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‡Center for Imaging Science, Johns Hopkins University

Abstract

Currently, Bag-of-Visual-Words (BoVW) and part-based
methods are the most popular approaches for visual recog-
nition. In both cases, a mid-level representation is built on
top of low-level image descriptors and top-level classifiers
use this mid-level representation to achieve visual recog-
nition. While in current part-based approaches, mid- and
top-level representations are usually jointly trained, this is
not the usual case for BoVW schemes. A main reason for
this is the complex data association problem related to the
usual large dictionary size needed by BoVW approaches.
As a further observation, typical solutions based on BoVW
and part-based representations are usually limited to exten-
sions of binary classification schemes, a strategy that ig-
nores relevant correlations among classes. In this work we
propose a novel hierarchical approach to visual recognition
based on a BoVW scheme that jointly learns suitable mid-
and top-level representations. Furthermore, using a max-
margin learning framework, the proposed approach directly
handles the multiclass case at both levels of abstraction.
We test our proposed method using several popular bench-
mark datasets. As our main result, we demonstrate that, by
coupling learning of mid- and top-level representations, the
proposed approach fosters sharing of discriminative visual
words among target classes, being able to achieve state-of-
the-art recognition performance using far less visual words
than previous approaches.

1. Introduction

The success of recognition methods based on visual

descriptors and off-the-shelf machine learning techniques

[27, 6] is one of the main reasons for the new enthusiasm in

computer vision technologies. These methods have shown

robustness against visual complexities, such as changes in

illumination, scale, affine distortions, and mild intraclass
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and pose variations. Unfortunately, the visual world is

highly complex and problems such as object deformations,

partial occlusions, and severe intra-class and pose varia-

tions, require more elaborate solutions [8].

In terms of the main goals of visual recognition, such as

object, scene, or action recognition, currently the two most

popular approaches are: Bag-of-Visual-Words (BoVW)

[24] and part-based methods [7]. In both cases, a mid-level

representation is built on top of low-level image descriptors,

such as SIFT or HoG features.

BoVW models build a mid-level representation that cor-

responds to the output of a pooling scheme acting on a vi-

sual dictionary that encodes appearance information from

local image patches. Early BoVW approaches were based

on vector quantization, generally using K-Means to cluster

low-level keypoint descriptors [24, 5]. Afterwards, several

variations have been proposed using alternative quantiza-

tion methods, discriminative dictionaries, or different pool-

ing strategies [12, 14, 30, 20]. Additionally, spatial infor-

mation has also been incorporated by concatenating BoVW

representations from different local image areas and dif-

ferent scales [15]. Recently, sparse coding schemes have

emerged as a powerful alternative to vector quantization

providing dictionaries that achieve lower reconstruction er-

rors and attractive computational properties. In particular,

[31] shows that a combination of sparse coding, spatial

pyramidal decomposition, max-polling, and high dimen-

sional linear SVM classifiers provide a powerful scheme

to perform object and scene recognition. Discriminative

sparse representations have also been proposed [19, 4],

mostly building particular dictionaries for each class.

In the case of part-based models, the mid-level repre-

sentation corresponds to basic semantic visual structures

that can usually be mapped to relevant object components.

Common strategies to obtain these parts are manual selec-

tion [7], greedy latent models [8], or the output of a large set

of part-based classifiers trained using a costly labeling pro-

cess [3]. Spatial information is also incorporated into the

models by learning common spatial configurations among

parts [8]. After the seminal work in [8], latent models have
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been used to jointly learn parts and object classifiers un-

der a common optimization scheme that maximizes object

classification performance. Recently, [29] proposes an ex-

tension to [8] that directly considers the multiclass classifi-

cation case, but in the context of an action recognition ap-

plication.

In both cases, BoVW and part-based models, the final

recognition is generally based on a classifier that is trained

on top of the mid-level representation usually augmented

with spatial information. As a common fact, most of these

models do not consider the multiclass classification prob-

lem directly, [29] being a notable exception. As an alterna-

tive, most methods achieve multiclass classification by us-

ing variations of the binary classification case, for example,

using a one-versus-all classification strategy. Unfortunately,

these types of strategies do not consider relevant correla-

tions among classes. More importantly, they usually rely on

solutions that employ a particular mid-level representation

for each target class, a strategy that does not scale properly

with the number of classes.

