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Abstract

In this paper we aim for segmentation and classification

of objects. We propose codemaps that are a joint formu-

lation of the classification score and the local neighbor-

hood it belongs to in the image. We obtain the codemap

by reordering the encoding, pooling and classification steps

over lattice elements. Other than existing linear decompo-

sitions who emphasize only the efficiency benefits for lo-

calized search, we make three novel contributions. As a

preliminary, we provide a theoretical generalization of the

sufficient mathematical conditions under which image en-

codings and classification becomes locally decomposable.

As first novelty we introduce ℓ2 normalization for arbitrar-

ily shaped image regions, which is fast enough for semantic

segmentation using our Fisher codemaps. Second, using

the same lattice across images, we propose kernel pooling

which embeds nonlinearities into codemaps for object clas-

sification by explicit or approximate feature mappings. Re-

sults demonstrate that ℓ2 normalized Fisher codemaps im-

prove the state-of-the-art in semantic segmentation for PAS-

CAL VOC. For object classification the addition of nonlin-

earities brings us on par with the state-of-the-art, but is 3x

faster. Because of the codemaps’ inherent efficiency, we can

reach significant speed-ups for localized search as well. We

exploit the efficiency gain for our third novelty: object seg-

ment retrieval using a single query image only.

1. Introduction

It remains remarkable that the great successes in object

recognition use so little of the spatial order in the image.

Features [20] are encoded in feature space [14, 23, 26, 35],

pooled in histograms [4, 35] and plugged into a kernel-

classifier [7, 36]. The entire chain contains no more spatial

information then the locality of the features, compensated

by a rather crude method of spatial pyramids [12,18] where

the standard classification procedure is repeated over upper

Figure 1. Codemaps segment, classify and search objects locally

by reordering the encoding, pooling and classification steps of ob-

ject classification. Different from existing linear decompositions

for specific pipelines, codemaps are generic, embed fast ℓ2 nor-

malization, include nonlinearities by local kernel pooling and al-

low for segment retrieval using a single query image only.

and lower parts of the image. To make progress in recog-

nition, better inclusion of more spatial information is in-

evitable. And indeed, recently, [13, 28, 29] have introduced

the spatial coherence of objects, by confining the usual anal-

ysis to selected windows in the image. The spatial restric-

tion has had a positive effect on the recognition result. How-

ever, the selection of windows is only loosely coupled to the

classification pipeline. In this paper, we aim to integrate lo-

cality much further into the analysis.

Starting at the other end, the route of first segmentation

then recognition, is as old as Blobworld [6], describing parts

as visually coherent regions. In [16, 33] the regions were

jointly modeled to establish semantic similarity between ad-

jacent object parts. And indeed, consistent regions lead to

useful object hypotheses [1, 5], paving the way to object
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segmentation. Pushing localization with state-of-the-art en-

codings to an extreme, [8] classifies pixels with a Fisher

kernel for semantic segmentation, as application of Fisher

on regions would be practically infeasible. We will argue

in this paper the virtue of a deeper connection between spa-

tial localization and object type classification using state-of-

the-art pipelines, such as the improved Fisher kernel [23] or

explicit feature maps [32].

We aim to combine semantic segmentation with recog-

nition at the earliest stage of the analysis. We show that re-

ordering the processing steps for object type classification

into local pooling before classification has considerable ad-

vantages. Where [17, 34] have shown the efficiency bene-

fits of such decompositions for unnormalized bag-of-words

with a linear classifier, our codemaps make three novel con-

tributions. As a preliminary result, we formulate the suffi-

cient mathematical conditions under which image encoding

and classification are locally decomposable (Section 3). In

the first novelty, we use this result to introduce codemaps

with ℓ2 normalization for arbitrarily shaped image regions

(Section 4), essential to reach a better than state-of-the-art

performance in semantic segmentation [1, 5]. In the second

novelty, using the same lattice across images, we include

nonlinearity in the decomposition by local kernel pooling

(Section 5), to bring us on par with the state-of-the-art in

object classification [23], but 3x faster. Thirdly, we demon-

strate the effectiveness of codemaps in object segment re-

trieval from a single query image (Section 6).

