3D

objects. Little et al. provide an interface in which a user is

asked to pose wireframe car renderings to annotate webcam

images [17]. We tested this interface, but found that for

our highly varied images it was difficult to adjust all of the

degrees of freedom necessary to accurately place a vehicle

in each photo; in particular, the three orientation angles were

difficult to set. For these reasons, we created a new interface

that restricts the number of free parameters in posing a car

as much as possible, using the extra information from the

estimated camera pose of the photo. This makes the task of

annotating an image simpler and more efficient.

In addition to camera pose and intrinsics from SfM, the

absolute scale of the scene is known from the georegistration

process, and we assume that cars are supported by a planar

ground surface. To label a photo, we set up an interface

Figure 2. Ground truth annotation interface. Several 3D cars

are shown placed in the scene on a virtual ground plane. Please see

the supplemental video for a recorded annotation session.

where a user looks “through” the photo from the correct

camera viewpoint, and can slide and rotate vehicles in 3D

on a rendered ground plane with the correct perspective.

Our interface is shown in Figure 2. 3D vehicles of var-

ious types can be placed into the scene, then moved and

rotated until they align with the actual vehicles in the image.

The user may also adjust the height of the camera above the

ground plane in order to correct for mis-estimated camera

heights in the SfM model. With these limited degrees of

freedom, we found that most images were easy to annotate.

In addition, since the camera poses are in a geographic coor-

dinate system, each vehicle is placed at a real position in the

world, and we can record its latitude, longitude, and heading.

For each photo, a user is asked to label all cars as long

as he or she can confidently determine the pose of the car in

3D (even if it is partially occluded, as is often the case). The

user can also indicate that either the ground plane or photo

is defective (and give a reason, e.g. extreme camera blur).

After this initial labeling step, several post-processing steps

take place. Users label each photo as day or night, and label

the occlusion level of each annotated vehicle on a scale from

“fully visible” to “fully occluded.” Because our 3D proxy

models may not fit the annotated vehicle exactly, we also

have users correct each 2D bounding box. Finally, to keep

track of vehicles that users were unable to label (e.g. too far

away, too occluded, not sure if actually a car), we have users

click on all the objects they think are cars in the image.

Our Times Square dataset was labeled by students hired

as annotators, and contains 1,287 labeled photos and 3,787

labeled vehicles with a wide variety of occlusion levels,

truncation, pose, and time of day, each with a geolocation,

heading, and vehicle class. Users flagged an additional 444

photographs as having a mis-estimated ground plane, 712
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Figure 3. NYC3DCars dataset statistics. Several statistics over our dataset, including (left to right): histograms of (1) the height of each

vehicle as measured in pixels, (2) the level of occlusion for each vehicle, (3) viewpoints (i.e. which side is visible to the camera), (4) vehicle

types, and (5) the approximate time of day each photo was taken.

photographs as having no visible ground (i.e., pedestrians or

other occluders cover the entire ground and obscure any po-

tential vehicles), and 257 photographs as having some other

defect such as extreme motion blur. Figure 3 highlights sev-

eral key statistics of the data. To increase the generality of

our dataset, we also gathered data for two other locations in

NYC, Herald Square (130 images) and the area around the

Apple Store on Fifth Avenue (489 images). These two loca-

tions are visually distinct from Times Square, but also offer

many challenging instances of pedestrian and car occlusion.

In the remainder of the paper, we focus on the Times Square

dataset. For evaluating detection, we divide the images into

equal-sized training and test sets.

3.3. Geographic Data

One reason we selected NYC as the location of our dataset

was to leverage high-fidelity geographic data made freely

available online. Every four years (most recently in 2009),

NYC releases a free, updated set of polygons spanning the

city, representing roadbeds, sidewalks, building footprints,

medians, and road centerlines. We incorporate this data

into our dataset, and augment roadbed polygons with road

orientation information (i.e., the expected direction of traffic)

from OpenStreetMap. While such comprehensive data is

currently available for a small number of cities, adding such

geographic information to our dataset allows researchers to

study how this data can be used, so as to guide its use in

other locations as more data becomes available.

The geographic data used in our dataset is illustrated in

Figure 4. As shown in the figure, the fact that our photos are

georegistered allows us to project this data into each photo.

This results in pixel-level segmentations of surface types

(e.g., road, sidewalk) and 3D buildings. We explore the use

of such data for vehicle detection in Section 5.

