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Abstract

In contrast to the current motion segmentation paradigm
that assumes independence between the motion subspaces,
we approach the motion segmentation problem by seeking
the parsimonious basis set that can represent the data. Our
formulation explicitly looks for the overlap between sub-
spaces in order to achieve a minimal basis representation.
This parsimonious basis set is important for the perfor-
mance of our model selection scheme because the sharing
of basis results in savings of model complexity cost. We
propose the use of affinity propagation based method to de-
termine the number of motion. The key lies in the incorpo-
ration of a global cost model into the factor graph, serving
the role of model complexity. The introduction of this global
cost model requires additional message update in the factor
graph. We derive an efficient update for the new messages
associated with this global cost model. An important step
in the use of affinity propagation is the subspace hypotheses
generation. We use the row-sparse convex proxy solution as
an initialization strategy. We further encourage the selec-
tion of subspace hypotheses with shared basis by integrat-
ing a discount scheme that lowers the factor graph facility
cost based on shared basis. We verified the model selection
and classification performance of our proposed method on
both the original Hopkins 155 dataset and the more bal-
anced Hopkins 380 dataset.

1. Introduction

We motivate our work by examining the use of spec-

tral clustering[20][25][4] in motion segmentation. Spec-

tral clustering has proven to be an effective and ro-

bust clustering method in the motion segmentation liter-

ature. Sparse Subspace Clustering(SSC)[6], Low Rank

Representation(LRR)[18] and Linear Subspace Spectral

Clustering(LSSC)[13] use spectral clustering for motion

segmentation to achieve excellent results. These methods

assume known number of motion when using spectral clus-

tering. Recently, Ordered Residual Kernel(ORK)[3] and

LRR extend the use of spectral clustering for model selec-

tion, based on the number of zero singular values in the nor-

malized Laplacian. In the presence of noise, this is chal-

lenging because the singular values of the Laplacian are

seldom zero. In fact, the gap between the supposed zero

singular values and the non-zero singular values is often ill-

defined. LRR came up with a robust thresholding opera-

tor in response to this difficulty and achieved state-of-the-

art performance at 78.06%1 for the Hopkins 155 dataset,

clearly with much room for improvement. This difficulty is

better understood when we look at the limitations of spec-

tral clustering below.

The appeal of spectral clustering lies in the use of local

pairwise affinity information to derive global eigenvector

information for clustering. Even though the construction

of the affinity matrix may involve global information, the

final affinity matrix only contain local pairwise similarity

measure. For example, the nuclear norm regularization that

LRR uses is global in nature, but the final self representation

matrix describes pairwise trajectory affinity.

In [19], the fundamental limits of spectral clustering are

analyzed. The two issues raised are highly relevant in the

motion segmentation context. The first concern questions if

the local affinity information is sufficient for global cluster-

ing. It turns out that local information is insufficient when

the data consists of clusters at different scale. The second

concern calls into question the use of the first k eigenvec-

tors to find k clusters when confronted with multi-scale and

multi-density clusters.

Although these limitations were discussed in the context

of classification, they carry over to model selection as well.

Recall that model selection in spectral clustering is based

on identifying the number of zero singular values. When

the complication of multi-scale, multi-density and noise set

in, the number of zero singular values is different when the

Laplacian is examined at different scale. The difficulty of

model selection using spectral clustering can thus be under-

stood as ambiguity brought about by multi-scale and multi-

density data clusters.

In motion segmentation, multi-scale and multi-density

data clusters are very real issues that affect the performance

1The figure of 77.56% reported in [18] is based on 156 sequences
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of spectral clustering based methods. Compared to the fore-

ground motion, the background motion tends to contain fea-

ture points that span a larger extent of their subspace(due

to the greater range of depth and (x, y) location of these

points). This leads to multi-scale and multi-density data

clusters.

In view of the limitations of spectral clustering, we adopt

an alternative paradigm for model selection and segmen-

tation based on global trajectory-subspace distance infor-

mation. Instead of reducing it to local trajectory-trajectory

affinity representation, we generate a set of subspace hy-

potheses and compute the distance between the trajectories

and the subspace hypothesis. With this measure of affin-

ity to subspace hypotheses, model selection is based on the

affinity propagation(AP)[8] framework with a judiciously

chosen global cost function.