In terms of hierarchical compositional models, our work

is related to recent recognition approaches based on deep

belief networks (DBN) [9, 13], where the training process

also incorporates hierarchical estimation of latent variables,

spatial pooling schemes, and intermediate representations

based on linear filters. DBNs are usually applied over a

raw image representation using several layers of generic

structures. As a consequence, DBNs have many parame-

ters and they are usually difficult to train. In contrast, we

embed semantic knowledge to our model by explicitly ex-

ploiting compositional relations among low level visual fea-

tures, visual words, and high label classifiers. This leads to

simpler architectures and allows us to potentially incorpo-

rate labeled data at intermediate layers. Furthermore, our

max-margin approach is based on a Hinge loss, and not

a quadratic or a logistic function commonly used to train

DBNs, leading to a different optimization setup.

We believe that it is still not clear what is the most suit-

able level of abstraction to implement intermediate level

representations. While part-based approaches have demon-

strated excellent performance by using a small set of highly

discriminative parts augmented with relevant spatial con-

straints, they also present problems due to common visual

complexities, such as high intraclass part appearance varia-

tions, as well as, data association problems related to miss-

ing parts. In these cases, the redundancy and greater flexi-

bility offered by the statistical properties of BoWs, based on

a suitable dictionary of visual words, represent an attractive

alternative or complement to part-based approaches.

In this work we present a novel hierarchical approach

to visual recognition that jointly learns a suitable mid-level

representation together with top-level classifiers using a

multiclass max-margin approach. We formulate our prob-

lem as an energy minimization problem, where structural

hierarchical relations are modeled by sub-energy terms act-

ing at different levels of abstraction. In terms of dictio-

nary construction, we depart from the usual vector quan-

tization [24] or sparse coding schemes [31] commonly used

in BoVW models, and similarly to [8], we use linear SVMs

classifiers to characterize each word of the dictionary under-

lying the BoVW representation. Furthermore, we comple-

ment the dictionary construction with a max-pooling strat-

egy, because it shows superior performance than alternative

techniques, as suggested in [31] and [4]. More importantly,

by coupling learning of a mid-level dictionary and top-level

classifiers, we are able to obtain a mid-level representation

that fosters word sharing among target classes. As shown

by our experiments, this allows us to achieve state-of-the-

art recognition performance in several common benchmarks

datasets, using an order of magnitude less words than pre-

vious approaches. We believe that this is a critical issue to

the scalability of visual recognition algorithms.

From a machine learning perspective our hierarchical

formulation allows us to combine labeled and unlabeled

data under a common framework. In particular, high level

semantic information at the level of object or scene class

labels can be propagated to guide the otherwise unsuper-

vised search for relevant visual words at the level of image

patches. We believe that this is a powerful learning scheme

that can be extended to further levels of abstraction provid-

ing a rich hypothesis space to build visual compositional

schemes [2].

Consequently, this work makes two main contributions:

• Introduce a hierarchical method that jointly learns suit-

able BoVW mid-level representations and top-level

classifiers using a multiclass max-margin framework.

• Demonstrate that by coupling learning of a mid-level

dictionary and top level classifiers, we are able to

achieve state-of-the-art results with a significant reduc-

tion in dictionary size respect to previous approaches.

2. Model Description

One of the motivations for our approach is the work of

Yang et al. [31]. In this work, the authors achieve excellent

results in image classification by combining a linear spa-

tial pyramid matching (SPM) kernel based on sparse cod-

ing (ScSPM) with linear SVMs. Their key insights are to

use sparse dictionary learning techniques to construct the

dictionary (as opposed to k-means), and to use max pool-
ing to construct the descriptors over a spatial pyramid (as

opposed to average pooling, which leads to histograms).

An important disadvantage of [31] is that the dictionary

of visual features is learned independently from the classifi-

cation parameters for the different object categories. In this
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work, we propose an approach in which the visual dictio-

nary is learned jointly with the top level visual classifiers.

