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Abstract

The problem of adaptively selecting pooling regions for
the classification of complex video events is considered.
Complex events are defined as events composed of several
characteristic behaviors, whose temporal configuration can
change from sequence to sequence. A dynamic pooling
operator is defined so as to enable a unified solution to
the problems of event specific video segmentation, tempo-
ral structure modeling, and event detection. Video is de-
composed into segments, and the segments most informative
for detecting a given event are identified, so as to dynami-
cally determine the pooling operator most suited for each
sequence. This dynamic pooling is implemented by treating
the locations of characteristic segments as hidden informa-
tion, which is inferred, on a sequence-by-sequence basis,
via a large-margin classification rule with latent variables.
Although the feasible set of segment selections is combina-
torial, it is shown that a globally optimal solution to the
inference problem can be obtained efficiently, through the
solution of a series of linear programs. Besides the coarse-
level location of segments, a finer model of video struc-
ture is implemented by jointly pooling features of segment-
tuples. Experimental evaluation demonstrates that the re-
sulting event detector has state-of-the-art performance on
challenging video datasets.

1. Introduction

The recognition of complex events in open source

videos, e.g., from YouTube, is a subject of increasing at-

tention in computer vision [17, 5, 23, 16]. Unlike the
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Figure 1: Challenges of event recognition in open source video (best

viewed in color). An event class, e.g., “birthday party”, can involve a

complex sequence of actions, such as “dressing”, “cake cutting”, “danc-

ing” and “gift opening”. Two instances of an event class, e.g., “wedding”,

can differ substantially in the atomic actions that compose them and cor-

responding durations (indicated by color bars). For example, the upper

“wedding” video includes the atomic actions “walking the bride” (red),

“dancing” (light grey), “flower throwing” (orange), “cake cutting” (yel-

low) and “bride and groom traveling” (green). On the other hand, the

lower “wedding” video includes the actions “ring exchange” and “group

pictures” but no “dancing” or “flower throwing”. Finally, a video depict-

ing an event can contain contents unrelated to the event. In the “feeding

an animal” examples, only a small portion (red box) of the video actu-

ally depicts the action of handing food to an animal. The location of this

characteristic behavior can also vary significantly from video to video.

recognition of primitive or atomic actions, such as “walk-

ing”, “’running”, from carefully assembled video, complex

events depict human behaviors in unconstraint scenes, per-

forming more sophisticated activities, which involve more

complex interactions with the environment, e.g., a “wed-

ding ceremony”, a “parade” or a “birthday party”. In gen-

eral, this kind of video is captured and edited by ama-
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teur videographers (e.g., YouTube users), with little uni-

formity in terms of equipment, scene settings (view-point,

backgrounds, etc), and mostly without professional post-

processing, e.g., video cutting, segmentation or alignment.

Due to all these, the detection of complex events presents

two major challenges beyond those commonly addressed in

the action recognition literature. The first is that the video is

usually not precisely segmented to include only the behav-

iors of interest. For example, as shown in Figure 1, while

the event “feeding an animal” is mostly about the behav-

ior of handing the animal food, a typical YouTube video in

this class depicts a caretaker approaching the animal, play-

ing with it, checking its health, etc. The second challenge

is that the behaviors of interest can have a complex tempo-

ral structure. In general, a complex event can have multiple

such behaviors and these can appear with great variability of

temporal configurations. For example, the “birthday party”

and “wedding” events of Figure 1, have significant varia-

tion in the continuity, order, and duration of characteristic

behaviors such as “walking the bride,” “dancing,” “flower

throwing,” or “cake cutting”.

In the action recognition literature, the popular bag of
(visual) features (BoF) representation has been shown to

1) produce robust detectors for various classes of activi-

ties [13, 27], and 2) serve as a sensible basis for more so-

phisticated representations [17, 23, 9, 14]. One operation

critical for its success is the pooling of visual features into

a holistic video representation. However, while fixed pool-

ing strategies, such as average pooling or temporal pyramid

matching, are suitable for carefully manicured video, they

have two strong limitations for complex event recognition.

