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Abstract

Having a sensible prior of human pose is a vital ingredi-
ent for many computer vision applications, including track-
ing and pose estimation. While the application of global
non-parametric approaches and parametric models has led
to some success, finding the right balance in terms of flex-
ibility and tractability, as well as estimating model param-
eters from data has turned out to be challenging. In this
work, we introduce a sparse Bayesian network model of
human pose that is non-parametric with respect to the es-
timation of both its graph structure and its local distribu-
tions. We describe an efficient sampling scheme for our
model and show its tractability for the computation of ex-
act log-likelihoods. We empirically validate our approach
on the Human 3.6M dataset and demonstrate superior per-
formance to global models and parametric networks. We
further illustrate our model’s ability to represent and com-
pose poses not present in the training set (compositionality)
and describe a speed-accuracy trade-off that allows real-
time scoring of poses.

1. Introduction
Reasoning about human pose is a key ingredient in

recent successful applications of computer vision sys-

tems [20]. Accurately capturing the variability of human

pose is challenging because there is both a variation be-

tween different persons as well as a combinatorial number

of possible poses a single person can assume.

In this paper we propose a pose prior, a generative prob-

abilistic model of static human pose. Such a general pur-

pose prior model is useful in at least two ways; first, it can

synthesize realistic poses that can be used for rendering or

for generating plausible pose hypotheses, and second, in the

context of a larger pose estimation or tracking system it can

score any given pose by how a priori likely it is, serving as

a more specific regularization term.

A good pose prior must generalize to unseen poses and

persons. If it was merely reproducing poses seen in a train-

ing dataset it could never span the full variability of hu-

man pose. In order to generalize the prior must be com-
positional: it must represent the variations of parts that fre-

quently occur together and produce a pose by combining

these parts.

We achieve compositionality by factorizing the pose rep-

resentation into a Bayesian network [13]. The sparse hier-

archical structure of the network enables efficient computa-

tion of likelihoods and exact sampling. To apply a Bayesian

network on human pose data we need to specify the network

structure and conditional probability distributions along the

network and it is here that we make two novel technical

contributions. First, we enhance the representative power of

Bayesian networks by proposing non-parametric Bayesian
networks in which the conditional distributions are repre-

sented by conditional kernel density estimates. Second,

we use structure learning to obtain the network structure

by finding parts of the pose that strongly depend on each

other, leveraging non-parametric mutual information esti-

mators on continuous joint data.

Our data-driven approach is made possible by the recent

availability of a large-scale dataset of human pose, the Hu-

man 3.6M dataset [12], which captures a large variety of

poses and persons. We use this dataset to assess the gener-

alization performance of our approach and demonstrate its

good adaption to unseen test poses. Although our learned

system is efficient, some applications require direct control

of the runtime. For such scenarios we propose an approxi-

mation trade-off. With this approximation we demonstrate

real-time scoring of Kinect tracker output.

1.1. Related Work

Pose priors are most often used within pose estimation

systems and therefore some of the related works we discuss

below incorporate a likelihood term that is computed from

an observed image. Incorporating such an observation like-

lihood is possible in our model as well, but in the present

work our focus is on a generative model.

A natural idea to build a pose prior is to use the tree struc-

ture of the human skeleton as a starting point. Models that

follow the skeletal structure are called kinematic chain mod-
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els [2] and they allow us to incorporate prior beliefs about

joint angles. In [17] the authors used a multivariate Normal

distribution along the kinematic chain and estimate the pa-

rameters from motion capture data. The different choices

of possible parametrizations in terms of joint angles or rela-

tive world coordinates in a kinematic tree model give rise to

qualitatively different behaviours [10]. Despite this flexibil-

ity a kinematic tree model has clear limitations, as sharply

argued in [15]; it is unable to express the coordination of

different limbs and fails to represent global balance and

gravity constraints.

We will demonstrate that we can avoid these limitations

by using a tree model that does not correspond to the kine-

matic chain but instead is chosen to optimally approximate

the true distribution of poses. The resulting tree no longer

corresponds to a skeleton (Figure 1c and 3b) but retains all

computational advantages of a tree-structured model.

