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Abstract

Semantic road labeling is a key component of systems
that aim at assisted or even autonomous driving. Consid-
ering that such systems continuously operate in the real-
world, unforeseen conditions not represented in any con-
ceivable training procedure are likely to occur on a regular
basis. In order to equip systems with the ability to cope with
such situations, we would like to enable adaptation to such
new situations and conditions at runtime.

Existing adaptive methods for image labeling either re-
quire labeled data from the new condition or even operate
globally on a complete test set. None of this is a desirable
mode of operation for a system as described above where
new images arrive sequentially and conditions may vary.

We study the effect of changing test conditions on scene
labeling methods based on a new diverse street scene
dataset. We propose a novel approach that can operate
in such conditions and is based on a sequential Bayesian
model update in order to robustly integrate the arriving im-
ages into the adapting procedure.

1. Introduction

Driving assistance systems have been rapidly evolving

lately due to a constantly increasing interest in real-world

application as well as studies conducted in the field of com-

puter vision. An important task of such systems is road

scene labeling in order to derive the semantic structure of

the observed scenes. One of the big challenges is making

such systems robust so that they can reliably operate in a

wide range of conditions. However, capturing and train-

ing every possible condition a car can encounter throughout

years of driving seems to be an impossible task.

Recently, there has been an increased interest in ap-

proaches of domain adaptation [11, 9] in computer vision

that are able to adapt existing classifiers to new domains

and conditions. These require supervision from the target
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Figure 1: Given an initial model, trained on existing data

with groundtruth labels, our algorithm simultaneously la-

bels images as they arrive and updates the model in a robust

manner.

domain, that can not be provided by the envisioned systems

that continuously operate in the real-world. Existing adap-

tive methods [1] allow the use of machine generated labels

in order to refine the classifier and help it to adapt to chang-

ing conditions. However, they perform only global adap-

tation, for which they require access to the whole test set.

Again, this is against the idea of a continuously operating

system.

In contrast, we aim at an adaptive algorithm that is able

to perform adaptation on the fly. Therefore, this paper pro-

poses a sequential bayesian update strategy that pursues

multiple model hypothesis for semantic scene labeling. Fig-

ure 1 presents an overview of how our algorithm works. In

order to circumvent typical problems of online learning by a

“self-training” procedure, we perform model updates under

the assumption of a stationary label distribution.

The main contributions of this paper are: (1) We present

a new dataset of diverse road scenes that allows us to study

the effect of drastic changes between training and test fea-

ture statistic for semantic scene labeling. (2) We evaluate

state-of-the-art scene labeling techniques to provide an ini-

tial benchmark on this new challenge set. (3) We propose a

novel method for sequential model update in a continuous
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learning and prediction setting. It is based on a Bayesian

update under structured scene prior. The evaluation on our

new challenge dataset shows performance improvements of

up to 10% compared to non-adaptive baselines.

2. Related Work
Road scenes labeling has been studied for a long time

and is predominantly addressed as a labeling problem mod-

eled by Conditional Random Fields (CRFs) [10]. Lots of

work has gone into improving the unary potentials [4, 14, 7]

as well as the connectivity [8]. Recent advances include:

Wojek et al. [15] who used appearance-based features and

dynamic CRF, Brostow et al. [4] who used structure from

motion point clouds, Alvarez et al. [2] used appearance fea-

tures based on illuminant invariance, and Structured Class-

Labels [7] that model unaries of label patches rather than in-

dividual pixels. While exciting progress has been achieved

in this domain, these technique do not have the ability to

adapt to changing visual conditions.

Domain adaptation techniques [11, 9] can help to solve

this problem, but they require at least some sample instances

with ground truth labels from the target domain. In contrast,

we are aiming for an algorithm which is able to perform

adaptation without any possible access to ground truth la-

bels at test-time.

Alvarez et al. [1] considered the setting of using machine

generated labels at test time for street scene segmentation,

but their approach requires access to the whole test set and

the quality heavily depends on acceptance threshold param-

eter. The latter defines which new samples are accepted or

rejected based on their likelihood and it cannot be chosen

automatically or optimized for. It can be chosen by hand or

grid search and therefore suffers from being tuned to a par-

ticular dataset. In contrast, our method is targeted at dealing

with a stream of incoming images, pursues multiple model

hypothesis simultaneously and proposes a more principled

way of dealing with the acceptance threshold of new sam-

ples for the model update.

