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Abstract

Human motion analysis in images and video is a central
computer vision problem. Yet, there are no studies that re-
veal how humans perceive other people in images and how
accurate they are. In this paper we aim to unveil some of the
processing–as well as the levels of accuracy–involved in the
3D perception of people from images by assessing the hu-
man performance. Our contributions are: (1) the construc-
tion of an experimental apparatus that relates perception
and measurement, in particular the visual and kinematic
performance with respect to 3D ground truth when the hu-
man subject is presented an image of a person in a given
pose; (2) the creation of a dataset containing images, ar-
ticulated 2D and 3D pose ground truth, as well as synchro-
nized eye movement recordings of human subjects, shown a
variety of human body configurations, both easy and diffi-
cult, as well as their ‘re-enacted’ 3D poses; (3) quantitative
analysis revealing the human performance in 3D pose re-
enactment tasks, the degree of stability in the visual fixation
patterns of human subjects, and the way it correlates with
different poses. We also discuss the implications of our find-
ings for the construction of visual human sensing systems.

1. Introduction
When shown a photograph of a person, humans have a

vivid, immediate sense of 3D pose awareness, and a rapid

understanding of the subtle body language, personal at-

tributes, or intentionality of that person. How can this hap-

pen and what do humans perceive? How is such para-

doxical monocular stereoscopy possible? Are the result-

ing percepts accurate in an objective, veridical sense, or

are they an inaccurate, possibly stable by-product of exten-

sive prior interaction with the world, modulated by sensa-

tions acquired through the selective visual observation of

the photograph? The distinction between the regular 3D

∗Authors contributed equally.

space we move in and the 3D space perceived when look-

ing into a photograph–the pictorial space–has been intro-

duced and beautifully studied by Koenderink[11] for rigid

objects through the notion of pictorial relief. In this paper

we aim to explore the concept for the case of articulated

human structures, motivating our pictorial human space
terminology.1 Our approach to establish the observation-

perception link is to make humans re-enact the 3D pose of

another person (for which ground truth is available), shown

in a photograph, following a short exposure time of a few

seconds. Simultaneously our apparatus allows the measure-

ment of human pose and eye movements during the ‘pose

matching’ performance. This comprises an observation, a

memory and a re-enactment error. As the poses are taken

from everyday activities, their reproduction should not put

subjects in difficulty as far as the ability to articulate a pose

is concerned, however. The contribution of our work can

be summarized as follows: (1) the construction of an ap-

paratus relating the human visual perception (re-enactment

as well eye movement recordings) with 3D ground truth;

(2) the creation of a dataset collected from 10 subjects (5

female and 5 male), containing 120 images of humans in

different poses, both easy and difficult, available online

at http://vision.imar.ro/percept3d; and (3)

quantitative analysis of human eye movements, 3D pose re-

enactment performance, error levels, stability, correlation as

well as cross-stimulus control, in order to reveal how differ-

ent 3D configurations relate to the subject focus on certain

features in images, in the context of the given task. We con-

clude with a discussion of the implications of our findings

for the construction of 3D human pose analysis systems.

Related Work: The problem of human pose estimation

from static images has received significant attention in com-

puter vision, both in the 2D [7, 15, 26] and the 3D case[5,

17, 21, 24, 1, 8, 3, 2]. The 2D case is potentially easier, but

occlusion and foreshortening challenge the generalization

1No connection with pictorial structures[15]–2D tree-structured mod-

els for object detection.
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ability of 2D models. For 3D inference, different models as

well as image features have been explored, including joint

positions[12, 4], edges and silhouettes[21, 8]. Recent stud-

ies focused, as well, on inferring human attributes extracted

from 3D pose[18] and on analyzing perceptual invariance

based on 3D body shape representations[16]. It is well un-

derstood that the problem of geometrically inferring a skele-

ton from monocular joint positions, the problem of fitting

a volumetric model to image features by non-linear opti-

mization, and the problem of predicting poses from a large

training data corpus based on image descriptors are under-

constrained under our present savoire faire. These pro-

duce either discrete sets of forward-backward ambiguities

for known limb lengths[12, 21, 19] (continuous non-rigid

affine folding for unknown lengths), or multiple solutions

due to incorrect alignment or out-of-sample effects[5, 21].

