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Abstract

In this paper, we study the robust subspace clustering
problem, which aims to cluster the given possibly noisy da-
ta points into their underlying subspaces. A large pool of
previous subspace clustering methods focus on the graph
construction by different regularization of the representa-
tion coefficient. We instead focus on the robustness of the
model to non-Gaussian noises. We propose a new robust
clustering method by using the correntropy induced metric,
which is robust for handling the non-Gaussian and impul-
sive noises. Also we further extend the method for handling
the data with outlier rows/features. The multiplicative form
of half-quadratic optimization is used to optimize the non-
convex correntropy objective function of the proposed mod-
els. Extensive experiments on face datasets well demon-
strate that the proposed methods are more robust to corrup-
tions and occlusions.

1. Introduction
In pattern recognition and computer vision community,

the data usually follow certain type of simple structure that

enables intelligent representation. The subspaces are possi-

bly the most widely used data model, since many real-world

data, such as face images and motions, can be well charac-

terized by subspaces. Given a set of data points, assum-

ing that they are drawn from multiple subspaces, the goal

of subspace clustering is to (1) cluster these data points in-

to clusters with each cluster corresponding to a subspace,

and (2) predict the memberships of the subspaces, includ-

ing the number of subspaces and the basis of each subspace.

Subspace clustering is a fundamental problem and has nu-

merous applications in the machine learning and computer

vision literature, e.g. motion segmentation [21] and image

∗Corresponding author.

· · · · 
· · 

· 
· 

· 
· · 

· · 
· 
· 
· 
· · 

· 
· 

· 
· · 

· 

· 
· 

· 

· · 

        
 

 

 

   
   

  

 

 

 

 
 

 
 

 

 
 

 

 

 
 

 
 

 

   

 

 

 

 

· 

Figure 1. Face images belonging to different subjects lie in differ-

ent subspaces. Noises by and corruptions deviate the data from the

underlying subspaces.

clustering [13]. The challenge in these applications lies in

that the only known information is the data points, and they

are usually contaminated by various noises. Figure 1 illus-

trates some face images from three subjects. The face im-

ages with pixel corruption, sunglasses and/or scarf, deviate

from their underlying subspaces. In this case, the subspace

clustering is challenging. This paper aims to address the ro-

bust subspace clustering problem with various noises, such

as the non-Gaussian noises.

1.1. Summary of Main Notations

In this work, matrices are represented with capital sym-

bols. In particular, I denotes the identity matrix. For a ma-

trix M , Mij and (M)ij denote its (i, j)-th entry. M i is its

i-th row, and Mj is its j-th column. Diag(v) converts the

vector v into a diagonal matrix in which the i-th diagonal

entry is vi. R+ denotes the set of non-negative real values

and S
d×n
+ denote the set of positive semi-definite matrices.

M � 0 denotes that M is symmetric and positive definite.

C1 denotes the set of continuous first derivative functions.
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||v||2 and ||v||∞ denote the L2 norm and infinity norm

of vector v, respectively. L1 norm, L21 norm and nucle-

ar norm of matrix M are defined as ||M ||1 =
∑

ij |Mij |,
||M ||21 =

∑
j ||Mj ||2, and ||M ||∗ =

∑
i σi (σi is the i-th

singular value of M ), respectively.

1.2. Related Work

Many subspace clustering methods have been proposed

[21, 11, 6, 7]. In this work, we focus on the recent graph

based subspace clustering methods [3, 4, 11, 10, 13]. These

methods are based on the spectral clustering, and its first

step aims to construct an affinity (or graph) matrix which is

close to be block diagonal, with zero elements correspond-

ing to data pair from different subspaces. After the affinity

matrix is learned, the Normalized Cut [20] is employed to

segment the data into multiple clusters. For a given data

matrix X ∈ R
d×n, where d denotes the feature dimension

and n is the number of data points, the most recent methods,

including L1-graph [3] or Sparse Subspace Clustering (SS-

C) [4], Low-Rank Representation (LRR) [11, 10], Multi-

Subspace Representation (MSR) [14] and Least Squares

Representation (LSR) [13] learn the affinity matrix Z ∈
R

n×n by solving the following common problem

min
Z

L(X −XZ) + λR(Z). (1)

For L1-graph or SSC, L(X −XZ) = ||X −XZ||2F and

R(Z) = ||Z||1. The motivation of using SSC is that the

L1-minimization will lead to a sparse solution tending to be

block diagonal. As pointed out in [13], the L1-minimization

does not exhibit the grouping effect, and thus is weak to

group correlated data points together.