Discussion. We were initially unsure how well SfM meth-

ods could be applied to photos of Times Square, due to its

dynamic nature (with moving objects, such as cars and peo-

ple, and changes in the scenery itself, e.g. through electronic

displays and billboards). However, as the visualization in

Figure 1 suggests, the reconstructed cameras largely align

with sidewalks and other areas where one would expect pho-

tos to be captured. Despite the dynamic elements, enough

of the background stays the same for many (but not all) im-

ages to be registered together correctly. The images that

were incorrectly registered were generally photos with only

a few matches to 3D points in the scene, but occasionally

contained street signs or other confusing features.

Our dataset has inherent bias in that all photos are from a

common geographic area; one way this bias manifests itself

is in the skewed distributions of vehicle poses and types

evident in Figure 3. We discuss bias in Section 7.

4. Viewpoint-Aware Vehicle Detection
In the following sections, we propose several methods and

experiments that we apply to the NYC3DCars dataset. Here

we discuss how we run existing learning methods on our data,

and adapt them to build a set of baseline viewpoint-aware car

detectors. As baselines, we consider several detector vari-

ants, and several types of data for training (including our own

data, as well as non-viewpoint-annotated data from PASCAL

VOC). Broadly speaking, our detectors start by training a

state-of-the-art vehicle detector in a viewpoint-aware way,

then apply these to new images with a non-maxima suppres-

sion step to produce a set of candidate detections.

Viewpoint-aware detector. Our detector is based on the

successful Deformable Part Model (DPM) [5]. We first

divide our viewpoint-annotated training examples into 16

uniformly spaced bins based on viewpoint azimuthal angle,

and train a detector for each (as in [7]). For each bin, we train

a linear SVM on HOG features, using unoccluded vehicles

as positives, and negative examples mined from images that

do not contain cars. Following the work of Girshick et al. [9],

we use these linear SVMs as the initial filter coefficients in

a car detection DPM mixture model. In particular, each

viewpoint bin becomes a component in the mixture model.

In order to train this mixture model, we use the Weak-

Label Structural SVM (WL-SSVM) framework proposed

in [9]. The WL-SSVM is a generalization of the Latent

SSVM where a structured loss can be applied between (1)

a set of labels and (2) a set of predictions when the two

sets might not be the same. Let y = (yl, yb, yv) be an

annotation with class label yl ∈ {−1,+1}, 2D bounding box

yb, and viewpoint bin yv ∈ {1, . . . ,K,∅} (where K is the

number of viewpoint bins, and ∅ indicates that a viewpoint
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Figure 4. 3D visualization of geographic data. By exploiting georegistration, we can obtain pixel-level labels. Left: Input image. Center:

Image with vector data: roads (blue), medians (violet), and sidewalks (green). Right: Image with a 3D model of Times Square.

is unavailable, e.g. with VOC data). Similarly, let s =
(sl, sb, sv) be a prediction with class label sl, 2D bounding

box sb, and viewpoint sv. We use the WL-SSVM over the

more traditional latent SVM in order to penalize true positive

class detections with incorrect viewpoint classification as

well as to handle training examples without a viewpoint

annotation (e.g., if we include VOC data for training).

The WL-SSVM requires two loss functions to be defined,

Lmargin(y, s) which is used to push bad prediction scores

down and Loutput(y, s) which is used to push good predic-

tion scores up. (We provide a review of [9] with more details

in the supplemental material.) We define our viewpoint-

aware structured loss function, Lview,l,τ (y, s), as

Ll,τ (y, s) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

l yl = −1 ∧ sl = +1

0 yl = −1 ∧ sl = −1
l yl = +1 ∧ overlap(yb, sb) < τ

0 yl = +1 ∧ overlap(yb, sb) ≥ τ

(1)

Lview,l,τ (y, s) =

⎧⎪⎨
⎪⎩

1
2 [l + Ll,τ (y, s)] yv �= sv ∧ yv �= ∅

1
2Ll,τ (y, s) yv = sv ∧ yv �= ∅

Ll,τ (y, s) yv = ∅

(2)

where overlap(yb, sb) = ‖yb∩sb‖
‖yb∪sb‖ . We use Lmargin(y, s) =

Lview,1,0.5(y, s) and Loutput(y, s) = Lview,∞,0.7(y, s).
This formulation is similar in spirit to a model proposed

by [20], but differs in that we do not encode the precise

bounding box overlap in the loss function.

An alternative approach to training this viewpoint model

is to use a latent SVM (LSVM) as formulated in [5]. In order

to accommodate the viewpoint annotations, it is desirable to

only choose compatible latent variable assignments in the

“relabel positive examples” step of the coordinate descent

approach. However, unlike the WL-SSVM formulation,

this fails to apply a loss to true positive car detections with

incorrect viewpoint classifications.