2.1. Image Representation

As in [31], we assume that visual descriptors [18, 1] are

extracted from images, either centered at interest points or

by using a dense sampling scheme, and that each of these

descriptors has size T . Inspired by [10], we define a visual

dictionary Θ of K words,

Θ = [θ1 θ2 θ3 . . . θK ] ∈ R
(T+1)×K , (1)

where each word θk is represented as a linear classifier with

bias:

θk = [θk,1, θk,2, . . . , θk,T , bk]
T ∈ R

T+1. (2)

Unlike [31], instead of using sparse coding to encode each

descriptor, we use an encoding scheme based on the clas-

sification score obtained by each dictionary word. More

specifically, if v is a descriptor vector, its coding cΘ(v) us-

ing dictionary Θ is given by:

cΘ(v) = [〈v, θ1〉, . . . , 〈v, θK〉] = vTΘ. (3)

Intuitively, if the visual words are sufficiently discrimina-

tive, the descriptor v should be similar only to a few words

in the dictionary. Therefore, we expect the vector cΘ(v) to

have only few values that are greater than zero.

Given a dictionary Θ and a set of L rectangular regions

defined over an image, we represent the image using max
spatial pooling. Generally, these regions are defined us-

ing a spatial pyramidal decomposition. Instead, we use re-

gions randomly defined over an image. For each region

l = 1, . . . , L, let vlj be a descriptor vector extracted from

region l, where j ∈ [1 . . . Nl] indexes the Nl descriptors

extracted from region l. Thus, given a dictionary Θ, we

encode region l using max spatial pooling as:

xl,Θ = [max
j∈Nl

〈vlj , θ1〉, . . . , max
j∈Nl

〈vlj , θK〉]T ∈ R
K . (4)

Notice that, unlike the sparse coding scheme, which assigns

zero weights to dictionary words that do not contribute to

image reconstruction, our scheme assigns negative weights

to dictionary words with low similarity. This property can

potentially lead to over-fitting. To avoid this, we assume

that each region contains a null feature vector�0, whose clas-

sification score is zero for any of the dictionary words. In

this way, regions where none of the extracted feature vectors

obtains a positive score obtain a zero weight by the max-

pooling operator.

Finally, the complete descriptor of image I given dictio-

nary Θ, xΘ(I), is obtained by concatenating the descriptors

of its L regions, i.e.,

xΘ(I) = [x1,Θ, x2,Θ, . . . , xL,Θ]
T ∈ R

KL. (5)

2.2. Image Classification

Given a descriptor for image I , xΘ(I), we define an im-

age classification score, or energy function, for an image I
as:

E(I, y,Θ,W ) = wT
y xΘ(I). (6)

Here, wy ∈ R
KL represents the parameters of a classifier

learnt for object class y ∈ {1, 2, . . . ,M} and

W = [w1 w2 · · · wM ] ∈ R
KL×M (7)

represents all the object classifier parameters.

If wy is divided into L sub-vectors of size K, each one

assigned to a different region, we can rewrite the energy in

the following form:

E(I, y,Θ,W ) =

L∑
l

K∑
k

wy,l,k ·max
j∈Nl

〈vlj , θk〉, (8)

where wy,l,k refers to the k-th element of the l-th sub-vector

of wy . This formulation makes explicit the fact that the to-

tal energy of an image is a linear combination of max func-

tions. It can also be seen that the energy function shows a

nonlinear dependence between the weights wy and the dic-

tionary words θk. Given the parameters of the classifiers for

the different object categories, W , and the parameters of the

classifiers for the different visual words, Θ, we classify an

image I as follows

y∗ = argmax
y

E(I, y,Θ,W ). (9)

3. Learning
The model described in the previous section depends on

two sets of parameters: the object classifiers W and the vi-

sual words classifiers Θ. Rather than first learning the visual

words and then learning the object classifiers, our goal is to

learn both of them simultaneously, so that the visual words

are discriminative for the visual classification task.

More specifically, given a set of training examples

{Ii, yi}Ni=1, where Ii is the i-th image and yi is its class,

we propose to find Θ and W by solving the following regu-

larized max-margin learning problem:

min
W,Θ,{ξi}

1

2
‖W‖2F +

C1

2K
‖Θ‖2F +

C2

N

N∑
i=1

ξi (10)

s.t. E(Ii, yi,Θ,W )− E(Ii, y,Θ,W ) ≥ Δ(yi, y)− ξi,

∀i ∈ {1, . . . , N} ∧ ∀y ∈ {1, . . . ,M}.