3D human pose ambiguities from monocular images may

not be unavoidable. Better models and features, a subtle un-

derstanding of shadows, body proportions, clothing or dif-

ferential foreshortening effects may all reduce uncertainty.

The question still is whether such constraints can be reli-

ably integrated towards metrically accurate monocular re-

sults. Here we take an experimental perspective, aiming to

better understand what humans are able to do, how accu-

rately, and where they are looking when recognizing a 3D

pose. Such insights can have implications in defining more

realistic targets and levels of uncertainty for the operation of

computer systems in similar tasks, and could provide quan-

titative hints (and training data) on what image features to

focus on to achieve such performance. While this work fo-

cuses on experimental human sensing in monocular images,

the moving light display setup of Johansson[10] is worth

mentioning as a milestone in emphasizing the sufficiency of

dynamic minimalism with respect to human motion percep-

tion. Yet in that case, as for static images, the open question

remains on how such vivid dynamic percepts relate to the

veridical motion and how stable across observers they are.

Our paper focuses mostly on analysis from a computer vi-

sion perspective but links with the broader domain of senso-

rimotor learning for redundant systems, under non-linearity,

delays, uncertainty and noise[25]. We are not aware, how-

ever, of a study similar to ours, nor of an apparatus connect-

ing real images of people, eye movement recordings and 3D

perceptual pose data, with multiple subject ground truth.

2. Apparatus for Human Pose Perception
The key difficulty in our experimental design is to link

a partially subjective phenomenon like the 3D human vi-

sual perception with measurement. Our approach was to

dress people in a motion capture suit, equip them with an

eye tracker and show them images of other people in dif-

ferent poses, which were obtained using motion capture as

well (fig. 1). By asking the subjects to re-enact the poses

shown, we can link perception and measurement. We use a

state-of-the-art Vicon motion capture system together with

a head mounted, high-resolution mobile eye tracking sys-

tem. The mocap system tracks a large number of markers

attached to the full body mocap suit worn by a person. Each

marker track is then labeled taking into account its place-

ment on the body regarding a model template. Having all

these labels, human models are used to accurately compute

the location and orientation of each 3D body joint. The mo-

bile eye tracker system maps a person’s gaze trajectory on

the video captured from its frontal camera. The synchro-

nization between the two cameras is done automatically by

the system.

2.1. Setup and Dataset Collection

We have analyzed the re-enactment performance of 10

subjects, 5 male and 5 female, who did not have a medi-

cal history of eye problems or mobility impediments. The

participants were recruited through an agency and had no

link with computer vision. Each subject was asked to look

at images of people in different poses taken from the Hu-

man3.6M (H3.6M) dataset[9], and then reproduce the poses

seen as well as they could. They were explicitly instructed

not to mirror the pose, but to reproduce the left and right

sides accordingly. The images were projected on a screen

located 2.5–3 meters away from them and 1.2 meters tall.

The eye tracker calibration was done by asking the subject

to look at specific points, while the system was recording

pupil positions at each point. The calibration points were

projected on the same screen used to project images.

Each subject was required to stand still and look at one

image at a time until it disappeared, then re-enact the pose

by taking as much time as necessary. We chose to dis-

play images for 5 seconds such that the subjects would have

enough time to see all the necessary pose detail, while still

being short enough not to run into free viewing. The du-

ration was chosen by first recording two test subjects and

showing them images for 3, 5 and 8s. Their feedback was

that 3s was too short to view enough detail, while 8s was

more than enough. From an eye tracking video we were

interested in the 5s that captured the projected pose along

with the gaze recordings over the image of the person in

that pose. To increase the accuracy of recorded gazes, we

mapped fixations that fell onto the image on the screen

(captured by eye-tracker/viewer’s camera) back to the orig-

inal high-resolution image (c.f . fig. 1). We created green

and blue borders for the original image, to easily detect

and track later on. First, we evaluated the viewer’s cam-

era intrinsic parameters, and corrected for radial distortion

of each image in the captured video. Then we thresholded

in the HSV color space to retrieve the green and blue bor-

ders. Instead of directly detecting corners (which due to

subject’s subtle head movement might fall-off the image),
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(a) (b) (c) (d) (e)