First, by integrating information in a pre-defined manner,

they cannot adapt to the temporal structure of the behaviors

of interest. As illustrated with the “wedding” and “feeding

an animal” examples of Figure 1, this structure is usually

very rich and flexible for complex events. Second, by pool-

ing features from video regions that do not depict character-

istic behaviors, they produce noisy histograms, where the

feature counts due to characteristic behavior can be easily

overwhelmed by those due to uninformative content.

In this work, we address both limitations by proposing

a pooling scheme adaptive to the temporal structure of the

particular video to recognize. The video sequence is decom-

posed into segments, and the most informative segments

for detection of a given event are identified, so as to dy-
namically determine the pooling operator most suited for
that particular video sequence. This dynamic pooling is

implemented by treating the locations of the characteris-

tic segments as hidden information, which is inferred, on

a sequence-by-sequence basis, via a large-margin classifi-

cation rule with latent variables. While this entails a com-

binatorial optimization, we show that an exact solution can

be obtained efficiently, by solving a series of linear program-

ming. In this way, only the portions of the video informative

about the event of interest are used for its representation.

The proposed pooling scheme can be seen either as 1)

a discriminant form of segmentation and grouping, which

eliminates histogram noise due to uninformative content,

or 2) a discriminant approach to modeling video struc-

ture, which automatically identifies the locations of behav-

iors of interest. It is shown that this modeling can have

different levels of granularity, by controlling the structure

of the hypothesis space for the latent variable. Besides

the coarse-level location of segments, finer modeling of

structure can be achieved by jointly pooling histograms of

segment-tuples. This is akin to recent attempts at modeling

the short-term temporal layout of simple actions [9], but re-

lies on adaptively rather than manually specified video seg-

ments. Experiments demonstrate that the detector signifi-

cantly outperforms existing models of video structure.

2. Related Work
There has, so far, been limited work on pooling mech-

anisms for complex event detection. Laptev et al. extend

spatial pyramid matching to the video domain and propose

a BoF temporal pyramid (BoF-TP) matching for atomic ac-

tion recognition in movie clips [13]. More recently, Cao et
al. use unsupervised clustering of image features to guide

feature pooling at the image level [5]. Since these pool-

ing schemes cannot 1) select informative video segments,

or 2) model the temporal structure of the underlying activi-

ties, they have limited applicability to complex event mod-

eling. More broadly, the proposed method can be seen as

a dynamic counterpart to recent advances in receptive field

learning for image analysis [10]. While [10] assumes that

the optimal spatial regions (receptive fields) for pooling de-

scriptors of a given category are fixed, our work addresses

content-driven pooling regions, dynamically or adaptively
discovered on a sequence-by-sequence basis.

Several works have addressed the modeling of tempo-

ral structure of human activities. These can be grouped in

two major classes. The first class aims to capture the most

discriminative subsequence for simple action recognition.

Nowozin et al. [18] use boosting to learn a classifier that

searches for discriminative segments. In [21], Schindler

and Gool show that simple actions can be recognized al-

most instantaneously, with a signature video segment less

than 1 second long. Similarly, Satkin and Hebert [20] ex-

plore the impact of temporally cropping training videos on

action recognition. While starting to address the problem

that we now consider, these methods have various limita-

tions, e.g., 1) ignoring the temporal structure within sub-

sequences, 2) limiting the hypothesis space of video crop-

ping to continuous subsequences (which precludes tempo-

rally disconnected subsequences that are potentially more

discriminant for complex event recognition), and 3) limited
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Figure 2: Dynamic pooling for recognizing “apply a board trick”. The event is identified by signature actions of “jumping up with board”

and “landing”, which are mined out to represent the event either by segment or segment-pair pooling. Note that, in the segment-pair

pooling, the feasible pairs are constraint by L1 = 2 and L2 = 4 in (12), as shown by the shaded elements in the triangular for pair (i, j).

ability to cope with the exponential nature of the hypoth-

esis space (using heuristics to search for sub-optimal solu-

tions). We address this problem by proposing an efficient

procedure to dynamically determine the most discriminant

segments for video classification.