For LRR, L(X − XZ) = ||X − XZ||21 and R(Z) =
||Z||∗. It aims to find a low rank affinity matrix. When the

data are drawn from independent subspaces, LRR leads to

a bock diagonal solution which can recover the true sub-

spaces. For the noisy case, LRR uses the robust L21-norm

to remove outlier samples.

MSR simply combines the criteria of SSC and LRR,

L(X−XZ) = ||X−XZ||21 and R(Z) = ||Z||1+γ||Z||∗.

Thus MSR can be regarded as a tradeoff between SSC and

LRR, but it needs to tune one more parameter γ.

The LSR method uses the Frobenius norm to model

both the reconstruction error and the representation matrix,

L(X − XZ) = ||X − XZ||2F and R(Z) = ||Z||2F . LSR

has a closed form solution which makes it efficient, and the

grouping effect makes it effective for subspace clustering.

The above methods share the common formulation as

shown in (1). The Frobenius norm and L21 norm are used

as the loss function while the L1 norm, nuclear norm and

Frobenius are used to control the affinity matrix. Differen-

t formulations require different solvers for these problems.

In this work, we show that the L1 norm, L21 norm and nu-

clear norm all satisfy certain conditions, and thus the previ-

ous subspace clustering methods, including SSC, LRR and

MSR, can be unified within a general framework from the

perspective of half-quadratic optimization [17]. The rela-

tionship between the general framework and the previous

optimization methods for sparse and low rank minimization

is also presented in this work.

Different from the previous methods which focus on a

regularization term R(Z), this work focuses on the con-

struction error term L(Z) for robust subspace learning. Pre-

vious works use the Frobenius norm to measure the quality

of approximation, which is optimal for the case of indepen-

dent and identically distributed (i.i.d.) Gaussian noise but

not robust to outliers. LRR by using the L21 norm is able to

remove the outlier samples, but it is sensitive to the outlier

features. To overcome the weakness of mean squared error,

we propose a new robust subspace clustering method which

uses the correntropy induced metric as the loss function.

The Frobenius norm is used to control the affinity matrix

to preserve the grouping effect as in LSR. Then we mini-

mize the non-convex correntropy objective of the proposed

method by alternate minimization.

1.3. Contributions and Organization

We summarize the contributions of this work as follows:

• We propose a new robust subspace clustering method

by Correntropy Induced L2 (CIL2) graph. It is able to

handle data with non-Gaussian noises. We also extend

CIL2 for handling data with outlier rows/features.

• We apply the correntropy induced L2 graph for face

clustering under various types of corruptions and oc-

clusions. Extensive experiments demonstrate the ef-

fectiveness of the proposed method by comparing it

with the state-of-the-art methods.

The remainder of this paper is organized as follows. Sec-

tion 2 gives a brief review of the half-quadratic analysis and

presents a general half-quadratic framework for robust sub-

space clustering. Section 3 elaborates the proposed CIL2

graph for robust subspace clustering. Section 4 provides

experimental results on face clustering under different set-

tings. We conclude this paper in Section 5.

2. A General Half-Quadratic Framework for
Robust Subspace Clustering

For a given data matrix X ∈ R
d×n, consider the follow-

ing general problem:

min
Z

J (Z) = L(E) + λR(Z)

s.t. E = X −XZ,
(2)
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Table 1. The popular previous subspace clustering models can be solved by half-quadratic minimization.

Methods
Objective Function

minZ L(X −XZ) + λR(Z) L(·) R(·)
SSC [4] minZ ||X −XZ||2F + λ||Z||1 || · ||2F || · ||1

LRR [11] minZ ||X −XZ||21 + λ||Z||∗ || · ||21 || · ||∗
MSR [14] minZ ||X −XZ||21 + λ||Z||1 + λγ||Z||∗ || · ||21 || · ||1 + γ|| · ||∗
LSR [13] minZ ||X −XZ||2F + λ||Z||2F || · ||2F || · ||2F

where L(E) is the loss function chosen to be robust to out-

liers or gross errors, and R(Z) is the regularization term.

The loss function L(E) and regularization R(Z) may be

non-quadratic. Thus it may be difficult to solve the problem

(2). But if L(E) and R(Z) satisfy certain conditions, we

can minimize J (Z) by half-quadratic analysis.