2. Related work

We structure our discussion on related work by the sub-

sequent steps of (localized) object type segmentation and

classification: semantic segmentation, feature encoding,

feature pooling and kernel classification.

Semantic segmentation. For semantic segmentation

two main approaches have been adopted, which both start

from an initial image split into superpixels. The first ap-

proach [16, 33] then tries to group the superpixels on the

basis of semantic similarity in a conditional random field.

Such approaches achieve excellent accuracy, but suffer from

a high computational cost due to complicated training and

inference. The second approach [1, 5] first tries to form

complete segment hypotheses based on low level cues.

Then, these segment hypotheses are classified with a stan-

dard object classification procedure. In the current work we

follow the second family of approaches. We take advantage

of the complete segment hypotheses being composed of su-

perpixels to enrich the segment representation with state-of-

the-art image classification using feature encodings.

Feature encoding. Feature encodings capture the vi-

sual information around a local neighborhood and generate

a measurement, which is supposed to be invariant to acci-

dental circumstances, such as illumination, shade, occlusion

etc. A feature encoding uses the raw pixel data from a lo-

cal neighborhood to generate a code [20, 30]. The acquired

code is projected to a, usually, higher dimensional space.

The most popular projections are vector quantization [26],

soft quantization [31,35], or the difference of projections to

pre-trained models captured by Fisher [23] and VLAD [14]

vectors. The framework we propose is not constrained to

any particular encoding choice, as long as they are local. In

our experiments we use Fisher vectors, as they have shown

to yield state-of-the art results in object classification [23]

and retrieval [14].

Feature pooling. The feature pooling spatially aggre-

gates the relevant local feature encodings into a global im-

age representation. Average pooling has been shown to

work best for bag-of-words [26] and Fisher vectors [23].

Max-pooling is proven effective for sparse coding [35] and

deep learning [15]. Sum pooling has been the preferred

choice for VLAD vectors [14]. In this paper we general-

ize on the pooling functions. We show that pooling over a

region of interest is equivalent to a simpler two-level pool-

ing for a particular family of mathematical functions. This

two-level pooling allows to classify objects locally, while

offering a substantial efficiency speed-up.

Kernel classification. For object type classification,

support vector machines have repeatedly shown to outper-

form [9,11,27] all other alternatives. To cope with the grow-

ing number of images, the size of the image representations

and the numbers of object types, recent research has focused

on efficient learning and classification. Kernel properties,

like additivity and homogeneity, of support vector machines

have been exploited for speed-ups, especially for nonlinear

kernels [21, 32]. Classifiers currently employ the local ori-

gin of the data only weakly [18,29]. In this work we modu-

larize linear and nonlinear kernels to arrive at an object type

decision for a local neighborhood level.

We are inspired by [17, 34] who observe that the image

interpretation of unnormalized bag-of-words with a linear

classifier can be analyzed in terms of the contributions of

individual descriptors, leading to a considerable efficiency

gain. They don’t seem to realize that the decomposition can

be generalized, as we do, to reorder the steps of general

object classification pipelines, including for example Fisher

vectors and VLAD. By doing so, we obtain a joint formu-

lation of the classification score and the local neighborhood

it belongs to. Furthermore, our generalized framework can

obtain the precise ℓ2 normalized classification score for any

region, which is known to increase the accuracy of both

Fisher vectors and VLAD considerably [14, 23]. Last but

not least, we propose kernel pooling which embeds nonlin-

earities by explicit or approximate feature mappings [21,32]

to assure state-of-the-art competitiveness [23]. We call our

approach codemaps and we will now highlight its theoreti-

cal foundation in a preliminary.
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3. Preliminary

We start from a lattice, composed of N nodes, G =
{gi}, i = 1, ..., N , superimposed on an image. To ensure

good generalization and flexibility, we consider that a) each

node gi of the lattice is arbitrarily sized, shaped, and non-

overlapping, i.e. gi ∩ gj = ∅, ∀gi, gj ∈ G, i 6= j, and

b) each area R where we search for the objects of interest

are composed of multiple nodes R = g1 ∪ ... ∪ gl. Thus,

regions are also arbitrarily sized and shaped. Hence, the

image search is no longer confined to specific and limiting

templates, such as rectangular areas [17, 29]. For ease of

reading we shall refer to each node gi of the lattice as lex.