The second class aims to factorize activities into se-

quences of atomic behaviors, and characterize their tem-

poral dependencies [17, 8, 4, 23, 24, 14, 16]. While a

number of representations have been proposed, e.g., the

spatio-temporal graphs of [4, 24], most methods are based

on the BoF. Aiming to move beyond the BoF-TP of [13],

Niebles et al. [17] and Gaidon et al. [8] raise the seman-

tics of the representation, explicitly characterizing activities

as sequences of atomic actions (e.g., “long-jump” as a se-

quence of “run”, “jump” and “land”). Li and Vasconcelos

extend this idea by characterizing the dynamics of action

attributes, using a binary dynamic system (BDS) to model

trajectories of human activity in attribute space [14], and

then to bag of words for attribute dynamics (BoWAD) [16].

Some drawbacks of these approaches include the need for

manual 1) segmentation of activities into predefined atomic

actions, or 2) annotation of training sets for learning at-

tributes or atomic actions. Some automated methods have,

however, been proposed for discovery of latent tempo-

ral structure. In particular, Tang et al. use a variant of

the variable-duration hidden Markov model (VD-HMM) to

learn both hidden action states and their duration [23]. Most

methods in this group assume that 1) the entire video se-

quence is well described by the associated label, and 2)

video sequences are precisely cropped and aligned with ac-

tivities of interest. This is usually not the case for open

source videos.

3. Event Detection via Dynamic Pooling
In this section we introduce a detector of complex events

using dynamic pooling.

3.1. Complex Events

A complex event is defined as an event composed of sev-

eral local behaviors. A video sequence v is first divided

into a series of short-term temporal segments S = {si}τi=1,

which are denoted atomic segments. This can be done with

a sliding window, or algorithms for detecting shot transi-

tions. Each of the segments si depicts a short-term behav-

ior, characterized by a visual feature xi ∈ R
D

, e.g., a his-

togram of visual word counts [13, 28]. A complex event is

a segment subset S̄ ⊆ S , i.e., an element of the power set

of S . Note that this does not have to be a continuous sub-

sequence of v (as in [20]), but can be any combination of

elements from S to allow for a more flexible representation.

3.2. Dynamic Pooling

Given the feature vectors xi extracted from τ atomic seg-

ments si of sequence v, a holistic feature is defined as

Φ(v,h) =
Xh

dTh
, (1)

where X = [x1, · · · ,xτ ] ∈ R
D×τ

is a matrix whose i-th
column is the feature vector extracted from si, d ∈ R

τ
++

a vector of positive segment confidence scores, and h ∈
{0, 1}τ the indicator vector of the subset S̄, i.e., hi = 1
if si ∈ S̄ and hi = 0 otherwise. The feature Φ(v,h)
can have different interpretations depending on the choice

of features xi and scores di. For example, when xi and

di are the unnormalized BoF histogram (i.e., visual word

counts) and number of visual features of i-th segment, re-

spectively, Φ(v,h) is a BoF histogram over the subset S̄ .

This is illustrated by Fig. 2. Note that the L-1 normaliza-

tion of (1) has been shown important for histogram-based

large-margin classification [26]. By determining the com-

position of the subset S̄, h controls the temporal pooling of

visual word counts. A fixed h implements a static pooling
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mechanism, e.g., pyramid matching [13]. In this work, we

introduce a dynamic pooling operator, by making h a latent

variable, adapted to each sequence so as to maximize clas-

sification accuracy. This is implemented with recourse to a

latent large-margin classifier.

3.3. Prediction Rule

A detector for event class c is implemented as d(v) =
sign[fw(v)], where fw(v) is a linear predictor that quanti-

fies the confidence with which v belongs to c. This is im-

plemented as

fw(v) = maxh∈H
[
wTΦ(v,h) + r(h)

]
, (2)

where w ∈ R
D

is a vector of predictor coefficients,

Φ(v,h) ∈ R
D

the feature vector of (1), h the vector of

latent variables,H the hypothesis space {0, 1}τ , and r(h) a

reward

r(h) = r(||h||1) (3)

with r(·) a non-decreasing function, which encourages con-

figurations of h that use larger numbers of atomic segments

to explain v as the complex event c. In this work, we adopt

r(h) = a log(||h||1) + b , (4)

where a ∈ R+ and b ∈ R are parameters, but any other

non-increasing function could be used in (3).

Note that (2) has two possible interpretations. Under the

first, (4) is a bias term of the predictor, whose parameters are

learnt during training. Under the second, (2) is a maximum
a posteriori (MAP) prediction for a (log-linear) Bayesian

model of 1) class conditional distribution proportional to

ew
TΦ(v,h) and 2) prior (on latent variable configurations)

proportional to er(h). In this case, a, b are fixed hyper-

parameters, encoding prior knowledge on event structure.