The objective function encourages the construction of vi-

sual words that behave like linear SVMs, i.e., classifiers
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that jointly maximize the margin and minimize the loss. On

the other hand, the constraints encourage the score for an

image according to its ground truth label, E(Ii, yi,Θ,W ),
to be higher than the score according to any other label,

E(Ii, y,Θ,W ), by a loss function Δ(yi, y) given by

Δ(y1, y2) =

{
0 if y1 = y2

1 otherwise
. (11)

The slack variables ξi ≥ 0 allow for a violation of these

constraints.

Although similar, this problem cannot be solved as a

particular case of Structural SVM (S-SVM) [26]. As the

constraints are non-linear on the parameters (W,Θ). Even

when fixing the weights W and solving only for Θ, the con-

straints are not linear on the parameters.

To tackle this issue, we can solve a relaxed version of the

previous problem using latent variables to avoid the non-

linearity. If we recall, the descriptor of a region l is given

by Eq. (4). We modify this expression by removing the max
operator and adding a set of latent variables z = {z(l,k)},
for l ∈ {1, . . . , L} ∧ k ∈ {1, . . . ,K}:

xl,Θ,z = [〈θ1, vlz(l,1)〉, 〈θ2, vlz(l,2)〉, . . . , 〈θK , vlz(l,K)
〉]T ,
(12)

where z(l,k) is the index of the descriptor extracted from

region l with maximum response, when θk is applied to it,

i.e:
z(l,k) = argmax

j∈Nl

〈θk, vlj〉. (13)

Using this, Eq. (8) modifies to:

E(I, y,Θ,W ) =
L∑
l

K∑
k

wy,l,k · 〈θk, vlz(l,k)
〉. (14)

Based on this energy formulation, we can now state the

problem in a form similar to Eq. (10):

min
W,Θ,{ξi}

1

2
‖W‖2F +

C1

2K
‖Θ‖2F +

C2

N

N∑
i=1

ξi (15)

s.t.

L∑
l

K∑
k

wyi,l,k · 〈θk, vlzi,(l,k)
〉 −

L∑
l

K∑
k

wy,l,k · 〈θk, vlz(l,k)
〉 ≥ Δ(yi, y)− ξi,

∀i ∈ {1, . . . , N} ∧ ∀y ∈ {1, . . . ,M} ∧ ∀z.

This new problem is similar to a Latent Structural

SVM (LS-SVM)[32], but it is still non-linear on (W,Θ).
Nonetheless, we can solve it using alternating minimiza-

tion, by fixing W or Θ, transforming each of these problems

into a proper LS-SVM.

According to the CCCP algorithm [33] used to solve the

LS-SVM, if the problem can be factored as a sum of a con-

vex and a concave term, it can be efficiently solved by iterat-

ing between the optimization of the concave and the convex

parts leading to a local minimum or saddle point.

Returning to our case, Eq. (15) can be rewritten as two

different unconstrained problems, fixing Θ and W , respec-

tively:

min
W

1

2
‖W‖2F+ (16)

C2

N

N∑
i=1

max
y,z

L∑
l=1

K∑
k=1

wy,l,k · 〈θk, vlz(l,k)
〉+Δ(yi, y)

− C2

N

N∑
i=1

max
zi

L∑
l=1

K∑
k=1

wyi,l,k · 〈θk, vlzi,(l,k)
〉

and

min
Θ

C1

2K
‖Θ‖2F+ (17)

C2

N

N∑
i=1

max
y,z

K∑
k=1

〈θk,
L∑

l=1

wy,l,k · vlz(l,k)
〉+Δ(yi, y)

− C2

N

N∑
i=1

max
zi

K∑
k=1

〈θk,
L∑

l=1

wyi,l,k · vlzi,(l,k)
〉

The structure of the above formulations corresponds to the

difference of two convex terms. This gives rise to a strat-

egy for solving the complete problem by alternating an op-

timization based on the CCCP algorithm. The proposed ap-

proach can be summarized in the following steps that are

repeated until the energy defined by (15) stops decreasing:

1. Given fixed values of Θ and W , compute for each ex-

ample the optimum value for its latent variables zi as:

zi = argmax
z

L∑
l=1

K∑
k=1

wyi,l,k · 〈θk, vlz(l,k)
〉. (18)

Eq. (18) shows that the descriptor vector selected for a

region l and dictionary word θk depends directly on the

values of wyi,l,k and the inner product 〈θk, vlz(l,k)
〉. To

avoid problems related to negative weights, we enforce

non-negativity constraints on W :

wy,l,k ≥ 0, ∀y, l, k. (19)