Previous works have attempted to overcome the limita-

tions of the kinematic tree model in different ways. In [3]

the authors have used a global kernel density model on hu-

man pose. This model is global and does not reflect the

combinatorial nature of human pose hence it is suitable only

for modeling specific poses. Another approach proposed

in [21] has been to add further interactions to the kine-

matic tree so that limb-limb coordination and penetration

constraints are modelled. This is satisfying as a model but

because the model now has cycles, exact inference becomes

intractable and the authors have to resort to an expensive

approximate particle belief propagation. Likewise in [27] a

structure learning heuristic is used to learn a compositional

model of pose; exact inference is again intractable and a

heuristic based on likely hypotheses is used.

Another popular way to improve over the kinematic tree

model is to add latent variables to the model. In [15] the

authors augment the kinematic tree model by a few la-

tent variables that are identified by factor analysis. The

Gaussian Process latent variable model (GPLVM) [16] has

been applied as a pose model [6]. In the GPLVM model a

low-dimensional latent space is transformed to pose space

by means of a Gaussian Process regression function. The

GPLVM model has also been extended to incorporate a tem-

poral model (GPDM) [24]. The Laplacian Eigenmap latent

variable model (LELVM) [18] improves on the GPLVM by

modeling the manifold of poses using a graph Laplacian

and by providing tractable posterior inference in the latent

space. An interesting recent model based on a large number

of latent binary variables is the implicit mixture of condi-

tional restricted Boltzmann machines (imCRBM) [23]; both

estimation and inference are again approximate. While the

global latent variable models (GPLVM and LELVM) are

flexible they do not provide compositionality. In fact, each

training pose is represented as one latent vector and they are

not combined in an intelligent way.

2. Non-parametric Bayesian Networks

In this section we introduce our non-parametric Bayesian

network model of human pose and show its tractability.

We represent a human body pose by a d-dimensional

vector whose components correspond either to angular or

xyz coordinates of n joints. Each pose thus decomposes on

the joint level, x = [x1, . . . , xn] ∈ R
d, and we model the

angle/position of joint j by a possibly multi-dimensional

random variable Xj . The vector of all variables X =
(Xj)j=1,...,n defines a high-dimensional pose distribution

q(X) whose samples we denote by
{
x(i)

}
i=1,...,N

. In prin-

ciple, we could use a global density estimation technique to

learn q. But as discussed in section 1.1, such approaches

are either prone to overfitting, lack flexibility or are compu-

tationally intractable.

In this work, we therefore take another approach and

learn a sparse and non-parametric Bayesian network. A

Bayesian network over X is a pair (p,G) where the dis-

tribution p factorizes over the directed acyclic graph G,

p (X) =

n∏
j=1

p
(
Xj

∣∣Xpa(j)

)
. (1)

The parent operator pa maps an index to the set of parental

indices w.r.t. G, [13, 1].

The specification of a Bayesian network hence consists

of two parts: The definition of a graph structure G and

the definition of local probabilistic models p
(
Xj |Xpa(j)

)
.

In the next two sections, we will introduce a fully non-

parametric approach for both components.

Our proposed model is different from an earlier pro-

posal, [11]. Their model is based on a mixture distribu-

tion over all possible networks and therefore exact likeli-

hood computation is no longer efficient.

2.1. Learning the Graph Structure

The graph structure of a Bayesian network models the

local and global (in)dependencies of a distribution. In most

cases, the object to be modeled carries some apparent struc-

ture and many approaches define G in a way that reflects

the objects intuitive dependencies. In case of the human

body, an obvious structure is the kinematic chain, i.e., a tree-

structured network with one parent per variable that fol-

lows the adjacency of joints in the body (Figure 1a). How-

ever, such a canonic representation does not necessarily

lead to optimal conditional distributions in an information-

theoretic sense.

Therefore, we take another approach and learn G from

data. Since our goal is to learn a sparse structure, we im-

pose the constraint of at most one parent per variable and

search for a sparse Bayesian network (p,G) with minimal
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(a) Kinematic chain. (b) Pairwise mutual information. (c) Chow-Liu tree. (d) Entropies.