In this work, we consider a general case of φ(x) that

satisfies the following conditions [17]

(a) x → φ(x) is convex on R,

(b) x → φ(
√
x) is concave on R+,

(c) φ(x) = φ(−x), x ∈ R,

(d) φ(x) is C1 on R,

(e) φ′′(0+) > 0,

(f) lim
x→∞φ(x)/x2 = 0.

(3)

Or in the matrix form φ(M):

(a) M → φ(M) is convex on R
N×N ,

(b) M → φ(
√
M) is concave on S

N×N
+ ,

(c) φ(M) = φ(−M), M ∈ R
N×N ,

(d) φ(M) is C1 on R
N×N ,

(e) φ(M) is strictly convex on 0,

(f) lim
M→∞

φ(M)/||M ||2F = 0.

(4)

If φ(·) satisfies all the conditions in (3), there exists a

dual function ψ [17] such that

φ(x) = inf
s∈R

{1
2
sx2 + ψ(s)}, (5)

where s is determined by the minimizer function δ(·) with

respect to φ(·). δ(·) admits an explicit form under certain

restrictive assumptions:

s = δ(t) =

{
φ′′(0+), if t = 0,
φ′(t)
t , if t �= 0.

(6)

If L(E) =
∑

ij φ(Eij) (similar analysis can be per-

formed on R(Z)), problem (2) reads:

min
Z

J (Z) =
∑
ij

φ(Eij) + λR(Z)

s.t. E = X −XZ.

(7)

Using (7) on each Eij , the augmented function of J of (7)

is as follows

J (Z, S) =
∑
ij

(
1

2
SijE

2
ij + ψ(Sij)) + λR(Z). (8)

Based on the half-quadratic optimization, J (Z, S) can

be minimized by the following alternate procedure:

Sij = δ(Eij), (9)

Z = argmin
Z

∑
ij

1

2
SijE

2
ij + λR(Z). (10)

The update sequence generated by the above scheme will

converges. The objective function in (8) is nonincreasing

under the update rules in (9)(10) [17].

For L1 norm, φ1(x) = |x| =
√
x2 does not satisfy

condition (d) in (3). We use φ1(x) =
√
x2 + ε2 as an

approximation of |x| with a small positive value ε. It can

be easily seen that
√
x2 + ε2 satisfies all the conditions in

(3). We roughly say the L1 norm satisfies all the condi-

tions in (3) in this sense. Previous work [2] for solving the

L1-minimization by iteratively reweighted least squares op-

timization can be interpreted as the half-quadratic optimiza-

tion in (9) and (10). For L21 norm, φ21(X) = ||X||21 =∑
i ||Xi||2 ≈ ∑

i(||Xi||22 + ε)
1
2 , where ε is a small positive

value. It is easy to check that φ21(x) = (x2 + ε)
1
2 also sat-

isfies all the conditions in (3). For nuclear norm, φ∗(X) =

Tr(XTX)
1
2 ≈ Tr(XTX + εI)

1
2 , where ε is a small posi-

tive value. It is easy to check that Tr(XTX + εI)
1
2 satisfies

the conditions (a)-(e) in (4). For the condition (f), the i-th
singular value σi of X converges to infinity when X → ∞,

and thus limX→∞ φ∗(X)/||X||2F = limσi→∞
∑

i σi∑
i σ

2
i
= 0.

Therefore the nuclear norm also satisfies all the condition-

s in (4). The work [16] for solving low rank minimization

by iteratively reweighted least squares minimization can be

interpreted as the half-quadratic minimization.

If both two functions satisfy all the conditions in (3), the

sum of them also satisfies these conditions. The optimiza-

tion method in [14] for minimizing ||X||1 + γ||X||∗ can be

regarded as the half-quadratic optimization in (9)(10).

Based on the above analysis, previous subspace cluster-

ing methods by using the L1 norm, L21 norm and nucle-

ar norm can be optimized by the half-quadratic analysis

on (9)(10) by slightly relaxing the objective function. As
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Figure 2. Comparison of different loss functions.

shown in Table 1, previous subspace clustering methods, in-

cluding SSC, LRR, MSR and LSR, can be regarded as spe-

cial cases of the problem (2) from the view of half-quadratic

analysis. Note that the Frobenius norm || · ||2F does not need

half-quadratic representation because it is already quadrat-

ic. We also list it in Table 1 since it is widely used.