Clearly, there are several motion segmentation

works[15][3][2] that are based on trajectory-subspace

distance information, but not many of them develop their

work for model selection. Kernel Optimization(KO)[2]

is a notable exception in that it achieves a good model

selection performance. However, KO’s random subspace

hypotheses generation strategy is different from our work.

The subsequent treatment of these subspace hypotheses

is also different from our approach. KO merges these

subspace hypotheses in a greedy manner, choosing the pair

with the lowest kernel-target alignment at each step.

In section 3, we demonstrate how a minimal basis sub-

space hypotheses set can be generated by requiring the rep-

resentation matrix to be jointly row sparse. Due to the con-

vex relaxation artefact, the number of subspace hypotheses

is far greater than the true number of subspaces. In section

4, we show how to incorporate a general model complexity

term into the AP framework naturally and efficiently. This

model complexity term is important in ensuring that the the

right number of subspaces from the hypotheses set are cho-

sen for representation. Although the subspace hypotheses

set contains many overlapping subspaces, we still need to

ensure the selection of those overlapping subspaces by in-

troducing the facility cost discount scheme. We describe

this discount scheme in the same section. In section 5, we

verify our proposed work on the original and augmented

Hopkins dataset, demonstrating a model selection perfor-

mance significantly better than the state-of-the-art.

Our paper contribution is three fold. Our first contribu-

tion is in the formulation and realization of the minimal ba-

sis approach to model selection. Our method is significantly

different from the current motion segmentation paradigm

that uses spectral clustering. We demonstrate unequivocally

the model selection strength of our proposed method.

The second contribution is the recognition, handling and

leveraging of possible subspace dependencies. Whereas

every current algorithm assumes subspace independence,

treating the overlap as noise, our proposed work properly

accounts for subspace dependencies by offering facility cost

discount for shared basis. The use of these shared basis sub-

space for representation has important application in areas

such as articulated motion and non-rigid structure from mo-

tion.

Lastly, we show how the introduction of a global facility

cost function to the AP framework enables model selection

with good performance while maintaining efficiency.

2. Previous work
Affinity propagation(AP) provides an interesting com-

parison with spectral clustering. In affinity propagation

[8][11], the goal is to look for representative data points

called exemplars and cluster the rest of the data points based

on similarity to the exemplars. The number of clusters is

not specified in AP. Instead, the number of clusters is con-

trolled by the preference value assigned to each data point.

The preference value can be regarded as the importance of

a data in terms of becoming an exemplar. If a data point

has a high preference value, then it has a better chance of

becoming an exemplar. As an illustration, suppose the pref-

erence value is common across all the data points. If this

common preference value is large, a larger number of clus-

ters will emerge. Vice versa, a smaller common preference

value will result in a smaller number of clusters. The affin-

ity propagation clustering method has been applied to image

categorization[5] and extended to motion segmentation in

FLoSS(Facility Location for Subspace Segmentation)[15]

and UFLP(Uncapacitated Facility Location Problem)[14]).

In FLoSS and UFLP, motion segmentation is formu-

lated as an instance of the facility location(FL) problem.

FL is known to be NP hard and hence difficult to solve.

An approximate solution for FL can be found by perform-

ing maximum-a-posteri(MAP) inference in a probabilis-

tic graphical model. In FLoSS, inference is based on the

max-product belief propagation(MPBP) algorithm that in-

volves local message passing. MPBP is known to con-

verge to the MAP values of the variables on cycle-free

graph. In addition to MPBP, UFLP proposed a linear pro-

gramming(LP) relaxation based message passing algorithm,

known as max-product linear programming(MPLP). The

solution from MPLP can be augmented with a greedy al-

gorithm that constructs a solution whose cost is at most

three times the optimal for metric UFLP instances, where

the customer-facility distance measure satisfies the triangle

inequality, thus providing a performance guarantee. On a

related note, [16] formulated two-view motion segmenta-

tion as a facility location problem and solve it as a LP prob-

lem by relaxing the original facility location problem.

[11] expands the scope of FL by considering Capaci-

tated Facility Location(CFL). Each facility now has an up-

per bound on the number of customers it can be assigned to.
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The increased complexity in the consistency function now

poses a potential combinatorial challenge. [11] shows that

tractability can be assured by sorting the messages and con-

sider only the top messages related to the facility capacity.

The additional message update due to the global cost func-

tion in our work are made tractable and efficient by using

similar techniques.