Figure 1: In (a), we show the graph structure of the commonly used kinematic chain together with a non-parametric estimation

of mutual information (high MI in green, low MI in red). (b) shows the graph of all pairwise mutual informations and (c) the

corresponding Chow-Liu tree, i.e., the maximum spanning tree of (b). Note how the uninformative edges present in (a) are

circumvented in (c). The visualization in (d) shows a Hinton diagram of the estimated joint entropies.

Kullback-Leibler divergence to q(X), [13],

G := argmin
pa

KL

(
q(X)

∥∥∥∥∥
n∏

j=1

p
(
Xj

∣∣Xpa(j)

))
. (2)

The network minimizing this distance is known as a Chow-

Liu tree and was introduced in [4] for discrete distributions.

Given a fully connected graph G̃ over X with edge weights

wjk set equal to the mutual information MI(Xj , Xk) be-

tween Xj and Xk, the solution to (2) can be shown to be the

maximum spanning tree of G̃ (with edges directed outwards

in a consistent way) [1].1 In contrast to the kinematic chain,

a Chow-Liu tree is thus guaranteed to model those pairs of

joints that exhibit a high flow of information, independent

of their adjacency in the human body.

Here, we use a continuous variant of the Chow-Liu tree,

where reliable estimation of mutual information is a hard

problem [25]. An ad-hoc resolution is to either discretize

the variables or to make simple parametric assumptions. In-

stead, we employ a fully non-parametric approach based on

nearest neighbor distances. We first use the non-parametric

entropy estimator [14] in dj := dim(Xj) dimensions and

calculate

Ĥ(Xj) :=
dj
N

N∑
i=1

ln
∥∥∥x(i)

j − η
(i)
j

∥∥∥+ c, (3)

with the constant c = ln(N − 1) + lnVdj
+ γ. In the

equation above, η
(i)
j is the nearest neighbor of x

(i)
j , Vdj

=

πdj/2/ Γ(dj/2+1) is the volume of the dj-dimensional unit

ball, and γ ≈ 0.5772 is the Euler-Mascheroni constant. A

more general class of entropy estimators including the one

above was shown to be asymptotically unbiased and con-

sistent as N → ∞ in [8]. Using the entropy estimate we

1We omit arrows from our network visualizations and implicitly as-

sume the orientations to be directed away from the hip node.

can then estimate all pairwise mutual information values by

using the relation, [25],

wjk :=M̂I(Xj , Xk)

=Ĥ(Xj) + Ĥ(Xk)− Ĥ(Xj , Xk).
(4)

The computed mutual information is visualized in Figure 1b

and we can now solve for the Chow-Liu tree [4] by finding

the maximum spanning tree [5] to obtain our final result G,

shown in Figure 1c.

2.2. Learning the Local Models

Once the network structure is fixed, we need to learn

the local conditional distributions p (Xj | pa (Xj)) from

training data. Since we can estimate them indepen-

dently, we focus on one of them to keep the notation un-

cluttered: Let p(X|Y ) be one specific local distribution

and {(x(i), y(i))}i=1,...,N observations of the corresponding

joint distribution p(X,Y ). Our approach will be to compute

a conditional kernel density estimate (CKDE) in which we

can condition on given values Y = y as needed. An uncon-

ditional kernel density estimate is given by

p (x, y) :=
1

N |B|
N∑
i=1

k
(
B−1

(
(x, y)− (x(i), y(i))

))
,

(5)

where B is the bandwidth matrix and k is the kernel func-
tion. We use Scott’s rule [19] to estimate B from the

sample covariance. The choice of kernel is only of mi-

nor importance, so we use an isotropic Gaussian kernel

k = N
(
�0, I

)
. Equation (5) in this case simplifies to

p (x, y) :=
1

N

N∑
i=1

N
(
(x, y)

∣∣∣ (x(i), y(i)), BB�
)

(5a)
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and the conditional distribution for a given value of y is

p (x|y) = p (x, y)∫
x
p (x, y) dx

. (6)

The evidence term in the denominator requires integration

over all non-evident dimensions, which has the analytic so-

lution

∫
x

p (x, y) dx =
1

N

N∑
i=1

N
(
y
∣∣∣ y(i), (BB�)yy

)
, (6a)

where (BB�)yy denotes the part of BB� describing the

covariance of y. In summary, we can compute the CKDE

density p(x|y) efficiently and at the same asymptotic com-

plexity as the joint KDE density p(x, y).