3. Correntropy Induced L2 Graph for Robust
Subspace Clustering

3.1. Correntropy Induced Metric

The mean squared errors (MSE) are probably the most

widely used methodologies for quantifying how similar t-

wo random variables are. Successful engineering solutions

from this methodology rely heavily on the Gaussianity and

linearity assumptions. The work in [5] extended the concep-

t of mean squared error adaptation to information theoretic

learning (ITL) to include the information theoretic criteri-

a. Then they further proposed the concept of correntropy to

process non-Gaussian and impulsive noises [12]. The cor-

rentropy is a generalized similarity measure between two

arbitrary scalar random variables u and v defined by

Vσ(u, v) = E[kσ(e)], (11)

where e = u − v, E[·] is the expectation operator, and

kσ(·) is the kernel function. In this work we only consider

the Gaussian kernel kσ(e) = exp(−e2/2σ2). In practice,

we usually have only a finite number of data {(ui, vi)}ni=1,

which leads to the sample estimator of correntropy:

V̂σ(u, v) =
1

n

n∑
i=1

kσ(ui − vi). (12)

Based on (12), Liu et al. [12] extended the concept of

correntropy criterion for a general similarity measurement

between any two vectors, which is called the Correntropy

Induced Metric (CIM). It is formally defined as

CIM(u, v) = (k(0)− 1

n

n∑
i=1

kσ(ei))
1/2, (13)

where ei = ui − vi, for each i = 1, · · · , n.

Figure 2 shows a comparison of the absolute error, mean

squared error and CIM. The mean squared error is a global

metric which increases quadratically for large errors. CIM

is a local metric which is close to the absolute error when

the errors are relatively small. For large errors, the value

of CIM is close to 1. Note that the large errors are usually

caused by outliers, but their effect on CIM is limited. There-

fore CIM will be more robust to the non-Gaussian noises.

The effectiveness and robustness of correntropy have been

verified in face recognition [9], feature selection [8] and sig-

nal processing [12]. This paper uses this concept for robust

subspace clustering.

3.2. Correntropy Induced L2 Graph

For robust subspace clustering, we use the correntropy to

replace the Frobenius norm in the LSR model to model the

reconstruction error, leading to the Correntropy Induced L2

(CIL2) graph as follows:

min
Z

∑
i,j

(1− kσ(Eij)) + λ||Z||2F

s.t. E = X −XZ.

(14)

It is easy to check that φσ(x) = 1 − kσ(x) = 1 −
exp(−x2/2σ2) satisfies all the conditions in (3). There-

fore the above problem can be solved by the half-quadratic

analysis. According to (8), problem (14) is equivalent to the

following augmented objective function:

J (Z, S) =
∑
ij

(
1

2
SijE

2
ij + ψ(Sij)) + λ||Z||2F

s.t. E = X −XZ,

(15)

where ψ(·) is the dual function corresponding to φσ(·). We

can minimize J (Z, S) in (15) by the following alternate

procedure:

Sij =
1

σ2
exp(−E2

ij/2σ
2), (16)

Zi = argmin
Zi

(X −XZ)Ti Diag(Si)(X −XZ)i +λ||Zi||22.
(17)

Let X̂ = Diag(
√
Si)X , then problem (17) is also a least

square regression model:

min
Zi

||X̂ − X̂Zi||22 + λ||Zi||22. (18)

Since the kernel size σ may affect the performance of

the proposed model. It is usually determined empirically.

In this study, the kernel size is computed as the average re-

construction error,

σ2 =
1

2dn
||X −XZ||2F . (19)
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From (15) or problem (18), we can see that the corren-

tropy based LSR model can be regarded as a weighted LSR,

where each weight Sij corresponding to Eij is used to con-

trol the effect of Eij .

3.3. Row Based Correntropy Induced L2 Graph

In some real-world applications, the data may be oc-

cluded with outlier rows/features. For example, some rows

of the face images with sunglasses and scarf are outliers,

which are not discriminative for classification and cluster-

ing. In this case, we should measure the quality of the re-

construction error based on the entire row. The effect of

rows can be controlled by assigning different weights, and

each element in the same row has the same weight. To

this end, we have the row based Correntropy Induced L2

(rCIL2) graph by solving the following problem

min
Z

∑
i

(1− kσ(||Ei||2)) + λ||Z||2F

s.t. E = X −XZ.