Non-maxima Suppression (NMS). We run the trained de-

tector as a sliding window and threshold. We now take these

(possibly overlapping) detections, and create a final set of

detections via NMS. As in [18], we greedily select the top

scoring detection not yet selected or removed, then remove

all other detections whose overlap with the selected detec-

tion is greater than a threshold (we use a threshold of 0.3 on

the ratio of bounding box intersection area over union area).

5. Geographic Context Rescoring

Given that our dataset contains geographic context, such

as road boundaries and sidewalks, a natural question is how

useful this kind of geographic information is for recognition

tasks (e.g., in reducing false positive detections, or in improv-

ing detected 3D vehicle pose estimates). We now describe a

method for utilizing this data as a “stage” on which we can

reason about positions and orientations of objects.

Let (φ, λ) denote a (latitude, longitude) position on the

Earth’s surface. We reason about both the world and detected

vehicles in this coordinate system. We define we(φ, λ) as the

terrain elevation at (φ, λ); Wri as a single roadbed polygon

with traffic-direction vectors �wdi
(φ, λ) defined at each point

in the polygon (we model road intersections as overlapping

polygons, each with its own direction of travel); and Wr =
∪iWri as the set of all roadbed surfaces.

For each 2D detection produced by our baseline detec-

tor, we reason about its plausibility given the provided geo-

graphic data. To do so, we convert the 2D detection into a set

of hypothesis 3D car poses, each placed inside the physical

scene so as to fit the 2D bounding box. We parameterize a

3D vehicle hypothesis as �v = (vφ, vλ, vθ, ve) where (vφ, vλ)
is the 2D ground position of the vehicle’s centroid, vθ is the

vehicle heading, and ve is the elevation of the bottom of the

vehicle. Let �vf be the 2D vehicle footprint on the ground.

We assume that the car is rotated only about the scene up

vector, but do not assume the car is strictly resting on the

ground, in order to account for 2D localization error.

To generate a set of 3D hypotheses from a 2D detection,

we begin with a small database of example 3D vehicle CAD

models of different types (e.g., sedans, SUVs, etc.), to ac-

count for different possible shapes and sizes of the detected

vehicle. For each example 3D model, we place it in the scene
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so that it matches (1) the viewpoint predicted by the detector,

and (2) the 2D bounding box of the detection. The result is

a set of 3D hypotheses, V = {�vk}. More details about this

placement step are provided in the supplemental material.

For each 3D hypothesis �v ∈ V , we rescore the detection

using three geographic cues: an elevation score, an orienta-
tion score, and a road coverage score. The elevation score

favors detections that are close to the ground, the orientation

score encourages detections that have a plausible orientation

given where it is on the road network (e.g., going the correct

direction down a one-way street), and the road coverage

score encourages detections that lie on the road. This idea

is related to the scene-based reasoning of Hoiem, et al. [15],

but using known geographic data.

The elevation score SE is defined in terms the height of

the 3D car’s wheels above the ground:

SE(�v) = exp

[
− (ve − we(vφ, vλ))

2

2σ2
e

]
(3)

We use σe = 0.5 in our work.

Next, using roadbed polygons from our geographic data,

we compute the percentage of the car’s footprint �vf that

intersects the roadbed. This is our road coverage score, SC .

SC(�v) =
‖�vf ∩Wr‖
‖�vf‖ (4)

Finally, we find the roadbed polygons that the car’s foot-

print intersects, along with their associated directions of

travel. (The car might overlap with multiple road polygons

if it is in an intersection.) Among these possible local di-

rections of travel, we find the one that most closely agrees

with the car’s predicted orientation and penalize deviations

from this orientation. Because our detector produces dis-

cretized orientations, we penalize based on whether the road-

predicted orientation falls within the same bin as the vehicle:

Δd = min
di

arccos(�vd · �wdi
(vφ, vλ)) (5)

SO(�v) =

⎧⎪⎨
⎪⎩
1.0 Δd < w

2

0.5 w
2 ≤ Δd < 3w

2

0.0 3w
2 ≤ Δd

(6)

where w is the viewpoint bin width (22.5 degrees in the case

of our 16 bin detector). This is the orientation score.

In order to calibrate the DPM detector output to be com-

patible with the rest of our pipeline, we turn raw detec-

tion scores into scores between 0 and 1 using Platt calibra-

tion [21] with VOC2007 test as the validation set. The final

detection score, S(�v) is defined as

S(�v) = SE(�v)SC(�v)SO(�v)SV (�v) (7)

where the visual score, SV (�v), is the posterior of the DPM

detection. These rescored detections are then fed into the

NMS procedure to produce a set of output detections.