Our theory holds for all types of patches, including cells on

a regular lattice [18], generalized image regions [2], super-

pixels [19, 24] or any other type of localities.

We extract a collection of local features zi, i = 1, ...,M
in the image and encode them to codes ci, 1, ...,M . The

pooling function h(R) combines these local codes within

the region R to arrive at its global feature encoding.

Codemaps. We define a codemap as a decomposed ob-

ject image representation Φ = (G,φ), where φi ∈ φ, i =
1, ..., N denotes the object evidence per lex gi.

We begin with unnormalized codemaps. Hence, φi =
f(h(gi)) stands for the per lex classification score using

classifier function f . For an image regionR the correspond-

ing classification score can be written as:

f(h(R)) = f(h(g1 ∪ g2 ∪ ... ∪ gl)). (1)

Formally, the property of a codemap can be described by

f(h(R)) = q(f(h(g1)), f(h(g2)), ..., f(h(gl))), (2)

where q is a classification pooling function that aggregates

the localized classifier decisions over a region of interest.

From eq. (2) we see that the pooling function h needs to

be applied to each of the lexes gi separately. Taking into

account eq. (1), we arrive at the first condition for obtaining

a valid codemap:

Condition 1 The pooling function h : A → B must be

homomorphic from the space A to space B, so that

h(R) = h(UA

[
g1, g2, ..., gl

]
)

= UB

[
h(g1), h(g2), ..., h(gl)

] (3)

where A refers to the spatial domain formed by lexes {gi},

and B refers to the code pooling space defined by h. In

eq. (3) the UA stands for the union set operation, that is

UA = ∪(g1, g2, ..., gl), whereas UB is an operation in B

that makes h homomorphic. When h stands for sum pooling

or max pooling, UB is the sum operator or max operator.

In practice a homomorphic pooling means that we can first

locally pool the encodings from each lex gi separately, then

combine them to get the global feature encoding as if we

operated on R in the first place.

In addition, we want the classifier f to also operate on

each of the lexes gi individually. By combining eq. (1)

and (3), we arrive at the second condition:

Condition 2 The classification function f : B → C must

be homomorphic from the space B to space C, so that

f(h(R)) = f(UB

[
h(g1), h(g2), ..., h(gl)

]
)

= UC

[
f(h(g1)), f(h(g2)), ..., f(h(gl))

] (4)

where C refers to the classification space. Having a ho-

momorphic function for the classifier f , one only needs to

consider the individual scores of the lexes within R.

Normally, when classifying a region we first perform a

global pooling on all the feature encodings contained in the

region, and then we apply the classifier. However, accord-

ing to Cond. 1, codemaps first break the global pooling into

a collection of local feature poolings over lexes. Then, ac-

cording to Cond. 2, codemaps apply the classifier on the

local feature poolings and perform a global pooling on the

classification scores of the lexes. Hence, the global pooling

is performed on single scalars instead of high dimensional

vectors. This brings significant efficiency benefits for vision

tasks where thousands of regions need to be classified per

image, such as in semantic segmentation.

We conclude that if Cond. 1 and 2 are met, we obtain a

valid codemap.

4. ℓ2 normalization for arbitrary regions

Modern feature encodings, such as Fisher vector, VLAD

or bag-of-words, usually include a summation operator in

the feature pooling function h. When a linear classifier

f is used, the classification score of a region is y(R) =
w

Th(R) =
∑

d

∑
gi∈R wdhd(gi), where w denotes the

learned d dimensional weights by the linear classifier. This

leads to a valid codemap, since

y(R) =

l∑

i=1

y(gi), (5)

where y(gi) =
∑

d wdhd(gi). A similar decomposition

was derived in [17, 34] for the specific case of unnormal-

ized bag-of-words with a linear SVM. However, feature en-

codings also profit highly from normalization before classi-

fication [23, 32]. Including normalization, in particular ℓ2,

for variable spatial regions is difficult to do efficiently. We

propose ℓ2 normalization for arbitrary regions in codemaps.
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In general for a regionR the norm of its feature encoding

vector h(R) is ‖LR‖. Because of the linear classifier we can

rewrite the normalized classification score as:

y(R) = f(
1

‖LR‖
· h(R)) =

1

‖LR‖
· f(h(R)). (6)