Figure 1. Illustration of our human pose perception apparatus. (a) Screen on which the image is projected as captured by the external camera

of the eye tracker. (b) Result of mapping the fixation distribution on the original high-resolution image, following border detection, tracking

and alignment. (c) heat map distribution of all fixations of one of our subjects for this particular pose. (d) detail of our head-mounted eye

tracker and (e) 3D motion capture setup.

we detected the green and blue borders using a Radon trans-

form, imposing a 90◦ angle and a known aspect ratio of the

image on the screen. Moreover, we synchronized the mo-

cap and eye tracker system by detecting the start and end

frame of the displayed images in the eye tracker video as

well as in the video recorded with the motion capture sys-

tem (two digital cameras of the mocap system were pointed

at the screen as well). During experiments, subjects were

dressed in the mocap suit and had the mobile eye tracker

head-mounted. For each pose projected on the screen, we

captured both the eye-tracks and the 3D movement of the

subject in the process of re-enacting the pose, once it had

disappeared from the screen.

Once the 5s exposure time passed, the subject no longer

had the possibility to see the image of pose to re-enact, but

had to adjust his position based on the memory of that pose.

This time constraint ensures that the subject will mostly

look at what is important in understanding and reproduc-

ing the pose. Moreover, it makes the process of translat-

ing fixations from the video coordinates of the eye tracker

to the ones of the image on the screen robust, as there are

no rapid head movements or frames where the pose is only

partially seen (fig. 1). Another approach would have been

to allow the subject to look at the image while adjusting his

pose, thus removing a confounding factor due to short-term

memory decay (forgetting). In this way, the subjects could

alternate between adjusting body parts and checking back in

the image, without the constraint to memorize all the pose

details. While this choice may appear more natural, it has

the drawback of no longer being able to easily map the hu-

man fixations to the presented image, and makes it diffi-

cult to separate fixations that fall on the pose from those

on one’s own body or the surroundings. This experiment,

presented in our accompanying technical report[13] indi-

cates that, perhaps surprisingly, this supplementary visual

aid does not improve the pose re-enactment performance.

We display a total of 120 images, each representing a

bounding box of a person, and rescaled them to 800px

height in order to have the same projected size. The im-

ages are mainly frontal; 100 contain easily reproducible

standing poses, whereas 20 of them are harder to re-

enact as they require sitting on the floor, with often addi-

tional self-occlusion. The poses shown were selected from

Human3.6M[9], among various types of daily activities and

were performed by 10 different people.

2.2. Evaluation and Error Measures

We use the same skeleton joints as in Human3.6M[9] such

that our analysis can immediately relate with existing com-

puter vision methods and metrics.

H3.6M position error (MPJPE) between a recorded pose

and the ground truth is computed by translating the root

(pelvis) joint of the given pose to the one of the ground truth.

We rotate the pose such that it faces the same direction as

the ground truth. The error is then computed for each joint

as the norm of the difference between the recorded pose

and ground truth. In this way we compensate for the global

orientation of the subject. We normalize both the subject

skeleton and the ground truth to a default skeleton of aver-

age weight and height, ensuring that all computed errors are

comparable between poses and subjects.

H3.6M angles error (MPJAE) is computed as the abso-

lute value of the difference between joint angles of test and

ground truth, for each 1d.o.f. joint (e.g., for the elbow, the

angle between upper arm and lower arm). For a 3d.o.f. joint,

the representation is in ZXY Euler angles and the angle dif-

ference is computed separately for each d.o.f. as previously;

the final error is the mean over the 3d.o.f. differences.