Even though both FLoSS/UFLP and our work are based

on AP for solving the motion segmentation problem, there

are important differences distinguishing the two works.

FLoSS/UFLP solves the classification problem, assuming

known motion. Its performance has not been demonstrated

on the model selection problem even though, paradoxically,

the framework seems to be proposed with this problem in

mind. Our proposed work capitalizes on this inherent ca-

pability of AP for model selection with the use of a more

elaborate facility cost model. Furthermore, our quest for

a minimal basis representation drives a more specific sub-

space hypotheses generation strategy. In FLoSS/UFLP, the

subspace hypotheses are generated by random sampling.

[23] analyzed graphical models with high order poten-

tials(HOP), which entails higher order interactions among

the discrete variables. A particularly relevant example is the

cardinality potential, whose function value is dependent on

the number of variables in the subset turned on. The facility

cost function we propose in section 4.2 is an instantiation of

the cardinality function.

3. Hypothesis generation with minimal basis
subspace representation

3.1. Formulation

Our subspace hypotheses generation strategy is based on

finding the minimal basis subspace representation for the

data matrix. Such parsimonious representation looks for ba-

sis common to the overlapping subspaces, thereby reducing

the number of basis needed to explain the subspaces. This

emphasis on shared basis leads naturally to the joint sparsity

formulation (1).

As in SSC and LRR, we use the data matrix itself as the
dictionary, and propose the following formulation:

min
C

‖C‖2,0 + γ ‖E‖0,2 (1)

s.t. ŴC = Ŵ

where ̂W ∈ R
2F×N is the data matrix constructed from

the tracked feature trajectories, E ∈ R2F×N is the column-

sparse error matrix, F is the number of frames, N is the

number of tracked feature points, C ∈ RN×N is the repre-

sentation matrix, ‖.‖2,0 counts the number of non-zero rows

and ‖.‖0,2 counts the number of non-zero columns.

3.2. Convex relaxation
Due to the combinatorial nature and therefore NP-hard

nature of (1), we minimize the convex surrogate and model
data noise as column sparse outliers, resulting in:

min
C

‖C‖2,1 + γ ‖E‖1,2 (2)

s.t. ŴC = Ŵ

where ‖C‖2,1 =
∑2F
i=1

√∑N
j=1([C]ij)2 and ‖E‖1,2 =

∑N
j=1

√∑2F
i=1([E]ij)2. (2) is a constrained convex program

that can be solved efficiently by the Augmented Lagrange

Multiplier(ALM)[21] method. We solve (2) using the Al-

ternating Direction Multiplier Method(ADMM) implemen-

tation of the inexact ALM method, as in [18].

Note that our primary motivation for the joint sparsity

formulation is to seek the minimal basis representation,

whereas in [7], the joint sparsity regularization was intro-

duced to ensure connectivity in the similarity graph gener-

ated by encouraging data points from the same subspace to

use common representative points from the same subspace.

It plays a secondary role so as not to alter the dominance of

the �1 penalty in the objective function.

3.3. Over segmentation

While we have made the sharing of the basis evident(see

figure 1), the relaxation artefact(and noise in the data)

means that we cannot make use of this result directly to ex-

tricate the number of motions and their dependencies. As

can be seen from figure 1, the representation matrix con-

tains various artefacts due to the convex relaxation. While

the overall two subspace structure is discernible, over seg-

mentation is revealed in the gaps in the rows and the re-

sultant extra rows, making the true number of motion hard

to tell. There are in fact 40 subspace hypotheses generated

from this convex solution.

Figure 1. Representation matrix of the truck1 sequence

This over-segmentation phenomenon can be explained

by the magnitude dependence of the ‖.‖2,1 penalty. [22] of-
fers an excellent insight and explanation of this magnitude

dependence problem in terms of ‖.‖1 in SSC. This mag-

nitude dependence of the convex proxy can be understood
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by considering the case when the support has large magni-

tude. For the counting norm ‖.‖0, the magnitude is irrel-

evant; only the support cardinality matters. For the convex

proxy ‖.‖1, support entries with large coefficients will result
in large ‖.‖1 value, imposing an unfair penalty. The magni-

tude dependence of the ‖.‖1 function means that trajectories

from the same subspace that are nearly orthogonal will be

broken up into two groups, since the large coefficients for

self-expression will incur large norm penalty. This explana-

tion also applies for the ‖.‖2,1 penalty. While some of the

numerical methods like reweighted �1[1] might slightly re-

lief the artefact problems, they do not remove the problems.