As eq. (6) indicates, to obtain the normalized classification

score we can postpone the scaling by the inverse norm 1

‖LR‖

until after the classification pooling. Thus, with codemaps,

normalization boils down to multiply by a scalar on the clas-

sification score of a region instead of the high dimensional

feature encodings. Then we consider the ℓ2 norm of the

feature encoding for a region R within an image, since the

linear classifier prefers ℓ2 normalization. It is equal to the

square root of the dot product of h(R) with itself:

‖LR‖2 =
(
h(R)Th(R)

)1/2

=




l∑

i=1

l∑

j=1

h(gi)
Th(gj)




1/2

.
(7)

As we can see from eq. (7), to calculate the ℓ2 norm of a

region R we only need to know the sum of the pair-wise

dot product h(gi)
Th(gj) between feature encodings of the

lexes within the region. To generalize for any arbitrary re-

gionR, we calculate the dot products of all the pair-wise lex

combinations in the image. Then, we only need to consider

the combinations of lexes that both appear in R, that is:

‖LR‖2 =




N∑

i=1

N∑

j=1

αi αjh(gi)
Th(gj)




1/2

, (8)

where the binary vector α = (α1, ..., αN ) indicates whether

each lex is present or not within the region R. Finally, we

compute the ℓ2-normalized classification score of an arbi-

trary region R as:

y(R) =
1

‖LR‖2

N∑

i=1

αiw
Th(gi). (9)

We describe the ℓ2 normalized codemap of an image as:

Φ = {gi,w
Th(gi), h(gi)

Th(gj)}, (10)

for i, j = 1, ..., N .

Fisher codemaps. The popular Fisher vector, extracted

from a Gaussian mixture model with a probability density

function u(; |µ,σ) is equal to czi =
1

MR

▽µ,σ log uµ,σ(zi),
where MR stands for the number of local descriptors zi
sampled from an image. A codemap is independent of the

regions R, hence the value of MR is not available. How-

ever,MR is canceled out during the ℓ2 normalization, there-

fore we propose to drop the constant MR from the original

Fisher vector by c̃zi = ▽µ,σ log uµ,σ(zi). Since we use

the sum operator for the feature pooling and the sum op-

erator due to the linear classifier, the Cond. 1 and 2 are

fulfilled and we obtain a valid Fisher codemap. We ob-

serve in Figure 2(a) that Fisher codemaps allow for a con-

siderable speed-up when classifying a number of arbitrary

sized, shaped regions. For evaluating 1,000 regions the

Fisher codemap needs 23 seconds per image, as compared

to 22 minutes when using the traditional Fisher vectors. The

speed-up improves further when more evaluations are re-

quired. Moreover, for a large number of classes, codemaps

still have a clear advantage. The computation of the normal-

ization matrix h(gi)
Th(gj), i, j = 1, ..., N for codemaps

is shared across all the object classes. Therefore, for clas-

sifying 1,000 object categories over 1,000 image regions,

the Fisher codemaps are still 45x faster than the Fisher vec-

tors. We conclude that our ℓ2 normalized Fisher codemaps

are mathematically equivalent to Fisher vectors, but much

faster. Similar formulations and efficiency benefits can be

derived for other feature encodings, e.g. bag-of-words or

VLAD, as well.