3. Data Analysis
3.1. Human Eye Movement Recordings

Static and Dynamic Consistency. In this section we an-

alyze how consistent the subjects are in terms of their fix-

ated image locations. We are first concerned with evalu-

ating static consistency which considers only the location

of the fixations and then dynamic consistency which takes

into account the order of fixations. To evaluate how well the

subjects agree on fixated image locations, we predict each

subject’s fixations in turn using the information from the

other 9 subjects[6, 14]. This was done considering the same

pose as well as different poses. For each pose, we generate
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Figure 2. Percentage of fixations falling on joints, for each of the 120 poses (easy and hard) shown to subjects. The mean and standard

deviation is computed for each pose among the 10 subjects. A fixation was considered to fall on a particular joint if this was within 40px

distance from the fixation. On average 54% of the fixations on easy poses and 30% of those for hard poses fell on joints.

a probability distribution by assigning a value of 1 to each

pixel fixated by at least one of the 9 subjects and 0 to oth-

ers, then locally blurring with a Gaussian kernel. The width

was chosen such that, for each pose, it would span a visual

angle of 1.5o. The probability at pixels where the 10th sub-

ject’s fixations fall is taken as the prediction of the model

obtained from 9 subjects. For cross-stimulus control we re-

peat the process for 100 pairs of randomly selected different

poses. Fig. 3 indicates good consistency.

Figure 3. Static inter-subject eye movement agreement. Fixations

from one subject are predicted using data from the other 9 subjects

both on the same image (blue) and on a different image of a person,

randomly selected from our 120 poses (green).

Figure 4. HMMs trained for two poses using the method of [14].

Ellipses correspond to states, whereas dotted arrows to transition

probabilities assigned by the HMM. The AOIs determined by the

model correspond to regions that well characterize the pose.

To evaluate how consistent the subjects are in their or-

der of fixating areas of interest (AOIs), we used the hidden

Markov modeling recently developed by [14]. The states

correspond to AOIs that were fixated by subjects and the

transitions correspond to saccades. For each pose, we learn

a dynamic model from the scanpaths of 9 subjects and com-

pute the likelihood of the 10th subject’s scanpath under the

trained model. The leave-one-out process is repeated in turn

for each subject and the likelihoods averaged. The average

likelihood (normalized by the scanpath length) obtained is

−9.38. Results are compared against the likelihood of ran-

domly generated scanpaths. Specifically, for each pose we

generate a random scanpath with the exception of the first

fixation which was taken as the center of the image to ac-

count for central bias. Each random scanpath is evaluated

against the model trained with subject fixations on that pose.

The average likelihood of randomly generated trajectories is

much smaller than the one of subject data, only −42.03, in-

dicating that subjects are consistent in the order they fixate

AOIs. Examples of trained HMMs are shown in fig. 4.

What percentage of fixations fall on joints? In order

to understand where our subjects look and what are the

most important body cues in re-enacting each 3D pose, we

project the skeletal joint positions onto the image shown.

We analyze the fixations relative to the 17 joints in fig. 5.

For each pose, we take into account the 3D occlusions

(based on mocap data and a 3D volumetric model) and con-

sider, as possibly fixated, only those joints that are visible.

We consider a fixation to be on a joint if it falls within a

distance of 40 pixels. This threshold was chosen to account

for an angle of approximately 1.5o of visual acuity. Our first

analysis aims to reveal to what extent subjects are fixating

joints and how their particular choice of regions varies with

the poses shown. Fig. 2 shows what percent of fixations fell

on joints for each pose, for each subject. On average 54% of

fixations fell on various body joints for easy poses, but only

30% for hard poses. This is not surprising as more joints are

usually occluded in the case of the complex poses shown.

Where do subjects look first? Since approximately half of

human fixations fell on joints, we want to know whether

certain joints are always sought first, and to what extent

the joints considered first are pose-dependent. The order
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in which joints are fixated can offer insight into the cog-

nitive process involved in pose recognition. Fig. 5 shows

how many times a joint was among the first 3 AOIs fixated,

for each subject. The first 3 fixations almost never fall on

the lower body part which (typically) has less mobility, but

mostly on the regions of the head and arms.

Figure 5. Number of times a body joint was in the top-3 regions

fixated, accumulated over the 120 poses shown.