6. Experiments and Results

In our experiments we use the widely employed VOC

overlap criterion to evaluate detections. A detection is con-

sidered a true positive if
‖sb∩gtb‖
‖sb∪gtb‖ ≥ 0.5 where sb is the

predicted bounding box as in Section 4 and gtb is the ground

truth 2D bounding box. Only the first overlapping bounding

box is considered a true positive. We also evaluate accu-

racy in recognizing viewpoint; we use orientation-similarity
(OS), presented in [7] as a way to evaluate orientation esti-

mation. OS can be thought of as a precision weighted by a

normalized cosine similarity between detection and annota-

tion poses, and is therefore bounded above by precision.

6.1. Baseline Detectors

To get a sense for how NYC3DCars compares to es-

tablished datasets in terms of difficulty, we begin by eval-

uating a set of DPM training methods applied to differ-

ent combinations of datasets, including NYC3DCars train-
TimesSquare, KITTI train, and VOC2007 train+val. We

extended voc-release5 [8] software package for all experi-

ments. We compare three models: (a) a 6-component, un-

supervised mixture model with left-right mirroring, (b) a

16-component viewpoint-aware detector using the LSVM

with Loutput(y, s) to restrict the set of valid latent variable

assignments, and (c) a 16-component viewpoint-aware detec-

tor using the WL-SSVM with both Lmargin and Loutput. For

(a), we provide all positive examples during initialization,

but for the viewpoint-aware DPMs ((b) and (c)) we provide

only viewpoint-annotated examples during initialization and

then introduce other examples, if applicable, after the mix-

ture model has been built. The same negative training set is

used for all models, VOC2007 train+val car-free images, so

as to focus on comparing positive training sets and models.

Table 1 presents average precision and average orienta-

tion similarity. The top row shows the training data used,

and results are shown for testing on both VOC2007 and our

test data. We note a significant decrease in average preci-

sion (AP) as we move from the unsupervised DPM to the

viewpoint-aware models. This is consistent with previous

work, where the unsupervised DPM performs better at raw

detection [12]. We also see little to no improvement between

the LSVM and WL-SSVM when tested on VOC2007. How-

ever, a slight increase in AP and a significant increase in

average orientation-similarity (AOS) is seen when using the

WL-SSVM over the LSVM for NYC3DCars. When trained

on NYC3DCars alone, the WL-SSVM offers no benefit over

the LSVM. We also trained the NYC3DCars methods using

NYC3DCars train-TimesSquare car-free images for the neg-

ative set and found that for the unsupervised DPM method

AP remained roughly the same, whereas the LSVM and WL-

SSVM AP both decreased to 0.377 when tested on VOC2007

and both increased to 0.460 when tested on NYC3DCars.
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KITTI VOC2007+KITTI NYC3DCars VOC2007+KITTI+NYC3DCars
[5] VP LSVM VP WL-SSVM [5] VP LSVM VP WL-SSVM [5] VP LSVM VP WL-SSVM [5] VP LSVM VP WL-SSVM

VOC2007 0.420 0.404 0.406 0.532 0.474 0.481 0.426 0.381 0.381 0.516 0.482 0.487

NYC3DCars 0.395 0.371/0.302 0.378/0.338 0.456 0.406/0.324 0.413/0.372 0.511 0.450/0.416 0.450/0.417 0.513 0.448/0.389 0.455/0.426

Table 1. Average precision (AP) and average orientation similarity (AOS) for several training methods and positive training sets (top)

evaluated on two test sets (left). For methods or test sets that do not provide viewpoint predictions, only AP is shown. Otherwise, both AP

and AOS are shown (as AP/AOS).
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Figure 5. Precision-Recall and Orientation Similarity-Recall plots

for geographic context-rescored detections. SV is the visual score,

SC is the coverage score, SO is the orientation score, and SE

is the elevation score. Two curves are shown: one for a method

that uses only visual features SV , and one that uses all available

features (SCSOSESV ). Average precision and average orientation

similarity scores for each method are shown in the upper right

corner of each plot.

We also note that the best-performing methods when testing

on our data also require our data for training, which accords

with the varying biases across datasets. The best performing

pose-sensitive method on our data achieves an AP/AOS of

0.455/0.426. Note that training on KITTI alone performed

relatively poorly, and even adding VOC2007 training data

improved results above training on KITTI alone. We believe

this is due to NYC3DCars having greater variety than KITTI,

as our data is drawn from the Internet.