5. Nonlinear kernel pooling for classification

In principle, codemaps work with arbitrary lattices for

images. We now approach codemaps from a kernel point

of view, aiming to introduce nonlinearities for object clas-

sification using the same lattice across images. Given two

codemaps ΦX and ΦZ for image X and Z, the similarity

between two images using a linear kernel is:

KL(X,Z) = h(X)Th(Z)

=
∑

gx∈X

∑

gz∈Z

h(gx)
Th(gz),

(11)

which is equivalent to the sum of the similarities using lin-

ear kernel between pair-wise lexes. Hence, we can apply

the kernel trick and use more sophisticated kernels to mea-

sure the pair-wise lex similarity. In that case the similarity

between images X and Z becomes:

K̃(X,Z) =
∑

gx∈X

∑

gz∈Z

k(h(gx), h(gz)). (12)

K̃(X,Z) is a positive definite kernel as long as k is positive

definite as well [25]. This is related to match kernels [3]

between sets of local features, e.g. SIFT, but we consider

kernels between lexes. All the standard kernels from the lit-

erature are applicable for k in eq. (12). In order to preserve

Cond. 1 and 2 of codemaps, we opt for explicit or approxi-

mate kernel mappings [21, 25, 32], that is:

K̃(X,Z) =
∑

gx∈X

∑

gz∈Z

ψ(h(gx))
Tψ(h(gz))

= h̃(X)T h̃(Z),

(13)
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Figure 2. Timing and memory usages for codemaps. All the experiments are done on the PASCAL VOC images using a Gaussian mixture

model of 256 components. (a) ℓ2 normalized Fisher codemaps (with 400 lexes per image) are up to 56x faster than traditional Fisher vectors,

depending on the number of regions analyzed (note the log 10/ log 10 scales). (b) ℓ2 normalization for arbitrary regions is efficient. For

the 4−500 lexes per image that usually suffice for semantic segmentation [2,5,33], the unnormalized and the normalized Fisher codemaps

are practically as efficient, but the normalized Fisher codemaps are much more effective as shown in Table 1. (c) Depending on the number

of lexes, computing Fisher codemaps costs up to 600 MB memory per image, while storing them only needs less than 30 MB.

where h̃(X) =
∑

gx∈X ψ(h(gx)) indicates the nonlinear

feature pooling function for image X , which is the sum of

the set of pooled lexes applied by nonlinear kernel mapping

ψ. We refer to ψ(h(gi)) as local nonlinear kernel pooling.

Thus we still use the sum operator for global feature pool-

ing and a linear classifier, which lead to a valid codemap.

For normalization we need K̃(X,X) = 1, which is equiv-

alent to use ℓ2 normalization on h̃(X). Then the resulting

codemap with nonlinear kernel pooling is defined as:

Ψ = {gi,w
Tψ(h(gi)), ψ(h(gi))

Tψ(h(gj))}, (14)

for i, j = 1, ..., N .

Applying nonlinear kernel pooling for each lex makes

the global image feature encoding h̃(X) dependent on the

partition of the lattice elements placed on the image. There-

fore, to ensure a consistent image representation so that we

can measure image similarity properly, we define the same

lattice across all the images. Consequently, codemaps with

kernel pooling have a strong connection with spatial pyra-

mid kernels. For the spatial pyramid kernel we compute the

similarity of each lex in an image only with itself, whereas

for codemaps all the pair-wise similarities between lexes

are considered. Hence, one could view our codemaps with

kernel pooling as an extension of the spatial pyramid ker-

nels. However, for our kernel pooling the final classifica-

tion score is computed from a single lattice based on all

the partitions of spatial pyramids without any redundancy,

where spatial pyramids require multiple layouts. As a re-

sult, codemaps with kernel pooling allow for the inclusion

of richer spatial information in the final classification score

at a nearly zero cost.

6. Experiments

We demonstrate the efficiency and effectiveness of pro-

posed codemaps by experiments on semantic segmentation,

Bag-of-words Fisher codemaps

Region normalization – – ℓ2

mAP 4.1 7.0 26.9

Table 1. ℓ2 normalized semantic segmentation for arbitrary re-

gions is effective. Mean average precision on the val set of the

segmentation task in the PASCAL VOC 2011, where – indicates

unnormalized versions over regions.

object classification and segmented object retrieval. Since

these tasks all require repetitive computations on overlap-

ping regions, performing them once with ℓ2 normalized

codemaps and nonlinear kernel pooling leads to a consid-

erable speedup. We summarize the timing and memory us-

ages in Figure 2.