Despite the preceding comments, we have now at our

disposal much more information. Each column of the co-

efficient matrix proposes a subspace hypothesis and carries

with it a notion of AP responsibility message update to this

subspace hypothesis. Row wise, the coefficient matrix in-

dicates the importance of the subspace hypothesis, in terms

of the number of trajectory that generates the subspace hy-

pothesis. This is reminiscent of the AP availability message

update from the facility. See [8] for more detail about the

notion of responsibility and availability. This close relation-

ship lends the joint sparse representation matrix well suited

for subspace hypothesis generation.

4. Model selection

Our proposed cost model, which we term as Minimal

Basis(MB)-FLoSS, is based on FloSS[15] but with impor-

tant extensions. These extensions are the facility cost model

outlined in section 4.2 which encodes the “ecological” con-

straint that multiple motions are likely to be dependent, and

the discount scheme in section 4.4.2 which ensures that fa-

cilities with overlapping basis have lower cost, translating

to higher beliefs at these facilities.

Our MB-FloSS method uses the same FLoSS setup and

message passing. We thus follow the notations in [9] and

[15] in deriving the new message update required by our

modified facility cost model.

4.1. FLoSS/UFLP
Due to the relevance of FLoSS/UFLP, we give a quick

review here. FLoSS/UFLP formulates the facility location
problem in terms of factor graph representation(fig. 2), con-
sisting of variable nodes and factor nodes. This graphical
model results in the following objective function:

F ({hij}) =
∑
ij

Sij(hij) +
∑
i

Ii(hi:) +
∑
j

fj(h:j) (3)

The variables nodes hij , i = 1, . . . , N, j = 1, . . . ,M ,

are binary variables that indicate if customer(trajectory) i
uses(belongs) to facility(subspace) j, where N is the num-

ber of customers and M is the number of facilities. The
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Figure 2. FLoSS factor graph representation

factor nodes evaluate potential functions over the variable

nodes they are connected to.

There are three factor potential functions in

FLoSS/UFLP. Ii enforces the constraint that one cus-

tomer chooses one and only one facility. The notation hi:
refers to the subset of binary variables connecting customer

i to all the facilities from 1 to M. Similarly, the notation

h:j refers to the subset of binary variables connecting all

the customers from 1 to N to facility j. Sij describes the

distance between customer i and facility j. fj describes

the cost when facility j is turned on. Upon convergence of

the message update, the binary variables {hij} are turned

on if the sum of the messages arriving at the variables are

non-negative.

4.1.1 Local facility cost

Due to the key role of facility cost, we describe the FLoSS

facility cost model so as to provide a contrast to our pro-

posed cost model. In FLoSS, the subspace hypotheses are

generated as random subsets of two, three and four trajec-

tories, thus taking into consideration degenerate subspaces.

The cost of a facility is set to be the sum of all pairwise dis-

tances between the trajectories forming the subspace. This

local cost primarily serves to balance the tendency towards

the higher dimensional subspace hypotheses, since higher

dimensional subspace hypotheses are able to fit the data bet-

ter compared to the lower dimensional subspace hypothe-

ses.

Unfortunately, this local cost model does not capture

the actual nature of the problem very well, often resulting

in the wrong number of facilities being opened. In fact,

in FLoSS/UFLP, the number of motion is assumed to be

known. Thus they can merge excess number of facilities

opened or increase the number of facilities opened by itera-

tively scaling down the local cost across all facilities.

15881588



h11 

e1 

hi1 

hN1 

…
 

 
…

. 

E1 

C 

h1j 

ej 

hij 

hNj 

…
. 

…
. 

Ej 

h1M 

eM 

hiM 

hNM 

…
. 

…
. 

EM 

S11 

Si1 

SN1 

S1j 

Sij 

SNj 

S1M 

SiM 

SNM 

I1 

Ii 

IN 

…. 

…. 

…. 

…. 

…. 

…. 

…. …. 

…. …. 