(20)

According to the half-quadratic analysis, the above problem

is equivalent to the following problem

Jr(Z,w) =
∑
i

(
1

2
wi||Xi −XiZ||22 + ψ(wi)) + λ||Z||2F .

(21)

Problem (21) can be solved by updating Z, w, and σ alter-

nately as follows:

wi =
1

σ2
exp(−(Xi −XiZ)2/2σ2), (22)

Z = argmin
Z

Tr((X−XZ)T Diag(w)(X−XZ))+λ||Z||2F ,
(23)

σ2 =
1

2d

∑
i

||Xi −XiZ||22. (24)

According to (6) and (10), it is easy to prove that

the sequences {Ĵ (Zt, St), t = 1, 2, · · · } in (15) and

{Ĵ (Zt, wt), t = 1, 2, · · · } in (21) converge.

3.4. The Grouping Effect

The CIL2 and rCIL2 graphs also use the L2 regulariza-

tion as in LSR [13]. It is expected that they also have the

grouping effect, i.e. the coefficients of a group of correlat-

ed data are approximately equal. The obtained solutions by

CIL2 in (17) and by rCIL2 in (23) are the weighted least

square regression model which owns the grouping effect:

Proposition 1 Given a data vector y ∈ R
d, data points

X ∈ R
d×n, the weight vector w ∈ R

d corresponding to
each row of X , and a parameter λ. Assume that each data

(a)

(b)

(c)

(d)

Figure 3. (a) Some corrupted face images from the Yale dataset,

with 10%, 20% 30%, 50%, 70% and 90% of pixels corrupted,

respectively; (b) Some face images with random block occlusion

from the ORL dataset; (c) Some face images with 20% occlusion

by monkey face from the AR dataset; (d) Some face images with

contiguous occlusion by sunglasses and scarf from the AR dataset.

point of X is normalized. Let z∗ be the optimal solution to
the following weighted LSR (in vector form) problem:

min
z

||Diag(w)(y −Xz)||22 + λ||z||22. (25)

We have

||z∗i − z∗j ||2
||w||2||Diag(w)y||2 ≤ 1

λ

√
2(1− r), (26)

where r = XT
i Xj is the sample correlation.

We omit the proof of Proposition 1 here, it can be proved

in the same way as the Theorem 7 in [13].

The mechanism of correntropy and the Proposition 1 en-

sure that both CIL2 and rCIL2 are not only robust to noises

but also preserve the grouping effect.

3.5. Algorithm for Subspace Clustering

Similar to the previous subspace clustering method LSR,

which uses the representation coefficient matrix to construct

the graph for clustering, we apply the learned solution Z∗

by CIL2 and rCIL2 to construct a graph with weights W =
(|Z∗|+ |Z∗T |)/2, and then Normalized Cut [20] is applied

to cluster the data points into multiple clusters.

4. Experiments
4.1. Datasets and Settings

Our experiments are performed on three face datasets:

Yale, ORL and AR. Descriptions of these data sets are given

as follows.

The Yale face dataset [1] contains 165 grayscale im-

ages of 15 individuals. The images demonstrate variations

in lighting condition and facial expression (normal, happy,

18051805
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Figure 4. Clustering accuracy and NMI on the Yale dataset with

pixel corruption for different algorithms.

sad, sleepy, surprised, and wink). The grayscale images are

resized to a resolution of 32× 32 pixels.

The ORL face dataset [19] contains 400 images of 40 in-

dividuals. Some images were captured at different times

and have different variations including expression (open

or closed eyes, smiling or non-smiling) and facial detail-

s (glasses or no glasses). The images were taken with a

tolerance for some tilting and rotation of the face up to 20

degrees. Each image is resized to 32× 32 pixels.

The AR database [15] consists of over 4,000 facial im-

ages from 126 subjects. For each subject, 26 facial images

are taken in two separate sessions. These images suffer dif-

ferent facial variations, including various facial expressions

(neutral, smile, anger, and scream), illumination variations

(left light on, right light on, and all side lights on), and oc-

clusion by sunglasses or scarf. We select a subset of the data

set consisting of 50 male subjects and 50 female subjects.

The grayscale images are resized to a resolution of 32× 32
pixels.