6.1. ℓ2 normalized semantic segmentation

In the first experiment we quantify the value of codemaps

with ℓ2 normalization for semantic segmentation, where

several image regions need to be evaluated on presence of

objects and their type. We use the PASCAL VOC Segmen-

tation dataset and follow the training protocol of CPMC-

O2P [5], which combines three segmentation-tailored and

color-enhanced features, and trains linear support vector re-

gressors based on the overlaps between segments. We use

the Fisher codemaps from Section 4, with dense sampling of

basic intensity SIFT descriptors per pixel at multiple scales

and a Gaussian mixture model of 128 components. Note

that we do not consider any feature-specific optimizations

for the purpose of semantic segmentation. We also consider

the unnormalized Fisher codemap version and unnormal-

ized bag-of-words features using a visual codebook of size

4,000, similar to the ones used in [34]. While unnormal-

ized Fisher vectors have been used for pixel-level segmen-

tation [8], we are unaware of segment-level classification
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mAP Bgnd Plane Bike Bird Boat Bottle Bus Car Cat Chair Cow Table Dog House M/bike Person P/Plant Sheep Sofa Train TV

CPMC-O2P [5] 46.4 84.7 63.5 23.4 45.0 40.8 44.9 59.1 58.3 57.1 11.8 42.9 32.8 45.2 55.4 56.6 51.2 35.6 44.9 30.3 48.0 42.5

FGT SEGM [10] 47.5 85.2 63.4 27.3 56.1 37.7 47.2 57.9 59.3 55.0 11.5 50.8 30.5 45.0 58.4 57.4 48.6 34.6 53.3 32.4 47.6 39.2

DivMBest+Rerank [22] 48.1 85.7 62.7 25.6 46.9 43.0 54.8 58.4 58.6 55.6 14.6 47.5 31.2 44.7 51.0 60.9 53.5 36.6 50.9 30.1 50.2 46.8

[5]+Fisher codemaps 48.3 85.3 66.2 24.4 47.5 37.2 52.4 60.4 61.1 56.5 12.8 44.5 32.9 44.8 60.8 61.3 55.8 33.2 49.8 34.3 47.9 45.0

Table 2. State-of-the-art semantic segmentation. Following the exact protocol of [5] we show semantic segmentation results for the

PASCAL VOC 2012 comp6 task. Adding normalized Fisher codemaps on top of the CPMC-O2P improves the state-of-the-art in semantic

segmentation for 8 out of 21 object categories. Best result denoted in bold.

tvmonitor

chair

tvmonitor

Figure 3. Semantic segmentation. Adding normalized Fisher

codemaps (bottom row) on top of the CPMC-O2P [5] (top row)

appears to be beneficial when multiple objects appear simultane-

ously in the image. Note for example the difficult case in the last

column, where codemaps help better segmenting the motorbike on

the poster and the motorbike in the right part of the image.

with normalized Fisher vectors.

Fisher codemaps. We first consider the benefit of ℓ2
normalization. We use the VOC 2011 train set for training

and we report results on the val set in Table 1. We observe

that ℓ2 normalized Fisher codemaps outperform the unnor-

malized ones by far. Fisher codemaps obtain a 26.9 mAP

(mean Average Precision), where the unnormalized Fisher

codemaps obtain only 7.0 mAP. While unnormalized Fisher

codemaps outperform bag-of-words, the ℓ2 normalization

is critical for linear regression, since we have to ensure that

the overlap between each segment and itself is largest and

equal to 1. We plot in Figure 2(b) how efficient it is to com-

pute a Fisher codemap, under a varying number of lexes in

the lattice. Calculating the normalized Fisher codemap is

as efficient as the unnormalized version for up to 500 lexes.

For semantic segmentation in particular, since 4−500 lexes

per image usually suffice [2, 5, 33], calculating the ℓ2 nor-

malized Fisher codemaps is practically as efficient as the

unnormalized one, but much more accurate.