3.4. Inference

Given a sequence v and the parameters w, a, b, the pre-

diction of (2) requires the solution of

(NLIP) : fw(v) = max
h∈H

[
wTXh

dTh
+ r(||h||1)

]
. (5)

Since the variable h ∈ H is discrete, (5) is a non-linear
integer programming (NLIP) problem and NP-hard under

general settings. However, since d ∈ R
τ
++, it can be solved

efficiently, via the solution of a finite number of linear pro-

gramming problems. This follows from two observations.

The first is that (5) can be factorized as

fw(v) = max
1�k�τ,k∈Z

[
f∗(v;w, k) + r(k)

]
, (6)

where f∗(v;w, k) is the optimum of

(ILFP) : max
h∈H

wTXh

dTh
, s.t.

∑
i
hi = k, (7)

with h∗(k) as the optimal solution. This is an integer linear-
fractional programming (ILFP) problem. The second ob-

servation is the following result.

Theorem 1 ([15]) If d � 0 (i.e., ∀i, di is strictly positive),
the optimal value of (7) is identical to that of the relaxed
problem

(LFP) : max
h∈Bτ

wTXh

dTh
, s.t.

∑
i
hi = k, (8)

where Bτ = [0, 1]τ is a unit box in R
τ .

Since problem (8) is a linear-fractional program-
ming (LFP), it can be reduced to a linear programming prob-

lem of τ + 1 variables and τ + 2 constraints [2]. It follows

that exact inference can be performed efficiently for the pro-

posed latent variable classifier (2). The optimal solution

is h∗ = h∗(k∗) where k∗ = argmaxk[f
∗(v;w, k)+ r(k)].

3.5. Learning

The learning problem is to determine the parameter vec-

tor w, given a training set {vi, yi}Ni=1, where yi ∈ Y =
{+1,−1} indicates if the i-th sample belongs to the target

event class c. This problem is identical to that of learning

a multiple-instance (MI-SVM) [1] or a latent (L-SVM) [7]

support vector machine (SVM).

A large margin predictor of form (2) is the solution of [1]

min
w,ξ

1

2
||w||2 + C

∑N

i=1
ξi

s.t. yifw(vi) � 1− ξi, ξi � 0, ∀i
(9)

This is a semi-convex problem, i.e., a non-convex problem

in general, which becomes convex if the latent variables are

fixed for all positive examples. In this case, the objective

function is quadratic and the feasible set is the intersection

of a series of α-sublevel sets [2] of convex functions.

The solution of (9) is equivalent to that of the uncon-

strained problem

min
w

1

2
||w||2 + C

∑N

i=1
max

(
0, 1− yifw(vi)

)
, (10)

for which a number of iterative algorithms have been pro-

posed in the literature [1, 29, 7]. In this work, we adopt the

concave-convex procedure (CCCP) of [29]. This consists of

rewriting the objective of (10) as the sum of a convex and a

concave functions

min
w

[
1

2
||w||2 + C

∑
i∈Dn

max
(
0, 1 + fw(vi)

)

+ C
∑
i∈Dp

max
(
fw(vi), 1

)]
+

[
− C

∑
i∈Dp

fw(vi)

]
,

(11)

where Dp and Dn are the positive and negative training

sets, respectively. CCCP then alternates between two steps.
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The first computes a tight convex upper bound of the sec-

ond (concave) term of (11), by estimating the configuration

of hidden variables that best explains the positive training

data under the current model. The second minimizes this

upper bound, by solving a standard structural SVM [25]

problem, which is convex, via either stochastic gradient de-

scent [7], LIBLINEAR [6], cutting plane algorithms [25],

or the proximal bundle method [12] (which we adopt in

this work). The overall procedure resembles the popular

expectation-maximization (EM) algorithm for estimation of

the parameters of probabilistic models with latent variables.

4. Hypothesis Space for Pooled Features
In this section we discuss several possibilities for the hy-

pothesis space of the proposed complex event detector.