2.3. Log-likelihoods and Sampling

There are two important operations to perform in appli-

cations of our model as a pose prior: computing the likeli-
hood of a given pose and sampling a pose from the prior.

Both operations are efficient as we now show.

Exact log-likelihoods. Given a Chow-Liu/CKDE net-

work with n variables, the log-likelihood log p (x) of a new

observation x ∈ R
d is

n∑
j=1

(
log p

(
xj,pa(j)

)− log

∫
xj

p
(
xj,pa(j)

)
dxj

)
. (7)

Both parts of the j’th summand have a closed-form solution.

Note that the global log-likelihood is composed of many

local log-likelihoods, so that we can distinguish likely from

unlikely angles/positions on the joint level. This allows a

detailed analysis of a pose not possible in global methods.

Sampling. Thanks to the closed-form solution for a con-

ditional Gaussian, we can employ standard ancestral sam-

pling [13], i.e, we find a topological ordering τ for the net-

work structure and draw samples from p(Xτ(j)|Xpa(τ(j))),
for j = 1, . . . , n. The only technicality we need to take care

of is a conditional reweighting operation of the Gaussian

components: A standard kernel density estimate of the form

(5a) can be interpreted as a Gaussian mixture with uniform

weights and sampling boils down to sampling from a uni-

formly selected component. In ancestral sampling, on the

other hand, we have to deal with conditional distributions.

Splitting up the enumerator in (6) shows that we again get a

Gaussian mixture model,

p (x | y) =
N∑
i=1

wi · N
(
x
∣∣∣ μ(i)

y ,Σy

)
, (8)

but this time with non-uniform weights,

wi =
N (

y
∣∣ y(i), (BB�)yy

)
∑N

i=1N
(
y
∣∣ y(i), (BB�)yy

) . (9)

Here, μ
(i)
y ,Σy are the mean and covariance of the i’th Gaus-

sian conditioned on y. Sampling from a local distribution

thus consists of two steps: We first select a Gaussian com-

ponent according to the discrete distribution induced by the

weights and then draw a sample from the selected Gaussian

conditioned on y.

We see that despite its flexibility the computation in our

model is efficient, exact, and simple to implement. We now

validate our model experimentally.

3. Experiments
Our experiments are based on two different datasets: the

Human 3.6M (H36M) dataset [12] for large-scale experi-

ments and our own Kinect recordings to showcase more

specific aspects of our model. For the H36M experiments

we use all 7 actors for whom pose data are available and

employ a leave-one-person-out scheme: We use all 30 cat-

egories of actors 5, 6, 7, 8, 9, 11 and randomly subsample

15% of all frames without replacement to obtain more in-

dependent samples; this constitutes our training set (≈ 70k
poses). We use all frames of actor 1 to construct the test set

(≈ 62k poses). The H36M skeleton includes some spuri-

ous joints that we delete, which results in the same 20 joints

present in the Kinect skeleton [20]. All frames are given

in relative xyz coordinates centered at the hip node, unless

otherwise stated.

3.1. Pose Model

We start by learning a pose model on the H36M training

set according to the techniques introduced in section 2. The

resulting network structure is displayed in Figure 1c and it

is worth noting some of its properties: 1. Three edges con-

nect the left half of the body with the right half, thereby en-

forcing coherent positions for the feet, hips and shoulders.

Note that this does not apply to the kinematic chain. 2. The

uninformative pairs of nodes present in the kinematic chain

(red edges in Figure 1a) are circumvented in the Chow-Liu

tree, thus guaranteeing, from an information-theoretic point

of view, optimal conditional distributions under the given

constraint of a sparse structure. 3. Subgraphs containing

joints with high entropies (Figure 1d), such as the arms and

legs, largely follow the kinematic chain. This confirms the

intuitive belief that joints with high uncertainty should be

conditioned on nearby joints, as they provide the maximum

information about a joints position in this case.