CPMC-O2P + Fisher codemaps. Since the leading se-

mantic segmentation methods use multiple features to cap-

ture several aspects of the object information, i.e. in [5]

3 features and in [1] 58 features are used, we embed

Fisher codemaps into the multi-feature approach of CPMC-

O2P [5] to improve the state-of-the-art in semantic seg-

mentation. We note that the individual features of CPMC-

O2P , i.e. eSIFT, eMSIFT and eLBP, obtain 28.4, 31.0 and

21.2 mAP on the VOC 2011 val set respectively, where

Fisher codemaps score 26.9 without any optimizations for

semantic segmentation. In this experiment we use the addi-

tional training set, the same as CPMC-O2P [5], and report

the results on comp6 of the VOC 2012 challenge. Since

both the features in [5] and ℓ2 normalized Fisher codemaps

use a linear regressor, we rely on late fusion with linear

weights learned on the val set to combine them. We also

compare against the best reported methods so far [10, 22].

The numerical results are shown in Table 2. Adding Fisher

codemaps brings more precision to the image region rep-

resentations. More specifically, the semantic segmentation

accuracy is improved for 8 out of the 21 object categories

(including “background”). In Figure 3 we illustrate some of

the segmentation results. We observe that Fisher codemaps

are particularly helpful when multiple objects are present

simultaneously. We conclude that a combination of CPMC-

O2P with our ℓ2 normalized Fisher codemaps improves the

state-of-the-art in semantic segmentation.

6.2. Nonlinear kernel pooling for classification

In the second experiment we quantify the value of

codemaps with ℓ2 normalization and nonlinear kernel pool-

ing for object classification. We use the PASCAL VOC

2007 Classification dataset [11] for both bag-of-words and

Fisher vectors [23]. We sample dense SIFT descriptors ev-

ery two pixels at multiple scales. We use a visual code-

book of size 4,000 with hard assignment for the bag-of-

words and a 256 component Gaussian mixture model for the

Fisher vectors. We employ 1x1, 2x2 and 3x1 spatial pyra-

mids. Since power normalization has shown to work par-

ticularly well for Fisher vectors [23], we implement Fisher

codemaps with local Hellinger kernel pooling. For bag-of-

words the χ2 and histogram intersection kernels are the top

performers [21, 36]. We therefore implement bag-of-words

codemaps with local χ2 and histogram intersection kernel

poolings using explicit feature maps [32]. While both be-

have similarly compared to normal bag-of-words, we report

only the slightly better performing histogram intersection

kernel. The numerical results are shown in Table 3.

For both bag-of-words and Fisher, a codemap with ℓ2
normalization is mathematically equivalent to the regular ℓ2
normalized linear models. Hence the results for the linear
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Bag-of-words Fisher

Others Codemaps Others Codemaps

ℓ2 normalization 42.4 42.4 55.0 55.0

Nonlinearities 54.9 54.8 61.6 61.6

Table 3. Nonlinear kernel pooling for object classification.

Mean average precision on the PASCAL VOC 2007, following the

protocol in [23]. Both bag-of-words and Fisher codemaps with the

proposed ℓ2 normalization and nonlinear kernel pooling have the

same accuracy as the state-of-the-art. Where the best Fisher vec-

tors require 18 seconds per image for evaluating all 20 classes, our

codemaps require only 6 seconds.

classifier are identical. When we add nonlinearities to the

bag-of-words by means of a histogram intersection kernel

the results increase from 42.4 to 54.9 mAP. With histogram

intersection kernel pooling using approximate feature maps

we obtain practically the same result for codemaps: 54.8

mAP. Fisher vectors outperform the bag-of-words to a max-

imum results of 61.6 mAP using ℓ2 normalization and a

power norm nonlinearity. With Hellinger kernel pooling we

reach the same result. However, our codemaps only need a

single-resolution lattice, as compared to the multiple lattices

required by spatial pyramid kernels. Hence, we can evalu-

ate an image for all 20 classes in 6 seconds, where Fisher

vectors require 18 seconds. Since it also costs around 6 sec-

onds for Fisher vectors to test an image without any spatial

pyramids, codemaps can include full spatial pyramids with

nearly zero additional cost, but increase the mAP from 57.4

to 61.6. Moreover, in 18 seconds per image we can also em-

bed RGB-SIFT and OpponentSIFT from [30] in a colored

Fisher codemap, by simple average fusion resulting in 64.1

mAP. Codemaps with our proposed ℓ2 normalization and

nonlinear kernel pooling are as good as the state-of-the-art,

but 3x more efficient to compute.