In this way, the value of the inner product will only

be scaled by wy,l,k, thus preserving the semantics of

max-pooling. As a consequence zi now only depends

on Θ, thus making it unnecessary to update the latent

variables after recomputing W .
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2. Given fixed values of Θ and {zi}, solve the following

minimization that corresponds to a standard Structural

SVM with non-negativity constraints on W ,

min
W

1

2
‖W‖2F+ (20)

C2

N

N∑
i=1

max
y,z

L∑
l=1

K∑
k=1

wy,l,k · 〈θk, vlz(l,k)
〉+Δ(yi, y)

− C2

N

N∑
i=1

L∑
l=1

K∑
k=1

wyi,l,k · 〈θk, vlzi,(l,k)
〉

s.t. wy,l,k ≥ 0, ∀y, l, k.
3. Given fixed values of W and {zi}, solve the following

minimization that corresponds to a standard Structural

SVM,

min
Θ

C1

2K
‖Θ‖2F+ (21)

C2

N

N∑
i=1

max
y,z

K∑
k=1

〈θk,
L∑

l=1

wy,l,k · vlz(l,k)
〉+Δ(yi, y)

− C2

N

N∑
i=1

K∑
k=1

〈θk,
L∑

l=1

wyi,l,k · vlzi,(l,k)
〉.

Although the convergence to a local minimum or saddle

point can not be theoreticaly guaranteed for our block coor-

dinate descent method [25], experimentally we found that

for a suitable selection of the regularization parameters, our

procedure does converge. In practice, we repeat the three

steps of the algorithm until the energy decrease is lower than

a fixed threshold.

4. Experiments
We perform a series of evaluations on 3 different

datasets: Caltech 101, 15 Scene Categories, and MIT67 In-
door. We first focus on the analysis of the sensitivity of the

results to the values taken by the regularization constants,

C1 and C2, the size of the dictionary, K, and the number of

pooling regions, L. Additionally, we compare our approach

to alternative state-of-the art techniques.

4.1. Implementation Details

Feature extraction

Each image is first downsized to 300 pixels in each direc-

tion. Local descriptors are extracted from each image over

a dense grid of regions of 16x16 pixels, with a spacing of 8

pixels in each direction. We use the HOG + LBP descriptor.

To construct the descriptor for each image, we randomly se-

lect L rectangular regions of sizes between 25% to 100% of

the image size and low overlap.

Starting dictionary

We sample 75 descriptors per training image and cluster

them using the standard K-Means algorithm. A linear SVM

is trained for each centroid using, as positive examples, the

ones belonging to that centroid and, as negative examples, a

random sample of descriptors belonging to other centroids.

Datasets details

• Caltech101: This dataset contains 102 object cate-

gories (101 objects plus background). We use 10 ran-

dom splits of the data, using 30 images for training and

the rest for testing.

• 15 Scene Categories: This dataset contains images of

15 natural scene categories. We use 10 random splits

of the data, using 100 images for training and the rest

for testing.

• MIT67 Indoor: This dataset contains 67 indoor scene

categories having a large intra-class variation. We use

the standard evaluation procedure, using 80 images per

class for training and 20 for testing.

4.2. Results

4.2.1 Effects of the regularization constants

Regularization constants, C1 and C2, play a significant role

in keeping generalization at high levels and avoiding over-

fitting to training data. Tuning their values corresponds to a

key aspect in the performance of our algorithm.

For the constant C2, our results show that values in the

interval (0.1, 1) lead to superior and stable performance.

Values below 0.1 tend to dramatically decrease perfor-

mance, and values greater than 1 lead to overfitting, quickly

saturating the performance on the training set.

As for C1, we consider the fact that each word in the

starting dictionary is trained independently. In this way, the

resulting dictionary has a large norm compared to the 0-1 Δ
function we use. This means that a high value of C1 com-

pared to C2, privileges the reduction of the term ||W ||2F ,

without taking into account the potential increase of the loss

controlled by C2.