One of the advantages of a generative model is that we

can immediately check hypotheses, e.g., by drawing sam-

ples from the model. Using our Matlab implementation
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“Standing” “Sitting” 

“Kneeing / Lying” 

Figure 2: We show samples drawn from our non-parametric pose prior to give an impression of sample quality. All samples

are untouched and were generated from a single Chow-Liu/CKDE model.

of the sampling scheme introduced in section 2.3, we are

able to generate approximately 10 samples/second. Figure

2 shows a selection of them. Note the variety of poses and

their natural appearance, confirming that our model can in-

deed capture, represent and generate many of the aspects

unique to human pose.

3.2. Comparison of Hold-out Log-likelihoods

In this experiment, we evaluate how well our model fits

to unseen test poses and how it compares to competing

methods. One way to do this in an unsupervised setting is

to compute expected hold-out log-likelihoods (ELL) on the

H36M test set. As described in section 2, our model con-

sists of two components: estimation of the graph structure

(non-parametric Chow-Liu tree) and estimation of the local

distributions (conditional kernel density estimation).

We compare this approach to alternatives for these two

aspects on training and test data. More specifically, we con-

sider two different ways of estimating the local models and

six different graph structures. The options for the condi-

tional distributions are our CKDE approach and a Gaussian

linear (GL) network [13]. Cases of badly conditioned co-

variance matrices are handled by enforcing a lower bound

on the eigenvalues.

For the graph structures we consider a global graph with

only a single node, a fully independent graph with n nodes

but no edges, the kinematic chain, a higher-order kinematic

chain, and two variants of the Chow-Liu tree, one with para-

metric and one with non-parametric estimation of mutual

information. In the higher-order kinematic chain each joint

is additionally conditioned on its parents’ parents. Paramet-

ric MI-estimation is based on the entropy of fitted Gaus-

sians. We use parametric MI-estimation for the paramet-

ric GL network and our distance-based non-parametric MI-
estimation for the non-parametric CKDE network.

The network approaches are complemented by a com-

parison to the global GPLVM [16], where we employ the

popular FITC approximation [22] together with subsam-

pling to achieve tractability. We use a reference implemen-

Table 1: Expected log-likelihoods of GL- and CKDE net-

works for different graph structures and a comparison to

global methods.

Method Graph structure Training Testing

Gaussian Global −266.84 −271.15
KDE Global −239.61 −263.77
GPLVM* Global −327.85 −341.89

Independent −352.80 −345.94
Gaussian linear Kinematic chain (order 1) −311.54 −310.98
network Kinematic chain (order 2) −305.54 −307.88

Chow-Liu tree −283.82 −284.03

CKDE network

Independent −322.64 −322.25
Kinematic chain (order 1) −260.04 −270.52
Kinematic chain (order 2) −247.35 −263.83
Chow-Liu tree (ours) −242.24 −254.98

*25% subsampling; FITC

tation2 and consider embeddings in 1, 3, and 5 latent dimen-

sions, reporting the best ELL.

Results. Our results are shown in Table 1. Among the

global methods, the test ELL of a KDE (−264) outperforms

both a global Gaussian (−271) and the GPLVM (−342with

5 latent dim.), despite a spread between training and test-

ing due to overfitting. Although the GPLVM performance

could probably be further improved, either by developing

better approximations or fine-tuning of the parameters, ap-

plication of the GPLVM to such a large dataset is an inher-

ently approximate procedure involving a non-convex opti-

misation problem prone to initialisation and local minima,

which is presumably the cause for its poor performance.

Let us now turn to the network approaches and analyze

their graph structures. Not surprisingly, a network model-

ing the joints independently performs worst, with test ELLs

of −346 (GL) and −322 (CKDE). Using graph structures

based on the kinematic chain increases the test performance

2http://staffwww.dcs.sheffield.ac.uk/people/
N.Lawrence/fgplvm/
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Training samples Samples from model 

“wave both” 

��

��
“neutral”  

“wave left”  

��
“wave right” 

����
“wave right”: 50%  

“wave left”: 50%  

��

(a) Compositionality.