Figure 3. MB-FLoSS factor graph representation. The nodes in

the upper rectangular box are extensions to the original FLoSS

4.2. MB-FLoSS facility cost
To address the aforementioned shortcomings, the facility

cost function we propose is a global function in the sense
that it is a function of the cardinality of the number of fa-
cilities opened. Given an upper bound K on the number of
motion, we propose a power law facility cost model

C =
{
akp if k facilities are opened, for k = 1 toK
∞ otherwise

(4)

where C is the facility cost function and a, p are constants.

Note that C is a monotonic increasing function of the num-

ber of opened facilities. We denote the cost of opening k
facilities as Ck. This power law cost model is motivated by

the observation that in real life scenes, the larger the num-

ber of motions, the more unlikely it is for all of them to be

independent. In other words, it reflects not only the cost of

increasing complexity with more models, but also the “sur-

prise” of seeing all of them independent from one another.

This cost/surprise is only attenuated if there are dependen-

cies between the multiple motions, which will be taken care

of by the discount scheme in section 4.4.2.

With the global facility cost function (4), the factor graph

representation needs to be modified, as shown in figure 3.

The facility cost potential function is now connected to the

binary variables {ej}. The number of facilities turned on is

indicated by the number of {ej} nodes set to 1. The facility
cost function C is therefore a function of {ej}. This change
will now necessitate message passing involving {ej}, re-
flected in figure 4

4.3. Objective function
The one customer-one facility constraint remains:

Ii(hi:) =

{
0 if

∑
j hij = 1

−∞ otherwise
(5)

The consistency constraint that ensures that if a customer
chooses a facility, the facility gets turned on, also stays:

Ej(h:j , ej) =

{
0 if ej = maxi hij
−∞ otherwise

(6)

Ej 

C 

ej 

hij 

Sij 

Ii 

�ij

�j
�j

�ij�ij

�ij
sij 

�j �j

Figure 4. MB-FLoSS factor graph messages

The objective function to be maximized is now

F ({hij}, {ej}) =
∑
ij

Sij(hij) + C({ej})

+
∑
i

Ii(hi:) +
∑
j

Ej(h:j , ej) (7)

4.4. Message passing

Since we are dealing with binary variables {hij} and

{ej}, it appears that we need to send two-valued messages

between nodes. As pointed out in [11], we only need to

propagate the difference between the message values for

its two possible settings. When the message passing ter-

minates, the estimated MAP settings for each binary vari-

able is recovered by summing all of its incoming messages.

Each binary variable is set to 1 if the sum of all the incoming

messages is non-negative, and 0 otherwise.

The message passing not involving {ej} remains the

same as in FLoSS. For more detail on those messages,

please refer to [14][9][10][11]. The three new message up-

dates φ, ξ and α are explained below.

4.4.1 Message update for φ
Recall that we only need to send the difference between the
message values corresponding to the two different settings.
The message to be sent is then

φj = φj(1)− φj(0) (8)

where

φj(1) = μC→ej (1)

= max
ek,k �=j

⎡
⎣−C(e1, .., ej = 1, .., eM ) +

∑
k �=j

ξk(ek)

⎤
⎦ (9)

φj(0) = μC→ej (0)

= max
ek,k �=j

⎡
⎣−C(e1, .., ej = 0, .., eM ) +

∑
k �=j

ξk(ek)

⎤
⎦ (10)

For (9), since ej is set as 1, we are looking for the max over

one, two , . . . ,K − 1 other ej’s being turned on. For (10),

since ej is kept fixed as 0, we are then looking for the max

over one, two , . . . ,K other ej’s being turned on.
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Even though (9) and (10) look combinatorial, the mes-

sages can be simplified and updated efficiently. Leverag-

ing on the insights offered by [11], we observe that find-

ing the max can be achieved by evaluating the sorted set

ξ̂ and the associated facility cost over the K upper bound

number of facilities, where ξ̂ is obtained by sorting {ξj =
ξj(1) − ξj(0), j = 1, . . . ,M, j �= k} in descending order.

The derivation is included in the supplementary material.
For ease of notation, we introduce the cumulative sum

operator:

Sij =

j∑
k=i

ξ̂k (11)

where ξ̂k is the kth element in the sorted set ξ̂. Denote the
cost difference

δij = Ci − Cj (12)

For the case of K = 4, which is the upper bound used in
the experiment section, the message update for φj in (8) can
be shown to be

φj =

max

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−max [S11, S12 − δ21, S13 − δ31, S14 − δ41]

−max [δ21, S22, S23 − δ32, S24 − δ42]

−max [δ31 − S22, δ32, S33, S34 − δ43]

−max [δ41 − S23, δ42 − S33, δ43, δ43, S44]

(13)

The indexing in (13) gives a hint on how the message up-

date can be generalized for the number of motion upper

bound K and is included in the supplementary material for

further reference.