3. Sequential Model Update for Semantic Im-
age Labeling

As we aim for vision systems that continuously operate

in the real-world, unforeseen conditions not represented in

the training set are likely to occur. In order to equip systems

with the ability to cope with such situations, we would like

to enable adaptation to such new situations and conditions.

There is a large body of work on adaptive learning

method which allow the update of models at test time. How-

ever, predominantly the availability of labeled data is as-

sumed. If the new data is assumed as unlabeled, we enter

the regime of semi-supervised or transductive learning. In

such settings, the availability of the full test set is assumed,

which is not practical for any continuously operating sys-

tem.

Therefore we investigate ways how to achieve a sequen-

tial model update based on lately arrived, unlabeled data.

Such approaches are often associated with the term “self-

training”. They are troubled with effects of “model drift”,

which denote effects that occur when erroneous predictions

on the test data are used to update the model. Due to

these problems and their unprincipled nature, they can di-

verge and instead of benefiting from the new data, deterio-

rate in performance. In this section, we first describe how

such “self-training” method are typically formulated, then

describe how to exploit scene priors and finally propose a

new method that improves on “self-training” by a Bayesian

model update.

3.1. Naı̈ve Model Update

Typical self-training approaches are based on a two step

procedure. First, a lately arrived batch of images is labeled

using the current model. Second, after an optional threshold

on a confidence rating, these samples are used to update/re-

train the model. In more detail, we get an output probability

distribution P (x(i,j)) from our classifier for each pixel (i, j)
and the predicted class-label for it

c∗ = argmax
c∈Y

P (x(i,j) = c). (1)

Then, as in such setting there is no way of checking whether

the given labeling is correct or not, we take features of only

those pixels, for which the following holds

P (x(i,j) = c∗) > λ, (2)

where λ is a acceptance threshold parameter. High proba-

bility P (x(i,j) = c∗) should indicate high confidence of the

classifier in the predicted label. This is a completely heuris-

tic approach, as the classification of the test data is only an

approximation to the un-accessible groundtruth. The pre-

viously described problems of model drift stem from this

approximation.

3.2. Model Update under Scene Prior

It was mentioned in the previous section, that taking

new samples with the predicted labels which have high

confidence is not necessarily a reliable way of updating

the model due to inaccuracies in the intermediate models.

While we want to be robust w.r.t. changes in the feature

distribution, stationarity of the label distribution is a milder

assumptions in many scenarios. We adopt ideas from J. Al-

varez et al. [1] who employ a pixel-wise, normalized class-

histogram on the off-line data as a prior distribution to

weight the output probability distribution of the classifier

at testing time.
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In detail, we compute histogram for each pixel and after

per-pixel L1-normalization we get a prior P
(i,j)
pr for each

pixel (i, j), i = 1, . . . ,Wpr, j = 1, . . . , Hpr. In our ex-

periments images in the testing dataset all have various di-

mensions, so we perform nearest-neighbor sampling from

the prior distribution P
(i,j)
pr . Then at testing time output

probability distribution P (x(i,j)) for all pixels (i, j), i =
1, . . . ,W, j = 1, . . . , H from our classifier for an image

with dimensions W × H is element-wised multiplied with

the corresponding prior

P̃ (x(i,j)) ∝ P (x(i,j))P
(�iHpr

H �,�j Wpr
W �)

pr . (3)

This is used for accepting or rejecting new training exam-

ples on a per-pixel-basis

P̃ (x(i,j) = c∗) > λ, (4)

where c∗ is given by (1) and λ is some predefined thresh-

old parameter. We take the corresponding pixel’s features

together with the predicted label c∗ as a new sample if (4)

holds.