Inferred network 

(b) Conditional independencies.

Figure 3: In (a), we show samples from the “wave” training set (left, 2 pose classes) and samples drawn from the learned

model (right, 4 pose classes). Our model has learned two poses not available in the training set: ”wave both” and ”neutral”.

In (b), we show the inferred network structure. Note that the arms are conditionally independent and can thus be freely

combined, whereas the legs are dependent on each other.

to −311 (GL) and −271 (CKDE). Higher-order kinematic

chains improve on the results by another +6.7 (CKDE) and

+3.1 (GL) nats. The best graph structure in this comparison

are Chow-Liu trees. Their usage results in a big leap in per-

formance, increasing the results again by +8.9 nats in case

of the CKDE network and +23.9 nats in case of the GL net-

work. The direct comparison of CKDE- to GL networks is

unambiguous: CKDE networks perform consistently better,

independent of the graph structure. The combination Chow-

Liu/CKDE also performs better than all 3 global methods,

making it the best performing approach in this comparison.

3.3. Compositionality

One of the major disadvantages of global non-parametric

models is their susceptibility to overfitting; they basically

represent and reproduce the training samples. On the other

hand, parametric networks based on the kinematic chain are

too flexible in the sense that they allow arbitrary combina-

tions of the position of different limbs. This is because dif-

ferent limbs are conditionally independent once their low-

est common ancestor w.r.t. the hierarchical tree structure is

observed. This is the case, for example, when performing

ancestral sampling. At the same time, Gaussian linear net-

works are not flexible enough in the sense that their local

distributions cannot cope with multimodality, which is es-

sential when modeling human pose.

Ideally, we would like to have flexibility and composi-

tionality only where it is adequate and needed. In order to

check this property under controlled conditions, we record

two different gestures in front of a Kinect: either waving

with the left hand only or waving with the right hand only

(1000 frames each; Figure 3a (left)). We then learn a pose

model according to section 2, draw 5000 samples from it

and cluster them into 4 clusters using k-means.

Results. The non-parametrically learned Chow-Liu tree

of the model is shown in Figure 3b. Since the arms do not

share much information in our example, they are automati-

cally modeled conditionally independent of each other, i.e.,

we can freely combine their positions. In contrast to that,

the position of the right leg tells us a lot about the posi-

tion of the left leg, since both are parallel to one another

throughout the sequence. Consequently, the joint positions

of the latter are all modeled conditional on the correspond-

ing joint positions of the former.

The samples generated by this model (Figure 3a (right))

fall into 4 distinct pose classes. Two of the four clus-

ters (coloured in purple and red) correspond to poses also

present in the training set. The other two clusters (coloured

in blue and green) represent newly learned poses that do not

appear in the training data: a neutral pose (both hands low-

ered) and a pose with both hands raised. The key here is that

we do have samples with the left and right hand raised, just

never in the same frame. During the sampling process, our

model combines the available data to form a new sample

that possibly does not resemble any training sample.

In summary, our formulation allows to freely combine

substructures, but only if they do not share a lot of informa-

tion. Joint positions that heavily depend on each other, for

instance due to physical constraints, will always be modeled

conditionally on each other. Examples include positions of

the feet (gravity) and the hips (rigidity), i.e., we get compo-

sitionality exactly where we need it.
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Figure 4: Approximation trade-off and real-time inference. In (a), we show the mean accuracy and speed of all approximate

local log-likelihoods as a function of the number of core clusters. For comparison we also include the runtime for the com-

putation of exact local log-likelihoods. The black line illustrates the situation for a tolerable ε-error of 10−2, corresponding

to 4 core clusters. The reduction in computational cost of 82% is big enough to allow real-time applications, shown in (b).