Which are the most fixated joints? We study whether cer-

tain joints are fixated more than others and we want to know

whether this would happen regardless of the pose shown, or

whether it varies with the pose. For this purpose, we con-

sider the number of fixations that fall on a particular joint as

well as the time spent on fixating each joint. Fig. 6 shows

the distribution of fixations on body joints, averaged over

poses. Notice that although certain joints have been fixated

more than others, this depends on the specific pose. The

variation can also be observed in a detailed analysis of how

frequently certain joints were fixated in two arbitrary poses,

presented in fig. 8 and fig. 9. While in fig. 8 the legs are al-

most never fixated, a different frequency pattern is apparent

in fig. 9. One explanation could be that the leg positions in

the second image have greater deviation form a standard,

rest pose than in the first image. In fig. 7 we aggregate joint

fixations for each subject, on all poses, and show the most

frequently fixated joints, on average. The inter-subject vari-

ation is smaller than the one between poses, confirming a

degree of subject consistency with respect to the joints more

frequently fixated. The wrists and the head area are most

looked at, within a general trend of fixating upper body parts

more than lower ones.

How long are people looking at different joints? As the

length of a fixation varies, it is also important to consider

the time spent in fixating a particular joint. In fig. 10 we

show the mean time and standard deviation spent on a pose,

shown on each body joint, by aggregating over subjects.

Similarly, in fig. 11 we show the mean time and standard

deviation between subjects, by aggregating over poses. No-

tice that inter-pose standard deviation is higher than inter-

subject standard deviation. It can be further observed that

joints at the extremity of the body (head, neck, wrists) are

Figure 6. Fixation counts on each joint. The mean and standard

deviation is computed among the 120 poses by aggregating over

all 10 subjects, for each pose.

Figure 7. Fixation counts on each joint. The mean and standard

deviation is computed for each of the 10 subjects by aggregating

their fixations over all 120 poses.

Figure 8. Number of fixations of each subject on the 17 body

joints, when presented the pose-image shown on the right.

Figure 9. Number of fixations made by each subject, on the 17

body joints, when presented the pose-image shown on the right.

the most fixated.

3.2. 3D Pose Re-Enactment

In this section we complement eye-movement studies

with an analysis of how well humans are able to reproduce

the 3D poses of people shown in images.

What is the joint angle distribution of the poses in our
dataset? In fig. 12 we show the angle distribution, for each
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Figure 10. Time spent on fixating each joint. The mean and stan-

dard deviation is computed among the 120 poses by aggregating

the duration of fixations for all 10 subjects, for each pose.

Figure 11. Time spent on fixating each joint. The mean and stan-

dard deviation is computed among the 10 subjects by aggregating,

for each, the fixation duration over all 120 poses.

joint, measured over the 120 poses in the dataset. Easy

poses contain mainly standing positions (very few angles

over 30o in the lower body part), whereas the hard ones, of-

ten very different from standing, are spread across all joints.

Figure 12. Distribution of joint angles in our dataset (under MP-

JAE) split over easy (left) and hard poses (right).

Since subjects were asked to match the right and left

components of a pose accordingly, we want to know

whether there is a balanced distribution between the devi-

ations of our selected poses from a resting pose, over the

right and left sides. Fig. 13. shows the mean deviation from

a rest pose, over each joint. The angle difference was ob-

tained using MPJAE. There is a similar degree of displace-

ment required for both left and right body sides in replicat-

ing poses during experiments.

How long does it take to assume a pose? While there is

variance between subjects in the time taken to re-enact a

pose, table 1 shows that all of them are consistent in taking

more time for hard poses compared to easy ones.

Are easy poses really easy and hard poses really hard?
The selection criterion was based on our perception of how

Figure 13. Deviation statistics from rest pose under MPJPE.

Subjects S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

Time(sec) Easy 6.6 6.0 4.4 4.4 5.2 6.7 9.2 7.8 4.6 4.8

Time(sec) Hard 9.6 8.2 6.4 8.6 7.5 10.0 11.1 11.5 6.5 7.0

Table 1. Average time for re-enacting a 3D pose. The mean time

is 6± 1.6s for an easy pose and 8.6± 1.8s for a hard one.

hard it would be to re-enact the pose. Here we check how

this relates to the measured errors for different poses. The

leftmost plot from fig. 14 shows that MPJAE smoothly de-

creases over time. Subjects require different times to com-

pletion for an easy pose. The center pose seems to be per-

ceived as slightly harder, with higher errors and longer com-

pletion times. The last image shows a hard pose as well

as the errors and time taken to re-enact it. The errors are

considerably higher than for the easy poses indicating that

our selection of difficult poses indeed resulted in higher re-

enactment errors and longer completion times.