4.1. Structure of the Pooling Window

The detector supports a number of possibilities with re-

gards to the structure of h. The first is no selection, i.e.,
pooling from the entire sequence. This is equivalent to BoF

with average pooling. The second is a continuous window,

i.e., the elements of h are all ones within a sliding con-

tinuous subset of the temporal locations: hi = 1 if and

only if i ∈ {t, . . . , t + δ} ⊂ {1, . . . , τ}. In this case, h is

completely specified by a window (t, δ) with starting point

t and duration δ. The use of such a sliding window pro-

vides a rough localization constraint for an activity, akin to

the discriminative (continuous) subsequence of [18]. The

third is a temporally localized selector, i.e., an element of

h can be one only inside the window (t, δ) but does not

have to be active. The fourth is an unconstrained selec-
tor h, which is a special temporally localized selector with

window (1, τ). When a window (t, δ) is used, the starting

point t is treated as an extra latent variable, whose optimal

value is determined by repeating the inference of (2) at each

window location and choosing the one with highest classi-

fication score. The duration δ is a parameter determined by

cross-validation.

4.2. Structure of Pooled Features

So far, we have assumed that the features xi of (1) are

histogram of visual word counts of video segments si. In

fact, it is not necessary that the features xi report to a sin-

gle segment. While Φ(v,h) can pool, or average, single

segment features xi, this may not be enough for discrim-

inating certain types of events. Consider, for example, a

traffic monitoring system confronted with two classes of

events. The first consists of the sequence of atomic behav-

iors “car accelerates” and “car crashes”, corresponding to

regular traffic accidents. The second to a sequence of “car

crashes” and “car accelerates”, corresponding to accidents

where one of the vehicles flees the accident site. In the

absence of an explicit encoding of the temporal sequence

of the atomic behaviors, the two events cannot be disam-

biguated. This problem has motivated interest in the de-

tailed encoding of temporal structure [8, 27, 23, 14]. Some

of these approaches are based on histograms of sophisti-

cated spatio-temporal features, and could be integrated in

the proposed detector. Another possibility is to extend the

proposed pooling scheme to tuples of pooling regions. For

example, dynamic pooling can be applied to segment pairs,

by simply replacing the segment set S with

S2 = {(si, sj)|L1 � j − i � L2, si, sj ∈ S} ⊂ S × S, (12)

where L1 and L2 are parameters that control the temporal

distribution of the two segments. As shown in Figure 2,

the feature of (1) naturally supports this representation. It

suffices to make each column of X the concatenation of the

features extracted from segment pairs (si, sj) in S2, with

the latent variable h as an indicator of the selected pairs.

The procedure could be extended to η-tuples of higher

order (η > 2) by concatenation of multiple segment fea-

tures. The price to pay is computation complexity, since

this increases the dimension of the hypothesis space from

O(2τ ) to O
(
2τ

η)
. In particular, (8) requires the solution

of a linear program of O(τη) variables and constraints. In

our experience, this is feasible even for large datasets when

η = 2, i.e., for segment pairs. We have not yet considered

tuples of high order. It should be noted that the two-tuple

extension generalizes some representations previously pro-

posed in the literature. For example, when L1 = L2 = 1,

the pair pooling strategy is similar to the localized version

of the t2 temporal pyramid matching scheme of [13], albeit

with dynamically selected pooling windows. S2 can also be

seen as an automated two-tuple version of the representa-

tion of [8], where activities are manually decomposed into

three atomic actions.

4.3. Learning with Different Pooling Strategies

The different possibilities for H can be explored syner-

gistically during learning. This follows from the fact that,

as happens to EM, CCCP is only guaranteed to converge

to a local minima or saddle point [22]. Hence, a careful

initialization is required to achieve good solutions. In our

implementation, we rely on a four-step incremental refine-

ment scheme to determine the initial solution. We start by

learning a SVM without latent variables, i.e., based on BoF.

This is identical to [13] without temporal pyramid match-

ing. It produces an SVM parameter wBoF which is used

to initialize the CCCP algorithm for learning an SVM with

latent variables. In this second learning stage, the hidden

variable selector h of (1) is restricted to a continuous pool-

ing window (CPW), producing a latent SVM of parameter

wCPW . This parameter is next used to initialize the CCCP

algorithm for learning a latent SVM of temporally localized

window for single segment pooling (SSP), i.e., η = 1, with
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Table 1: Average Precision for Activity Recognition on Olympic Sports Dataset.