3.3. Sequential Bayesian Model Update under
Structured Scene Prior

We propose a new model to leverage unlabeled data for a

sequential model update for scene labeling. Our approach is

based on a Bayesian model update. We maintain a popula-

tion of models (particles) that approximate the distribution

over the model-space p(ht|Lt), instead of relying on a sin-

gle model, as in the previous formulations. The required in-

tegration over the model-space is solved by a Monte-Carlo

method – just like in Condensation and Particle Filters that

are well known from tracking applications [6, 5]. Conse-

quently, scene labeling at test time will be performed by

marginalization over the model distribution

p(X|Lt) =

∫
p(X|ht)p(ht|Lt) dht, (5)

where X is the labeling of a test image for which we want

to do prediction.

While the above-mentioned tracking formulations have

a measurement step that evaluates image evidence, we mea-

sure the compatibility with the scene prior S. This is again

based on the assumption of a stationary label distribution

P
(i,j)
pr as for the previous method.

Bayesian Model Update We are interested in modeling

an evolving target distribution over models in order to ac-

count for the uncertainty in the unobserved scene labels.

Therefore, we model the unobserved scene labels lt of the

unlabeled data ut at time step t as a latent variable. Rather

����

l���

��

l�

����

l���

��

l�

���� �� ������

��

	

Figure 2: Bayesian network for the proposed model. Adap-

tation is done at discrete time-steps t. ht is a set of model

hypothesis at time-set t (unobserved), lt is a set of unknown

labelings (unobserved), ut denotes the set of unlabeled raw

images (image features) at time-step t (observed), and S is a

statical parameter, an average labeling over the training set.

than sticking to a single model hypothesis, we seek to

model a distribution over model hypothesis ht. Therefore

we update a distribution over model hypothesis given labels

p(ht|Lt). Here Lt = {l0, l1, . . . , lt−1, lt}.

We describe the incorporation of the unlabeled examples

in a Bayesian framework by integrating over all model hy-

pothesis

p(ht|Lt−1) =

∫
p(ht|ht−1, ut)p(ht−1|Lt−1) dht−1. (6)

In the measurement step, we apply the Bayes’ rule in

order to get the updated distribution over model hypothesis

p(ht|Lt) =
p(lt|ht−1, S)p(ht|Lt−1)

p(lt|Lt−1)
, (7)

with

p(lt|ht−1, S) = p(lt|ht−1)p(lt|S), (8)

where p(lt|ht−1) is the probability of a certain scene label-

ing prediction given a model hypothesis ht−1 and p(lt|S)
is a scene labeling prior. Figure 2 gives an overview of our

model.

Sampling We perform inference with a Monte-Carlo

approach [6]. At each time step the model distribution

p(ht|Lt) is represented by a set of particles s
(N)
t with

weights π
(N)
t . Next, the particles are propagated to the next

time step via p(ht|ht−1, ut) that takes into account the ex-

isting models and the unlabeled data. In traditional tracking

application this transition is modeled with a deterministic

part and a stochastic component. In our setting, we propose

to do model propagation by randomly choosing a subset of

images which are provided to a particular classifier to re-

train as well as picking a randomized acceptance threshold

λ per particle. The benefits are twofold. First, a diverse set
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of models is generated for the next iteration. Second, pa-

rameters like the acceptance thresholds are dealt with within

the model and no hard choices have to be made.

In summary, our particle filter over model space works

as follows. For each particle i out of N :

1. Pick a particle sit from s
(N)
t , which represents

p(ht|Lt), according to the weights π
(N)
t

2. Sub-sample set of unlabeled images ut to ût

3. Predict labels l̂t = argmaxl p(l|ht) for subset ût

4. Accept or reject samples based on some threshold λ

5. Retrain model using (ût, l̂t) and Lt−1

Traditional tracking approaches would now follow up

with a measurement in order to update the weights π
(N)
t .

Similarly, we update the weight π
(N)
t of each sample

(model hypothesis) according to (7). In this equation

p(ht|Lt−1) is the distribution represented by our particles

after the propagation step from above and p(lt|ht−1, S) is

the product of the likelihood of the labeling times the likeli-

hood of the labeling given the scene labeling prior. We don’t

compute the denominator - but rather directly normalize the

weights of the particles π
(N)
t to sum to 1.