How accurately do humans re-enact 3D poses? The sub-

jects decide when they consider completion: body configu-

ration closest to the one shown. Using our error measures

we analyze whether their perceived minimum error was in-

deed the closest they were able to achieve. In table 2 we

show that, on average, subject completion errors are worse

(by 14± 3% under MPJPE or 9± 10% under MPJAE) than

their minimum error achieved during the process of pose

re-enactment. The 20 poses we perceived (and selected) as

hard to re-enact indeed have larger errors than easy poses

by 73± 20% (MPJPE) or 53± 6% (MPJAE). Errors for the

different poses are shown in fig. 16.

In a second experiment, not covered here due to space

constraints, but described in detail in [13] we allow subjects

to adjust their pose while the image is available, thus rul-

ing out short-term memory decay as a confounding factor.

We first presented the image only for 5s, removed it, and

asked the subjects to re-enact the pose (as in §2.1). Upon

completion, we projected the image again, allowing the sub-

jects to adjust their pose once more. For 5 subjects, shown

100 easy and 50 hard poses, the errors were 103.92mm

(MPJPE) or 26.32◦ (MPJAE) (without feedback) and 99.36

mm (MPJPE) or 26.53◦ (MPJAE) (with visual feedback).

The small differences among the two results indicate that

continuously available visual stimuli did not significantly

change the re-enactment error on completion.

Are there correlations between errors of different body
joints? We expect that when subjects misinterpret the posi-
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Figure 14. Error variation, over time, for two easy poses (left and center) and a hard one (right).

MPJPE min error (mm) MPJPE end error (mm) MPJAE min error (deg) MPJAE end error (deg)

Subjects Easy Hard Both Easy Hard Both Easy Hard Both Easy Hard Both

S1 105.2± 34.8 155.0± 59.8 113.5± 43.9 119.7± 38.9 171.1± 70.7 128.3± 49.3 18.3± 6.5 26.4± 6.7 19.6± 7.2 20.0± 6.5 31.0± 8.6 21.8± 8.0
S2 75.2± 24.4 138.2± 49.8 85.7± 38.0 87.8± 27.6 156.1± 65.5 99.1± 44.4 16.2± 5.8 22.9± 6.6 17.3± 6.4 17.2± 6.3 25.3± 8.1 18.6± 7.2
S3 79.9± 34.5 130.0± 51.5 88.3± 42.0 88.5± 37.8 138.3± 56.1 96.8± 45.1 15.9± 5.8 23.5± 7.7 17.2± 6.8 16.6± 5.9 26.7± 9.6 18.3± 7.6
S4 78.4± 32.2 140.0± 41.3 88.7± 40.8 90.6± 36.4 162.7± 47.5 102.6± 46.8 16.4± 5.9 24.0± 6.5 17.7± 6.6 17.8± 6.5 27.2± 6.9 19.4± 7.4
S5 73.9± 28.5 130.2± 40.8 83.3± 37.2 85.3± 29.0 162.2± 74.2 98.1± 49.1 16.1± 5.4 23.4± 6.1 17.3± 6.2 17.5± 5.7 25.8± 7.5 18.9± 6.7
S6 81.0± 38.5 143.7± 46.4 91.4± 46.1 92.1± 43.6 155.3± 44.3 102.6± 49.6 16.4± 6.2 24.4± 7.1 17.8± 7.0 17.2± 6.5 26.7± 9.4 18.8± 7.9
S7 84.4± 33.5 125.3± 39.7 91.2± 37.7 99.5± 39.8 142.2± 56.3 106.6± 45.6 17.1± 6.0 25.4± 7.8 18.5± 7.0 18.8± 6.5 28.0± 8.4 20.3± 7.7
S8 77.3± 25.5 139.2± 41.5 87.6± 36.8 85.8± 29.2 152.4± 45.7 96.9± 40.8 15.4± 6.0 24.6± 7.4 17.0± 7.1 16.2± 6.1 25.9± 7.6 17.8± 7.3
S9 73.7± 30.0 152.0± 56.9 86.7± 46.1 87.1± 32.8 175.2± 69.1 101.7± 52.4 15.7± 5.7 22.4± 5.8 16.8± 6.2 17.2± 5.9 25.2± 8.1 18.6± 7.0
S10 72.0± 23.5 133.9± 39.3 82.3± 35.2 80.6± 25.2 151.9± 43.1 92.5± 39.2 15.4± 5.6 24.3± 7.3 16.9± 6.7 16.7± 5.8 26.5± 8.0 18.3± 7.2
All 80.1± 32.1 138.8± 47.0 89.9± 41.3 91.7± 35.9 156.7± 58.1 102.5± 47.2 16.3± 5.9 24.1± 6.9 17.6± 6.8 17.5± 6.2 26.8± 8.2 19.1± 7.4