4. Real-time Scoring

Time is a critical factor in applications such as tracking

or pose estimation. Our presentation in section 2 has shown

that the computation of exact log-likelihoods in our model

is tractable, i.e., we do not have to resort to MCMC or sim-

ilar methods. However, for large datasets the number N
of terms in the summations (5a) and (6a) will also become

large, resulting in longer runtime. We can speed up infer-

ence by considering approximate log-likelihoods. There ex-

ist many fast methods for the evaluation of kernel density

estimates, but the popular approaches are either not suited

for high-dimensional data [7], do not lead to a speed-up for

sequential data [26] or are hard to implement due to their

complexity [9]. Here, we want to propose a simple alterna-

tive to these complex methods that will be sufficient for our

purpose. Our experiments will show that the additional de-

crease in runtime is sufficient to allow the application of our

approach in real-time, without having to sacrifice accuracy.

At training time, we cluster all training points into clus-

ters C1, . . . , Ck using k-means and build a kd-tree for the

cluster centers. At test time, we partition the clusters into a

set of core clusters Ce and a set of approximate clusters Ca

based on the following scheme: Given a test pose x ∈ R
d,

we use the kd-tree to determine the clusters whose centers

lie closest to x. These make up the core clusters. All re-

maining clusters are considered approximate clusters. We

then evaluate all training points within the core clusters ex-

actly. All the other clusters are evaluated by multiplying the

log-likelihood w.r.t. the center with the size of the cluster.

The sum in equation (5) thus decomposes into an exact and

an approximate sum,

p (x) =
Se + Sa

N |B| , (10)

with

Se =
∑
C∈Ce

∑
j∈C

κ
(
B−1

(
x− x(j)

))
, (11)

Sa =
∑

C∈Ca

|C|κ (
B−1

(
x− C

))
, (12)

where C and |C| denote the center and size of cluster C,

respectively. In this formulation, those training points con-

tributing most to the log-likelihood are evaluated exactly

and those farther away are approximated by their corre-

sponding cluster centers. As the number of core clusters

approaches the total number of clusters (or as the num-

ber of total clusters approaches the total number of train-

ing points), our approximate method converges to the exact

log-likelihood.

Since the contribution of a training point to the log-

likelihood decreases exponentially with its distance from

the test point, a few core clusters should suffice to achieve

a high level of accuracy. In order to prove this point, we

cluster the entire Human 3.6M training set into 50 clus-

ters, evaluate approximate log-likelihoods for 100 randomly

sampled points from the Human 3.6M test set and compare

them to their exact counterparts. Figure 4a shows the results

in terms of accuracy and speed for a local log-likelihood: If

an absolute error of 10−2 nats is acceptable, we need as

few as 4 core clusters and the runtime is 1.5ms per frame.

This compares to 8.4ms for the computation of an exact lo-

cal log-likelihood. Adding more core clusters further de-

creases the error, while the runtime increases sublinearly.

As the evaluation of a log-likelihood for a Bayesian net-

work in our case requires computation of 2n = 40 local

log-likelihoods (see equation (7)), we achieve a total speed

of approx. 61ms per frame (16 fps) on a dataset containing

about 70, 000 training points.
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This work is accompanied by an open source Matlab

suite for Kinect data.3 Our framework supports recording,

training and real-time evaluation of Kinect poses (Figure

4b), making the creation of datasets and integration of the

proposed model as part of a larger pipeline very easy.

5. Conclusion

We have introduced a fully non-parametric Bayesian net-

work model of human pose. In order to learn the network

structure, we have used a continuous variant of the Chow-

Liu tree, in which we have obtained the required estimates

of mutual information by means of a non-parametric en-

tropy estimator. We have shown that our model allows for

efficient sampling and calculation of exact log-likelihoods.

In our experiments, we have demonstrated that the pro-

posed model achieves a higher expected log-likelihood on

the Human 3.6M test set than the 3 global baselines and a

Gaussian linear network. The comparison of different graph

structures has shown that our non-parametric approach to

structure learning outperforms the widely used kinematic

chain and also a higher-order variant thereof by a significant

margin. We have further illustrated the capabilities of our

model to generalize to new poses not present in the training

data (compositionality). Finally, we have introduced a fast

and accurate method for the computation of approximate

log-likelihoods, allowing the application of our approach in

real-time.

We expect widespread applicability in domains

such as tracking, pose estimation and pose denoising.
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