Implementation details It is important to note, that the

update of weights happens at the next time step. We have to

do this in order to get a faithful estimation of performance

of each of the retrained particles on the same data, which

was not in turn used in the retraining of any of the parti-

cles. In our implementation we pick the acceptance thresh-

old randomly from the interval 1/3 to 0.9. In all our ex-

periments we use 16 particles – each being a Random For-

est classifier. In fact, Figure 3 shows that already a small

number of particles allows to get considerable improve-

ments. In each step t we process a batch of 10 images in

order to pick a subset as described in the sampling proce-

dure. For the Naı̈ve adaptive approach we set the accep-

tance thresholding parameter λ = 0.8. and for the Model

Update under Scene Prior we set λ = 0.5. These are the

best performing parameters we found for those two base-

lines. Code and the new dataset are available on the follow-

ing website: https://www.d2.mpi-inf.mpg.de/
sequential-bayesian-update.

4. Diverse Road Scenes Dataset
In order to study the problem of adaptation we need a

dataset, which exhibits considerable amount of appearance

variation between the training and test set. Typical road

scene datasets like [15, 2] (Figure 4, first column) already

exhibits some visually difficult situations like changes in
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Figure 3: Dependency of average class error on the number

of tracking particles.

object appearances due to motion blur effect, deep shad-

ows which appear and disappear suddenly, changes in light-

ning conditions like over- or under-saturated regions, but

the overall statistics stays similar between training and test.

Therefore, we have collected a new dataset which ex-

hibits much richer appearance variation. In order to get the

diversity we are aiming for, we turned to Internet resources.

We searched over the Internet, and particularly considered

Flickr R©, looking for images depicting roads mostly in con-

ditions which we called “autumn” and “winter” – weather

conditions that are typically avoided in existing datasets.

We used the search engine of Flickr R© and used tags “dirty

roads”, “autumn roads”, “roads with mud”, “winter roads”.

This resulted in a collection of 220 images, about half of

which represent roads in autumn conditions and another

half – roads in winter conditions. We performed pixel-wise

hand labeling of the gathered images into three classes: road

(blue), sky (red), and background (green).

Figure 4 shows examples from each of the “seasons” in

our dataset. The dataset expose a much stronger appearance

variation than previous datasets. Typical challenges include

roads covered in autumn leaves or snow as well as different

types of roads such as dirt and gravel roads and even images

taken at night, although we leave out such issues like bad

lighting, low contrast, or rain.

5. Experimental Results

In our experiments we establish a baseline on our new di-

verse road scene dataset and compare different non-adaptive

techniques for scene segmentation that have different fea-

tures to increase robustness. Then we evaluate our novel

sequential Bayesian update scheme and compare it to dif-

ferent baselines and state-of-the-art in adaptive scene seg-

mentation [1].

Setup and features In our implementations we employed

a Random Forest [3] classifier consisting of 10 trees each

having depth of at most 15 with 20% bagging of the training
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Road Scenes [15] New Diverse Road Scene Dataset

Figure 4: First column shows examples of road scene dataset from [15]. Other columns show examples of the new diverse

road scene dataset exhibiting very different appearances and a wider range of conditions.

Method
Error, %

Road Background Sky Average

Random Forest 43.8 10.5 29.1 27.7

Random Forest+FC-CRF 40.8 11.0 22.2 24.7
Structured class-labels 38.6 11.1 33.1 27.6

Table 2: Comparison of different non-adaptive techniques of enhancing labelings. Bold font highlights the best numbers.

Test set
Fully connected CRF error, %

Road Background Sky Average

Old 0.7 2.2 2.7 1.9

New 52.7 6.5 35 31.4

Table 1: Comparison of Krähenbühl et al. [8] semantic im-

age labeling algorithm on the old and the new test test.

set, i.e. each tree sees at most 20% of the training set to

decrease correlation among different trees. This classifier

has good accuracy [14], is robust to noisy labels, and its

update can be parallelized [13] and be very efficient in terms

or running time [12].

Unless stated otherwise, we used the training set

from [15] for training (Figure 4, first column) and

performed testing or adaptation on the new test set.