6.3. Codemaps for segmented object retrieval

In the last experiment we take advantage of the effi-

ciency benefits of ℓ2 normalized codemaps to revisit the

old challenge of object segment retrieval [6] and we sug-

gest a new solution. We propose to apply codemaps for

segmented object retrieval in a query-by-example setting.

We use the query images from the instance search task of

the TRECVID 2012 [27] video retrieval benchmark. Note

that we do not intend to embed in the regular setting of full

image instance search, but to explore whether image regions

can be retrieved using a single query image only. We extract

normalized Fisher codemaps in the same way as the pre-

vious experiment. As lexes we use the superpixel regions

from [2].

We use the feature encoding of the segmented query as

a classifier function. For retrieval, the cosine similarity is

measured by a dot product between the ℓ2 normalized query

Figure 4. Segmented object retrieval. On the left of the gray line

we have the query image with the user-specified object of inter-

est. On the right the top two retrieved results, with the top three

estimates for the regions of interest. The white striped lines de-

note the ground truth. Although only a single query example is

used, we can identify the segmented object of interest. This is es-

pecially noteworthy for the Brooklyn Bridge (top row), where the

segmented query is viewed sideways and the retrieved segments

are photographed from a frontal view and varying distances.

and the retrieved images. We proceed on searching for those

groups of lexes that maximize this cosine similarity. For the

search, we devise a simple greedy algorithm. We first look

for those lexes most similar to the segmented query, as the

seeds. Then, we grow iteratively each of these seeds with

neighboring lexes that contribute to a larger cosine similar-

ity, until neighbors no longer contribute.

We perform the segmented object retrieval using each

image in the dataset, with its given binary mask, as a query.

Our evaluation criterion for this experiment is the intersec-

tion over union overlap between the segmented query and

our top guesses for the top two retrieved images. Similar

to [9], we select the top 1 and 3 guesses per retrieved im-

age. When we select only the top one guess, the average

overlap is 0.24 and 25% of the images pass the PASCAL

criterion that requires at least 50% overlap [11]. When we

select the top three guesses the average overlap accuracy in-

creases to 0.27, while 30% of the retrieved images pass the

PASCAL criterion. We plot the top three guesses for our

five random query images in Figure 4. Although no object

classifier is available at query time, codemaps find satisfac-

tory segments in the retrieved images using a single query

image only.
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7. Conclusions

In this paper, we propose codemaps to segment, classify

and search objects locally. Codemaps reorder the encod-

ing, pooling and classification steps of object classification.

They do so by exploiting the homomorphic properties of

the sum operator and grouping of local neighborhood scores

over lattice elements. Our first contribution is introduction

of codemaps with ℓ2 normalization for arbitrarily shaped

image regions. Depending on the number of regions ana-

lyzed the normalized codemaps are up to 56x faster than

traditional Fisher vectors. The fast normalization enables us

to reach a better than state-of-the-art performance in seman-

tic segmentation [5] by inclusion of Fisher codemaps. Our

second contribution is the embedding of nonlinearities in

the codemap decomposition by local kernel pooling. When

using the same lattice across images, it allows us to incorpo-

rate proven effective explicit and approximate feature map-

pings [32]. The contribution brings us on par with the state-

of-the-art in object classification [23], but 3x faster. Finally,

we demonstrate that the efficiency gains of codemaps fa-

cilitate object segment retrieval from a single query image.

Besides segmentation, classification and search, we antici-

pate that other computer vision challenges may profit from

codemaps as well.
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