4.2. Evaluation Metrics

The clustering result is evaluated by the accuracy and

normalized mutual information (NMI) metric as in[22]. For

each data point xi, let pi and yi be the obtained cluster label

and the label provided by the ground truth, respectively. The

accuracy is defined as follows:

Accuracy =

∑n
i=1 δ(yi,map(pi))

n
, (27)

where δ(a, b) is the delta function that equals one if a = b
and equals zero otherwise, and map(pi) is the permutation

mapping function that maps each cluster label pi to the e-

quivalent label in y.

Let C denote the set of clusters obtained from the ground

truth and C ′ obtained by the segmentation method. Their

mutual information metric MI(C,C) is defined as follows:

MI(C,C ′) =
∑

ci∈C,c′j∈C′
p(ci, c

′
j)log2

p(ci, c
′
j)

p(ci)p(cj′)
, (28)

where p(ci) and p(c′j) are the probabilities that a sample

point arbitrarily selected from the data point belongs to the
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Figure 5. Clustering accuracy and NMI on the ORL dataset with

pixel corruption for different algorithms.

clusters ci and c′j , respectively, and p(ci, c
′
j) is the joint

probability that the arbitrarily selected data point belongs

to the clusters ci as well as c′j at the same time. We use the

normalized mutual information (NMI) as follows:

NMI(C,C ′) =
MI(C,C ′)

max(H(C), H(C ′))
, (29)

where H(C) and H(C ′) are the entropies of C and C ′, re-

spectively. It is easy to see that NMI(C,C) ranges from 0

to 1. NMI = 1 if the two sets of clusters are identical, and

NMI = 0 if the two sets are independent.

4.3. Algorithm Settings

We compare our rCIL2 and CIL2 graphs with several

graph construction methods for subspace clustering, includ-

ing the L1-graph [3] (or SSC [4]), L2-graph (LSR) [13],

and LRR-graph [10]. kNN and LLE [18] are also applied to

construct graphs for subspace clustering. Kmeans is used as

the baseline for comparison. The model parameters of these

methods are searched from the candidate value sets and the

best results are reported.

4.4. Results under Random Pixel Corruption

In some practical scenarios, the face images may be par-

tially corrupted. We evaluate the algorithmic robustness on

the Yale and ORL face datasets. Each image is corrupted by

replacing a percentage of randomly chosen pixels with i.i.d.

samples from a uniform distribution (uniform on [0, 255]).

The corrupted pixels are randomly chosen for each image,

and the locations are unknown. We vary the percentage r
of corrupted pixels from 10% to 100%. Figure 3 (a) shows

some examples of those corruptions. To the human eye-

s, beyond 50% corruption, the corrupted images are barely

recognizable as face images. Since the images are with ran-

dom corruption, we repeat the experiments for 20 times for

each r, and the means of accuracy and NMI are reported for

evaluation.

Figures 4 and 5 show the means of clustering accuracy

and NMI of different methods as functions of the corrup-

tion level. It can be found that both the accuracy and N-

MI decrease when more pixels of each image are randomly
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Figure 6. Clustering accuracy and NMI on the Yale dataset with

block occlusion for different algorithms.
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Figure 7. Clustering accuracy and NMI on the ORL dataset with

block occlusion for different algorithms.

corrupted. Our proposed CIL2 and rCIL2 outperform the

compared methods in most cases. In particular, the CIL2

usually performs better than rCIL2 when the percentage of

the corrupted pixels is no more than 50% on the Yale dataset

and 70% on the ORL dataset. This is because each row of

images may not be regarded as outliers when the level of the

random pixel corruption is low. LRR and L2-graph perform

competitively on both datasets, which also verifies the ef-

fectiveness of the grouping effect of these two methods for

subspace clustering. When the images are with high per-

centage of pixel corruptions, none of the compared methods

perform well due to insufficient discriminative information.

4.5. Results under Contiguous Occlusion

In this subsection we simulate various types of contigu-

ous occlusions by replacing a randomly selected local re-

gion in some randomly selected images with a black-white

square and an unrelated monkey image.

The first experiment is conducted on the Yale and ORL

datasets with random block occlusion. Figure 3 (b) shows

some face images with such black-white occlusions, in size

of 8 × 8 pixels. In each dataset, we select r percentage of

the images for occlusion, with r varying from 10% to 100%.

The experiments are repeated 20 times for each r, and the

means of accuracy and NMI are reported for evaluation.