Activity BoF-TP

[13]

DMS

[17]

VD-HMM

[23]

BDS

[14]

Dynamic Pooling

SSP SPP

high-jump 80.6% 68.9% 18.4% 82.2% 62.1% 69.1%

long-jump 86.0% 74.8% 81.8% 92.5% 74.4% 81.6%

triple-jump 51.5% 52.3% 16.1% 52.1% 44.6% 54.3%
pole-vault 60.9% 82.0% 84.9% 79.4% 59.7% 65.2%

gymnastics-vault 80.3% 86.1% 85.7% 83.4% 86.0% 85.0%

shot-put 39.6% 62.1% 43.3% 70.3% 60.8% 61.0%

snatch 58.8% 69.2% 88.6% 72.7% 65.1% 89.7%
clean-jerk 65.5% 84.1% 78.2% 85.1% 81.8% 89.2%

javelin throw 52.7% 74.6% 79.5% 87.5% 69.2% 79.9%

hammer throw 81.7% 77.5% 70.5% 74.0% 67.6% 72.3%

discus throw 40.4% 58.5% 48.9% 57.0% 47.9% 56.2%

diving-platform 94.3% 87.2% 93.7% 86.0% 89.2% 90.6%

diving-springboard 56.3% 77.2% 79.3% 78.3% 83.7% 88.0%
basketball-layup 69.8% 77.9% 85.5% 78.1% 83.3% 86.1%

bowling 61.7% 72.7% 64.3% 52.5% 77.3% 77.0%

tennis-serve 50.5% 49.1% 49.6% 38.7% 73.1% 73.8%
mean AP 64.4% 72.1% 66.8% 73.2% 70.4% 76.2%

ave. pooling SSP SPP
0.6

0.64

0.68

0.72

0.76

0.8
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Figure 3:
mAP of dif-

ferent pooling
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and features

on Olympic

sports dataset

(Top); and

ROC curves

for ground-

truth sub-

sequence

detection

by SSP for

“bowling” and

“tennis serve”

on Olympic

dataset (Bot-

tom).

parameter wSSP . Finally, wSSP is used to initialize CCCP

for learning a latent SVM of temporally localized pooling

window with segment pair selection (SSP), i.e., η = 2.

5. Experiments
Several experiments were conducted to evaluate the

performance of the proposed event detector, using three

datasets and a number of benchmark methods for activity or

event recognition. All these methods are based on BoF, ob-

tained by detecting spatial-temporal interest points, extract-

ing descriptors from these interest points, and quantizing

these descriptors with a visual word dictionary learned from

the training set [13, 28]. Unless otherwise specified, all

experiments relied on the popular spatio-temporal interest

point (STIP) descriptor of [13], and parameters of dynamic

pooling were selected by cross-validation in the training set.

5.1. Olympic Sports

Olympic Sports [17] consists of around 50 sequences

from each of 16 sports categories. While not really an

open-source video collection (many of the sequences are

extracted from sports broadcasts and depict a single well

defined activity), this dataset is challenging for two main

reasons: 1) some activities (e.g., “tennis serve”, or “basket-

ball layup”) have a variety of signature behaviors of variable

location or duration, due to intra-class variability and poor

segmentation/alignment; and 2) it contains pairs of confus-

ing activities (e.g., sub-types of a common category, such

as the weight lifting activities of “snatch” and “clean-and-

jerk”), whose discrimination requires fine-grained models

of temporal structure. Low-level features were extracted

from video segments of 30-frames (with an overlap of 15-

frames) and quantized with a 4000-word codebook. Perfor-

mance was measured with the mean per-category average

precision (mAP), using 5-fold cross-validation.

Pooling Strategy We first evaluated the benefits of the

various pooling structures of Section 4. The top of Figure 3

shows results for 4 structures: average pooling on the whole

sequence (BoF), or on a continuous window (CW) (t, δ),
temporally localized (TL) selector, and unconstrained (U)

selector. The latter two were repeated for two feature con-

figurations - single segments (SSP) and segment pairs (SPP)

- for a total of 6 configurations. All dynamic pooling mech-

anisms outperformed BoF, with gains as high as 10%. In

general, more adaptive pooling performed better, e.g., CW

better than BoF and TL better than CW. The only excep-

tion was the U selector which, while beating BoF and CW,

underperformed its temporally localized counterpart (TL).