6.2. Geography-Aware Detection

We compare detection results before and after the in-

troduction of specific types of geographic context. As our

baseline, we selected our top performing viewpoint-aware de-

tector from Section 4, the VOC2007+KITTI+NYC3DCars-

trained WL-SSVM DPM.

Figure 5 shows precision-recall and orientation similarity-

recall curves for several combinations of geographic context

scores. By incorporating geographic context into our system,

we are able to raise AP from 0.455 to 0.487 and AOS from

0.426 to 0.483. In terms of AP, we found no significant im-

provement by including the coverage score. However, both

the elevation and orientation scores showed improvement

with the elevation score providing the greatest contribution.

In terms of orientation estimation, not surprisingly, the ori-

entation score proves to be a useful prior, but the elevation

score also helps to improve AOS (as it improves AP).

We also tried using the horizon estimate from SfM to cull

detections, which did offer improvement over the baseline,

but achieved only 0.470 AP and 0.438 AOS, a smaller in-

crease than with the geographic information. We also used

the geometric context framework of [15] and replaced their

detector with our own. While this sort of system has of-

fered improvement in the past, we had difficulty getting it

to provide competitive output for our modern detector. Of-

ten, low scoring false positives in plausible locations were

significantly boosted making it a challenge to configure it to

perform as well as the baseline.

In terms of 3D vehicle position estimation, we found that

before geographic context rescoring we had a mean absolute

ground plane translation error of 3.932 meters and a mean

absolute elevation error of 0.452 meters for a set of detetions

with high precision (0.9). After geographic context rescoring,

this mean absolute error was reduced to 3.392 meters and

0.201 meters respectively.

7. Discussion and conclusion
We conclude with a discussion of limitations, as well as ideas

for additional research directions our data can enable.

Data complexity. One potential concern with our dataset

is that it involves a more involved construction—involving

SfM, georegistration, etc.—than traditional datasets. While

it this construction process is more complex, it relies on re-

construction algorithms that are starting to mature. Similarly,

the geographic data we use is becoming more widespread all

the time. Moreover, our approach allows for study of how

useful this additional data is in vision, as a guide for future

datasets and methods.

Bias. Our dataset covers a limited geographic area, and is

biased towards vehicles that commonly appear in NYC (es-

pecially taxis, and sedans in general), and viewpoints that

are accessible to photographers in this area (see Figure 3).

Another, more subtle form of bias is that it is restricted to

images that can be registered using SfM. For some applica-

tions, this bias is a limitation—for instance, a detector built

from our data might not work well in a completely different

application. However, these biases are also a strength if the

goal is to build a region-specific detector, e.g., for applying

detection in future Internet photos of Times Square.

Other limitations. The cameras recovered by our SfM pro-

cedure are not perfect, and have some noise as well as oc-

casional gross failures. One future direction is to leverage

detection methods in a feedback loop to improve geometry,

related to prior methods but with multiple photos taken over

time [2]. We also plan to study how errors in camera pose
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Figure 6. Vehicle-vehicle occlusions. Left: User annotations.

Right: Visibility masks. Inset: Occlusion map for one annota-

tion (red: unoccluded; white: occluded.)

affect detection results. Currently, our dataset only contains

cars; in the future, we plan to also annotate pedestrians and

service vehicles (e.g., firetrucks). Finally, our annotation

tool assumes that objects are supported by a ground plane.

This assumption could be relaxed (so that it could handle

hilly areas) by incorporating open source terrain models.

Future directions. We present initial experiments that

leverage our data for pose-sensitive vehicle detection, with

promising results. However, we believe that our dataset en-

ables rich areas for future study; we describe a few ideas

here. First, one could use our data, along with multi-view

stereo methods, to build a detailed model of the background,

and use this in a detection method to predict background

appearance. Second, because our dataset is inherently 3D, it

allows for reasoning about 3D relationships of objects. For

instance, it could drive new non-maxima suppression meth-

ods that reason about object overlap in 3D (world-space)

rather than 2D (image-space), or methods that explicitly rea-

son about occlusions between 3D objects placed in the scene.

Our data also can be used to created detailed vehicle-vehicle

occlusion maps as shown in Figure 6. These maps could be

used to learn common patterns for occlusion, for instance

by extending mixture models to model occluded parts [9].

Finally, a longer-term application of our method is in using

Internet photos as a source of data for traffic prediction and

other problems in urban understanding. For instance, one

could imagine tracking taxis through NYC by applying our

methods continuously to Internet photos uploaded over time.
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