Figures 6 and 7 show the means of clustering accuracy

and NMI of each method on different percentages of cor-

rupted images. CIL2-graph achieves the best accuracy and

NMI on both Yale and ORL datasets in all cases. Com-

pared with previous subspace clustering methods, the im-
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Figure 8. Clustering accuracy and NMI on the AR dataset with an

unrelated image occlusion for different algorithms.

provement by rCIL2 is still limited. The phenomenon is

similar to the random pixel corruption scenario, since the

images with block occlusion will not lead to outlier rows.

rCIL2-graph will not be very effective in this case. Notice

that in this experiment, r percentage of the images in each

dataset is selected to be occluded with a size of 8× 8 block,

and thus the decreasing curves of the clustering accuracy

and NMI are flatter than those in Figures 4 and 5.

The second experiment is conducted on a subset of AR

dataset. This subset consists of 1,400 images from 100 sub-

jects, 50 males and 50 females. These images are of non-

occluded frontal views with various facial expressions in

Sessions 1 and 2. For each image, we randomly select a

local region to be replaced by an unrelated monkey image.

The size of monkey image is 14× 14, i.e. about 20% pixels

of each image are occluded. Figure 3 (c) shows some face

images with such unrelated image occlusions.

Figure 8 shows the clustering accuracy and NMI of each

method on the AR dataset with unrelated monkey image

occlusion. The experimental results are similar to the above

experiment. Still, CIL2 obtains the best results, and rCIL2,

LRR and L2-graph are competitive on this experiment.

4.6. Results on Real-World Malicious Occlusion

In real-world face recognition systems, people may wear

sunglasses or scarfs which make the classification or clus-

tering more challenging. In this subsection, we evaluate the

robustness of the proposed method on the AR dataset with

sunglasses and scarf occlusions. The AR dataset contains

two separate sessions. In each session, each subject has 7

face images with different facial variations, 3 face images

with sunglasses occlusion and 3 face images with scarf oc-

clusion. Figure 3 (d) shows some face images with such

an occlusion. In each session, we conduct two experiments

corresponding to the sunglasses and scarf occlusions. For

sunglasses occlusion, we use the first 2 normal face images
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Table 2. The clustering accuracy (%) and NMI (%) of different algorithms on the AR dataset.

Methods

Accuracy NMI

Session 1 Session 2 Session 1 Session 2

Sunglasses Scarf Sunglasses Scarf Sunglasses Scarf Sunglasses Scarf

rCIL2 85.2 78.4 86.4 81.2 93.8 90.1 94.0 91.5
CIL2 81.2 75.4 85.4 79.0 89.9 87.9 93.8 88.8

L2 78.2 71.6 80.0 72.6 86.3 83.8 90.7 83.8

LRR 77.2 72.2 79.6 74.6 86.6 84.7 90.7 84.7

L1 43.8 40.6 27.8 40.2 72.3 67.7 55.8 60.8

kNN 26.4 25.6 26.8 27.2 65.4 66.0 66.1 65.9

LLE 28.0 27.6 33.2 27.2 63.4 62.9 66.6 61.7

kmeans 30.0 29.4 30.8 29.8 65.4 63.8 65.3 65.5

and 3 face images with sunglasses of each subject. For scarf

occlusion, we use the first 2 normal face images and 3 face

images with scarf of each subject.

Table 2 shows the clustering results on the AR dataset

for the images with sunglasses and scarf occlusions. Dif-

ferent from the above experiments, rCIL2 achieves the best

clustering accuracy and NMI in all cases. That is because

the face images with sunglasses and scarf occlusions con-

tain many outlier rows/features, and rCIL2 is designed for

such a task. Both LRR and L2 graphs perform better than

L1 graph, which is consistent with the result in [10, 13].

5. Conclusions
In this paper, we study the robust subspace clustering

problem, and present a general framework from the view-

point of half-quadratic optimization to unify the L1 norm,

Frobenius norm, L21 norm and nuclear norm based sub-

space clustering methods. Previous iteratively reweighted

least squares optimization methods for the sparse and low

rank minimization can be regarded as the half-quadratic op-

timization. As a new special case, we use the correntropy

as the loss function for robust subspace clustering to han-

dle the non-Gaussian and impulsive noises. An alternate

minimization algorithm is used to optimize the non-convex

correntropy objective. Extensive experiments on the face

clustering with various types of corruptions and occlusion-

s well demonstrate the effectiveness and robustness of the

proposed methods by comparing with the state-of-the-art

subspace clustering methods.
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