This suggests that it is important to rely on a flexible se-

lector h, but it helps to localize the region from which seg-

ments are selected. With respect to features, pooling of seg-

ment pairs (SPP) substantially outperformed single segment

pooling (SSP). This is intuitive, since the SPP representa-

tion accounts for long-term temporal video structure, which

is important for the discrimination of similar activities (see

discussion below). Given these observations, we adopted

the TL pooling strategy in all remaining experiments.

Modeling Temporal Structure We next compared the

proposed detector to prior methods for modeling the tempo-

ral structure of complex activities. The results are summa-

rized in Table 1. BoF-TP had the worst performance. This

was expected, given its coarse and static temporal pool-

ing, which only works for categories with clear discrimi-

nant motion (e.g., “diving-platform”). Methods that capture

finer temporal structure, e.g., decomposable motion seg-

ments (DMS) [17] (which decomposes an activity into six

atomic behaviors temporally anchored at fixed video loca-

tions), and VD-HMM [23] or BDS [14] (which models the

evolution of attribute sequences), performed better, some-

times beating TL-SSP; yet they were clearly outperformed
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Figure 4: Characteristic segments (marked by shaded boxed region) of “tennis serve” (left), “basketball-layup” (middle) and “bowl-

ing” (right) discovered by SSP on Olympic. The bold black lines are normalized timelines of each sequence. Keyframes of the characteristic

segments are shown with their anchor points in the timeline.

Table 2: mAP on Olympic Sports.

Method Result

Wang et al. [27] 75.9%

Brendel et al. [3] 76.0%

Brendel &

Todorovic [4]
77.3%

Gaidon et al. [9] 82.7%

Jiang et al. [11] 80.6%

Todorovic [24] 82.9%

SPP-SVM 84.5%

Table 3: Average Precision for Event Detection on TRECVID MED11 DEVT Dataset.

Event
(E001-E005)

Random

Guess

BoF-TP

[13]

DMS

[17]

VD-HMM

[23]

BDS

[14]

Dynamic Pooling

SSP SPP

attempt a board trick 1.18% 16.47% 5.84% 15.44% 8.41% 18.18% 26.09%
feed an animal 1.06% 4.73% 2.28% 3.55% 1.78% 6.48% 7.62%

land a fish 0.89% 19.25% 9.18% 14.02% 6.20% 18.53% 23.78%
wedding ceremony 0.86% 32.17% 7.26% 15.09% 12.24% 35.85% 33.94%

work on a wood proj. 0.93% 20.59% 4.05% 8.17% 5.08% 22.25% 21.41%

mean AP 0.98% 18.64% 5.72% 11.25% 6.74% 20.26% 22.57%

by TL-SPP. This suggests that there are two important com-

ponents of activity representation: 1) the selection of signa-

ture segments depicting characteristic behaviors; and 2) the

temporal structure of these behaviors. Since most of se-

quences in this dataset are well segmented, the latter is more

critical. TL-SSP, which only captures the location of signa-

ture segments, underperforms some of the previous models,

which model the temporal structure. However, by not fo-

cusing on the segments of interest, the latter face too hard

of a modeling challenge and are inferior to TL-SPP, which

addresses both components. Note, in fact, that the prior

models underperform even TL-SSP on categories with char-

acteristic behaviors widely scattered across the video, e.g.,
“bowling” and “tennis-serve”. This is illustrated in Fig-

ure 4, which shows the segments selected by TL-SSP for

the activities “tennis-serve”, “basketball layup” and “bowl-

ing”. Note that, despite the large variability of location

of the characteristic behaviors in the video of these cate-

gories, e.g., “throwing (ball)-waving (racket)-hitting (ball)”

for “tennis-serve”, TL-SSP is able to localize and crop them

fairly precisely. This ability is also quantified in Figure 3 by

a small experiment, where we 1) manually annotated the

characteristic behaviors of “bowling” and “tennis-serve”,

and 2) compared this ground-truth to the video portion se-

lected by TL-SSP. The resulting ROC curves clearly illus-

trate that performance of TL-SSP is better than chance.