Groundtruth annotation of the test set is not used in any way,

other than for computing error rates. If not noted otherwise,

we employ the features from [15]. The resulting feature

vector consists of 194 values including: first 16 coefficients

of the Walsh-Hadamard transform, grid point’s coordinates

within the image, raw color features. The features are ex-

tracted at multiple scales from all channels of the input im-

age in CIE-Lab color space. As a preprocessing step, a and

b channels are normalized by means of gray world assump-

tion to cope with varying color appearance. The L channel

is mean-variance normalized to fit a Gaussian distribution

with a fixed mean to cope with global lighting variations.

Non-adaptive methods In order to show that non-

adaptive methods have a limited capability of generalizing

to a different and strongly varying feature distribution as

presented in our new dataset, we took one of the state-of-

the-art methods for semantic image labeling of Krähenbühl

et al. [8], and trained it on the training set and tested on both

the old and the new test set (Table 1). The old test set has

a similar appearance as the training set (Figure 4, first col-

umn), so the resulting numbers are very strong. But when

we test on the new test set, the method shows strong accu-

racy degradations caused by the changed feature distribu-
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tion. Particularly, the road recognition rate gets more than

50 times worse, because background and sky have more or

less similar appearance as in the training set, while appear-

ance of the road usually does not resemble the one in the

training set.

We have also tried a number of algorithms, which can

help non-adaptive methods to perform better in situations

when appearance changes considerably by imposing certain

additional constrains. Table 2 shows results for: a Random

Forest with the above described features, a fully connected

CRF (FC-CRF) [8] applied on top of the Random Forest

output, and Structured Class-Labels [7]. We use Random

Forest as an initial classifier in our implementations of adap-

tive methods.

Fully connected CRF allows to enhance labeling and

make it less noisy by enforcing consistent labels of the

neighboring pixels. This method allows to get lower er-

rors for road (3%) and sky (around 7%). We used publicly

available implementation of the inference algorithm.

We also tried out our implementation of Structured

Class-Labels [7] with the same Random Forest classifier as

above. This approach takes also label statistics into account

at training time. In the presence of a stationary label statis-

tic (as it is in case for road scenes), it allows for a certain

degree of compensation for the changing feature distribu-

tion by enforcing an expected label structure for the unseen

data. In fact, it shows more than 5% improvement for the

road class, although decreasing the detection rate of the sky

class, so the average error almost doesn’t change.

Global adaptive methods Global adaptive methods con-

sider the whole test set at once and try to adapt to it. The

main restriction of such methods is that they require access

to the whole test set. In the real world setting, when new

images constantly arrive, global algorithms would have to

deal with a constantly increasing test set.

Recently, Alvarez et al. [1] proposed such an globally

adaptive scheme for road scene segmentation. Table 3 (first

row) presents resulting numbers for their original method,

which the authors kindly agreed to run on our test set. Their

method uses different features and a different training set,

but their training set also consists of road scenes represent-

ing comparable appearance with our training set. The main

algorithmic difference is that their method performs adap-

tation to the whole test set at once, while our Sequential

Bayesian Model Update performs sequential updates in a

Bayesian formulation allowing real world application, when

a fixed “test” set simply does not exist.

Their method doesn’t perform well on the new dataset,

as we think, because it is a global adaptive method and

it considers the whole test set at once and suffers from

many false positives. This gives insight to the weaknesses

of global adaptive methods in contrast to our sequential

method, which updates on small batches and can therefore

adapt to an evolving appearance distribution.

Sequential adaptive methods As initial model for this

set of experiments we use the Random Forrest model with

fully connected CRF from the non-adaptive methods pre-

sented above which showed an overall error of 24.7%. This

classifier is used as the initial point for an adaptive algo-

rithm and refined during the process of adaptation on the

test set.

Table 3 shows resulting numbers for adaptive methods

after they have processed the whole test set. The algorithms

were run 3 times and the results were averaged over. The

Naı̈ve method shows a considerable improvement of over

7% over its initial model. This method doesn’t perform any

checking of the new samples it accepts, setting λ reasonably

high should provide a good indicator that the predicted label

is likely to be true.