Table 2. Results detailed for easy poses, hard poses as well as over all poses under MPJPE and MPJAE metrics. We display the mean of

the minimum errors attained by subjects during re-enactment, as well as the completion errors for the subjects.

tion of a joint, thus exhibiting a large error in that particu-

lar articulation, there could be other joints that are wrongly

positioned, perhaps to compensate. Fig. 15 indeed shows

strong error correlations for the upper body when (under

MPJPE) as well as for both arms (under MPJAE).

Figure 15. Joint error correlations under MPJPE and MPJAE.

4. Discussion
Our study reveals that people are not significantly bet-

ter at re-enacting 3D poses given visual stimuli, on aver-
age, than existing computer vision algorithms[9], at least

within the laboratory setup of our study (naturally the errors

of computer vision algorithms could be radically different

and are subject to our ongoing research). Errors in the or-

der of 10-20◦ or 100mm per joint are not uncommon. Hard

poses selected in the construction of the dataset indeed lead

to higher errors compared to easy poses. This indicates that

people are not necessarily good at accurate 3D pose recov-

ery, under conventional metrics, a finding consistent with

earlier computational studies of 3D monocular human pose

ambiguities[21, 22, 19]. Instead, qualitative representations

may be used for most tasks, although the implications in

skill games (e.g. using Kinect[23]) where player’s accuracy

is valued, but may not be realizable, could be relevant. In

the process of reproducing the pose, subjects attend certain

joints more than others and this depends on the pose, but the

scanpaths are remarkably stable across subjects both spa-

tially and sequentially. Extremities including the head or

the wrists are fixated more than internal joints, perhaps be-

cause once ‘end-effector’ positions are known, more con-

strains are applicable to ‘fill-in’ intermediate joints on the

kinematic chain. Familiar pose sub-configurations are often

fixated less (or not at all) compared to unfamiliar ones indi-

cating that a degree of familiar sub-component pose recog-

nition occurs from low-resolution stimuli, not ruling out

poselet approaches[4]. An interesting avenue not pursued

in almost any artificial recognition system, but not incon-

sistent with our findings, would be the combination of low-

resolution (currently pervasive computer vision) inference

with pose and image dependent search strategies that focus

on high resolution features–combining bottom-up and se-

lective top-down processing[20, 17, 2].

5. Conclusions
The visual analysis of humans is an active computer vi-

sion research area–yet it faces open problems on what ele-

ments of meaning should we detect, what elements of the

pose should we represent and how, and what are the accept-

able levels of accuracy for different human sensing tasks.

In this paper we have taken an experimental approach to

such questions by investigating the human pictorial space,

linking images of people with the process in which humans

perceive and re-enact those 3D poses. We have developed

a novel apparatus for this task, constructed a publicly avail-

able dataset, and performed quantitative analysis to reveal
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Figure 16. MPJPE and MPJAE versus pose index. Notice significant subject variance and larger errors for ‘hard’ poses.

the level of human performance, the accuracy in pose re-

enactment tasks, as well as the structure of eye movement

patterns and the correlation with the pose difficulty. We

have also discussed the implications of such findings for

the construction of computer-vision based human sensing

systems. In future work we plan to design perceptual met-

rics, as well as person detectors and image search strategies

based on our findings and data.