State-of-the-Art The experiments above used STIP de-

scriptors, for compatibility with other methods in Table 1.

More recently, it has been shown that better performance

is possible with dense trajectory feature (DTF) descrip-

tors [27]. The best results on Olympic have been achieved

with this descriptor [9, 11]. We have compared these bench-

marks to an implementation of the proposed SPP-SVM that

uses DTF, under the setting of [9]. As summarized in Ta-

ble 2, SPP-SVM achieves the best results in the literature.

5.2. TRECVID-MED11

The second and third sets of experiments were conducted

on the 2011 TRECVID multimedia event detection (MED)

dataset [19]. It contains over 45, 000 videos of 15 high-level

event classes (denoted “E001” to “E015”) collected from

a variety of Internet resources. The training set (denoted

“EC”), contains 100 to 200 ground-truth instances of each

event class, totaling over 2000 videos. The test set is split

into two folds, denoted “DEVT” and “DEVO”. The 10, 403
clips in DEVT contain positive samples from the classes

E001 to E005 and negative samples that do not correspond

to any of the 15 events. DEVO contains 32, 061 video clips

of both positive and negative samples from classes E006

to E015. The large variation in temporal duration, scenes,

illumination, cutting, resolution, etc in these video clips, to-

gether with the size of the negative class, make the detection

task extremely difficult. In this dataset a 10, 000-word vo-

cabulary is used and segments were 60-frame long with 30

frame overlapping. To improve discriminative power, we

implemented the feature mapping of [26] for dynamic pool-

ing and the baseline BoF-TP of [13].

Table 3 and Table 4 present the results of the differ-

ent methods on the two datasets. Since, unlike Olympic,

the videos are open-source, there is no pre-segmentation or

alignment and plenty of irrelevant content. This is too much

for approaches modeling holistic temporal structure like

DMS [17], VD-HMM [23] and BDS [14], which signifi-

cantly underperform the baseline BoF-TP. In these datasets,
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Table 4: Average Precision for Event Detection on TRECVID MED11 DEVO Dataset.

Event
(E006-E015)

Random

Guess

BoF-TP

[13]

DMS

[17]

VD-HMM

[23]

Dynamic Pooling

SSP SPP

birthday party 0.54% 4.44% 2.25% 4.38% 6.09% 6.08%

change a veh. tire 0.35% 1.28% 0.76% 0.92% 1.90% 3.96%
flash mob gather. 0.42% 26.32% 8.30% 15.29% 31.19% 35.28%
get a veh. unstuck 0.26% 3.33% 1.95% 2.04% 4.54% 8.45%
groom an animal 0.25% 1.80% 0.74% 0.74% 3.54% 3.05%

make a sandwich 0.43% 5.03% 1.48% 0.84% 4.66% 4.95%

parade 0.58% 9.13% 2.65% 4.03% 8.72% 8.95%

parkour 0.32% 15.52% 2.05% 3.04% 17.86% 24.62%
repair an appliance 0.27% 16.62% 4.39% 10.88% 18.32% 19.81%

work on a sew. proj. 0.26% 5.47% 0.61% 5.48% 7.43% 6.53%

mean AP 0.37% 8.89% 2.52% 4.77% 10.52% 12.27%

Figure 5: Signature segments discov-

ered by SSP for “birthday party” (top) and

“groom an animal” (bottom) on MED11.

both the identification of characteristic segments and the

modeling of their temporal structure are important. Due

to this, 1) both the SSP and SPP variants of the proposed

detector outperform all other methods (note the large AP

difference on events like “attempt a board trick”, “feed an

animal”, etc), and 2) the gains of SPP over SSP are smaller

than in Olympic, although still significant. Visual inspec-

tion indicates that SSP can provide quite informative con-

tent summarization of the video, as shown in Figure 5.

6. Conclusion
We proposed a joint framework for extracting character-

istic behaviors, modeling temporal structure, and recogniz-

ing activity on video of complex events. It was shown that,

under this formulation, efficient and exact inference for se-

lection of signature video portion is possible over the com-

binatorial space of possible segment selections. An experi-

mental comparison to various benchmarks for event detec-

tion, on challenging datasets, justified the effectiveness of

the proposed approach.
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