In order to avoid the latter situation, we fix the value of

C1 based on the norm of the first estimation obtained for

W . We found that a suitable rule to set the starting value of

C1 is given by:

C1 × ||Θ||2F
K

≈ ||W ||2F (22)

Eq. (22) achieves a certain level of balance between gen-

eralization and learning, similar to the one obtained by the

estimation of W . Indirectly, this rule also takes into account

the value of the constant C2, which has a direct impact on

the value of the term ||W ||2F .
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4.2.2 Effects of the number pooling regions and dictio-
nary words

We use from 10 to 60 pooling regions and average the hit

rate obtained in the three datasets. We fix the size of the

dictionary to 300. Table 1 shows our results, where we also

include the performance of the standard pyramidal decom-

position using 3 levels (SP).

Dataset
# Regions Caltech 101 15 Scenes MIT67

10 65.7 ± 0.8 70.2 ± 0.6 30.5

SP (21) 70.7 ± 0.3 78.1 ± 0.4 33.2

20 71.5 ± 0.6 80.4 ± 0.3 35.6

30 72.9 ± 0.6 84.6 ± 0.4 39.5

40 72.7 ± 0.7 84.1 ± 0.5 39.3

50 72.0 ± 0.8 82.3 ± 0.4 38.9

60 70.1 ± 0.8 80.9 ± 0.4 38.2

Table 1. Recognition accuracy as a function of the number of pool-

ing regions.

Table 1 shows a consistent improvement in performance

as the number of regions increases; the best performance

being reached for 30 pooling regions. It is interesting to

note that the performance obtained by randomly selecting

regions is consistently higher than the standard pyramidal

decomposition, a result also shown in [11].

The size of the dictionary (number of words) is a central

issue in this research. We perform tests changing the num-

ber of dictionary words between 50 and 500 and measure

the average hit rate in the three datasets. We fix the num-

ber of pooling regions to 30, as our previous experiments

suggested. Table 2 shows our results.

Dataset
# Words Caltech 101 15 Scenes MIT67

50 58.7 ± 0.8 72.1 ± 0.5 31.3

100 64.3 ± 0.7 80.5 ± 0.5 35.2

200 70.1 ± 0.5 84.6 ± 0.4 38.5

300 72.9 ± 0.6 83.5 ± 0.5 39.5

400 72.3 ± 0.5 83.2 ± 0.6 39.3

500 71.8 ± 0.5 82.8 ± 0.5 39.1

Table 2. Performance as a function of the dictionary size.

As it can be seen, there is a clear increase in performance

when the dictionary size increases from 50 to 200 words.

Near 200 words seems to be minimum size for this method

to work correctly. After that, performance starts to slowly

decrease on 15 Scenes. On Caltech 101 and MIT67 the situ-

ation is a bit different, as the performance continues to scale

until it reaches its peak at around 300 words. This seems as

a natural progression, since these two datasets have a no-

tably larger amount of categories. These results confirm a

key property of our method, as the increase in dictionary

size is lower than linear with respect to the increase of tar-

get classes.

4.3. Classification performance

The next experiment compares our results against alter-

native methods based on BoVW representations. Table 3

shows the results. We also include a baseline method in the

comparison. This method is the same approach described in

this paper, but without the dictionary updating step (step 3

of the algorithm description). We observe that our proposed

method achieves state-of-the-art performance in 15 Scene

Categories and MIT67 Indoor, while obtaining competitive

scores for Caltech101. An important aspect of our results

is that they are achieved using only 200 or 300 dictionary

words, while alternative methods usually use more than a

thousand. Another interesting fact is the clear performance

advantage that is achieved over the baseline method. There-

fore, by updating the dictionary using information from the

top level classifiers our method not only improves its raw

performance compared to the baseline, but also achieves its

peak performance using less visual words.

5. Conclusions and Future Work
In this work we present a novel method for visual recog-

nition that uses a joint optimization scheme to learn a dis-

criminative visual dictionary and the weights of a multi-

class max-margin classifier. When compared with alterna-

tive BoVW approaches, our method achieves state-of-the-

art performance on two of the three datasets used in our

experiments (15 Scenes and MIT67).

Another key result of our method is the generation of a

common dictionary of discriminative visual words among

the target visual categories. This allows us to achieve state-

of-the-art performance using an order of magnitude less vi-

sual words than previous approaches. This is a relevant is-

sue that not only reduces the complexity of the underlying

optimization problem, but also has an impact at testing time

due to the reduced number of visual words. Future work

will focus on using multiscale patches to enrich our hypoth-

esis space to search for suitable visual words. We also plan

to handle larger dictionaries to allow a suitable representa-

tion of datasets with a large number of visual categories.
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