In order to provide another point of reference to previous

work, we compare to a sequential update by using a method

in the style of Alvarez et al. [1] as described in Section 3.2

based on our features and training set. This results in an im-

provement over the Naı̈ve (around 1.5%) approach in label-

ing the road (around 5%) and sky (around 3%). The average

error also decreases by more than 4%. This method shows

better performance, because it uses prior information to re-

weight the output of a classifier which allows to decrease

the number of false positive samples that are added into the

classifier. But still it is worth mentioning that both methods

have a considerable variance depending on the initialization

and the randomized nature of the algorithm.

We found the algorithm mentioned above to be quite sen-

sitive to the correct choice of the acceptance threshold pa-

rameter λ. In contrast, our Bayesian model picks the thresh-

old for each particle at random. Our method allows to get

even better labeling for road (around 2%) and sky (around

2%) over the Naı̈ve Model Update under Scene Prior. The

overall performance improves to 13.9%, which improves by

around 3% over the Naı̈ve Model Update and around 1.5%
over the Naı̈ve Model Update under Scene Prior. We would

also like to highlight small variance of our algorithm com-

pared to the two previous approaches.

It is interesting to note the inferior performance of our

method on the background class, which can be misleading

and can be easily explained by the following observation:

there are almost no images with the asphalt road in the new

dataset (as it is in the set of [15]), so for all other algorithms

it is always easier and safer to predict “background” due to

the class bias. Basically, for all other algorithms (both non-

and adaptive) output labelings often consisted of just back-

ground, which is undesirable. While we were interested in

treating all classes equally, so low Average error is a good

indicator, that our algorithm has improved the labeling qual-
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Update type Method
Error, %

Road Background Sky Average

global Alvarez et al. [1] 76.2 12.7 25.5 38.2

sequential

Naı̈ve 26 ±1.4 15.4±0.4 9.3±1.4 17±0.7

Naı̈ve + Scene Prior 21±2.7 18.5±0.6 6.5±0.9 15.5±1.4

Bayesian Model 19±0.6 18.3±0.6 4.5±0.4 13.9±0.3

Table 3: Comparison of different adaptive approaches after processing the whole test set (mean plus std). Bold font highlights

the best numbers.

ity.

Figure 5 shows some example of how labelings for cer-

tain images evolve as our Bayesian Model Update method

processes one batch of consequent images from the test

set after another. The last row represents a situation when

an image from the test set looks much like from the train

set, therefore our algorithm performs correct labeling in the

very beginning and does it throughout the run-time. This

shows that our algorithm is stable and does not drift. It is re-

markable how our approach can recover from initially poor

segmentation results and adapts to the new conditions. We

also show the results of the method of Alvarez et al. [1],

over which we show quantitative as well as qualitative im-

provements.

6. Conclusion

Today’s semantic scene labeling methods show good

performance if the training distribution is representative for

the test scenario. But when this feature distribution does

change, such techniques deteriorate in performance quickly.

We collected a challenging dataset of images which has

very different appearance statistic compared to the estab-

lished scene segmentation datasets. A state-of-the-art seg-

mentation algorithm by Krähenbühl et al. [8] shows up to 50

times worse recognition rate of scene classes, when tested

on the new set over a set of images with appearance similar

to the training one.

We showed that even Naı̈ve sequential model update al-

lows to benefit considerably from the new information at

test time. Although such method shows high variance of

the convergence results which depend on the initialization

as well as the choice of the acceptance threshold param-

eter. In order to cope with this challenge, we propose a

Bayesian Model Update that sequentially updates the seg-

mentation model as new data arrives. In contrast to previ-

ous algorithm, it gains robustness by maintaining a distri-

bution over models and avoids model drift by exploiting a

scene prior. The resulting method shows strong improve-

ments over state-of-the-art non-adaptive baselines as well

as recently proposed adaptive approaches.
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input evolution of labelings in our Sequential Bayesian Update groundtruth [1]

Figure 5: Example results showing the input image, evolution of the labelings through the proposed Sequential Bayesian

Update method. The last two columns show the corresponding ground truth annotation and the output of the global adaptive

method of Alvarez et al. [1]. Green color denotes background, red - sky, and blue - road.
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