Acknowledgments: Support in part by CNCS-UEFICSDI

under CT-ERC-2012-1, PCE-2011-3-0438.

References
[1] A. Agarwal and B. Triggs. Recovering 3D human pose from

monocular images. PAMI, 2006.

[2] M. Andriluka, S. Roth, and B. Schiele. Monocular 3D pose

estimation and tracking by detection. In CVPR, 2010.

[3] L. Bo and C. Sminchisescu. Twin gaussian processes for

structured prediction. IJCV, 2010.

[4] L. Bourdev, S. Maji, T. Brox, and J. Malik. Detecting people

using mutually consistent poselet activations. In (ECCV),
2010.

[5] J. Deutscher, A. Blake, and I. Reid. Articulated body motion

capture by annealed particle filtering. In CVPR, 2000.

[6] K. A. Ehinger, B. Hidalgo-Sotelo, A. Torralba, and A. Oliva.

Modelling search for people in 900 scenes: A combined

source model of eye guidance. Visual Cognition, 2009.

[7] V. Ferrari, M. Marin, and A. Zisserman. Pose Search: re-

trieving people using their pose. In CVPR, 2009.

[8] J. Gall, B. Rosenhahn, T. Brox, and H. Seidel. Optimiza-

tion and filtering for human motion capture: A multi-layer

framework. IJCV, 2010.

[9] C. Ionescu, D. Papava, V. Olaru, and C. Sminchisescu. Hu-

man3.6M: Large scale datasets and predictive methods for

3D human sensing in natural environments. PAMI, 2014.

[10] G. Johannson. Visual perception of biological motion and

a model for its analysis. In Perception and Psychophysics,

1973.

[11] J. Koenderink. Pictorial relief. In Phil. Trans. R. Soc. Lon-
don. A, volume 356, 1998.

[12] H. J. Lee and Z. Chen. Determination of 3D human body

postures from a single view. CVGIP, 30, 1985.

[13] E. Marinoiu, D. Papava, and C. Sminchisescu. Pictorial hu-

man spaces: A study on the human perception of 3D articu-

lated poses . Technical report, IMAR and Lund University,

2013.

[14] S. Mathe and C. Sminchisescu. Action from still image

dataset and inverse optimal control to learn task specific vi-

sual scanpaths. In NIPS, 2013.

[15] B. Sapp, A. Toshev, and B. Taskar. Cascaded models for

articulated pose estimation. In ECCV, 2010.

[16] A. Sekunova, M. Black, L. Parkinson, and J. Barton. View-

point and pose in body-form adaptation. Perception, 2013.

[17] L. Sigal, A. Balan, and M. J. Black. Combined discrimi-

native and generative articulated pose and non-rigid shape

estimation. In NIPS, 2007.

[18] L. Sigal, D. J. Fleet, N. F. Troje, and M. Livne. Human

attributes from 3D pose tracking. In ECCV, 2010.

[19] C. Sminchisescu and A. Jepson. Variational mixture smooth-

ing for non-linear dynamical systems. In CVPR, volume 2,

pages 608–615, Washington D.C., 2004.

[20] C. Sminchisescu, A. Kanaujia, and D. Metaxas. Learning

joint top-down and bottom-up processes for 3D Visual infer-

ence. In CVPR, 2006.

[21] C. Sminchisescu and B. Triggs. Kinematic jump processes

for monocular 3D human tracking. In CVPR, 2003.

[22] C. Sminchisescu and B. Triggs. Mapping minima and tran-

sitions in visual models. IJCV, 61(1), 2005.

[23] M. Sun, P. Kohli, and J. Shotton. Conditional regression

forests for human pose estimation. In CVPR, 2012.

[24] R. Urtasun, D. Fleet, A. Hertzmann, and P. Fua. Priors for

people tracking in small training sets. In ICCV, 2005.

[25] D. M. Wolpert, J. Diedrichsen, and J. R. Flanagan. Principles

of sensorimotor learning. Nat. Rev. Neuroscience, 2011.

[26] Y. Yang and D. Ramanan. Articulated pose estimation using

flexible mixture of parts. In CVPR, 2011.

1296