4.4.2 Facility cost discount scheme

The motivation behind the facility cost discount scheme is

to encourage the facilities to have shared basis; the more the

number of shared basis, the greater the discount. This dis-

count is applied to the cost (4) so that using this discounted

C used in computing message update in (8) can influence

facilities with shared basis to be chosen.

The degree of overlap is based on comparison with a ref-

erence subspace set Sref , which contains the set of opened

facilities according to the current beliefs. This reference

subspace is initialized as facility j whose node {ej} has the
largest belief. The belief bj at node ej is the sum of all

the incoming messages, which is ξj+φj . The candidate set
Scan is initialized to be the remaining members of the entire

subspace hypothesis set S.

The idea behind the discount scheme is to iteratively fill

Sref with K subspaces with the largest beliefs, after taking

into account the facility cost discount due to overlapping

subspace basis. At the ith iteration, the discount is applied

to cost Ci. The belief for each subspace in Scan is re-

computed with this discounted cost. The subspace with the

largest belief will then be removed from Scan and added

to Sref . After filling Sref with K subspace hypotheses,

the discounted φ values associated with Sref replace the

corresponding φ message update computed using (13).

This facility cost discount scheme is summarized below:

Algorithm 1(Facility cost discount scheme): Given subspace

hypothesis set S, upper bound on the number of motion K,

discount factor η

1. Compute the belief at each ej by summing the incoming

messages

2. Initialize the reference subspace Sref as the subspace hy-
pothesis whose ej has the largest belief

3. Initialize the candidate set Scan as the remaining mem-

bers in S

4. For i = 1, . . . ,K

5. Compute basis overlap degree d for each subspace ∈
Scan with the reference subspace Sref

6. For each subspace ∈ Scan, compute the discounted

cost C′
i = (1 − ηd) × Ci and use this discounted cost to

compute φj based on (13)

7. Find the subspace with the largest belief. Remove this

subspace from Scan and add it to Sref

8. End for

4.4.3 Message update for ξ

The message ξj can be interpreted as the overall responsi-
bility to the facility j. For each facility j, let k be the index
of the largest element of the set {ρij , i = 1, . . . , N}. The
update can then be shown to be

ξj = ρkj +
∑
i �=k

max(0, ρij) (14)

4.4.4 Message update for α

The other message update that is affected by the global fa-
cility function is α. The message update for α can be shown
to be

αij = min[0,
∑
i�=k

max(0, ρij) + φj ] (15)

4.5. Subspace hypothesis generation and selection

We provide a different subspace hypothesis generation

strategy from FLoSS/UFLP. Our strategy is based on the so-

lution to (2), C∗. Each column i of C∗ represents the coef-
ficients of other trajectories required to represent this trajec-

tory i. Since each trajectory comes from an affine subspace,

it needs at most four other trajectories for representation.

We therefore retain only the top four largest absolute value

coefficients in each column and form a subspace hypothe-

sis using that column. The number of subspace hypothesis
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M is therefore the number of unique subspace hypothesis

proposed by all the trajectories.

When theMB-FLoSSmessage update is completed, sub-

space hypothesis j is chosen as a representation subspace if
the belief ξj + φj at facility j is non-negative.

5. Experiments
We evaluate the performance of our proposed method

on the Hopkins 155 dataset [24] and the augmented Hop-

kins 380 dataset. The Hopkins 155 dataset consists of 155

sequences of feature points labeled according to their mo-

tion. There are 120 two motion sequences and 35 three

motion sequences. The dataset consists of three categories:

checkerboard, traffic and articulated.

For the Hopkins 155 dataset, we base on KO and state-

of-the-art LRR for comparison. For the augmented Hopkins

380 dataset, the good performance and availability of Mat-

lab code [17] makes LRR the choice for comparison.

Model selection in LRR returns predicted number of mo-

tion in the range of 1 − 4. For our facility cost model,

we therefore set the upper bound K as four. The facil-

ity cost model used for the experiments is shown in figure

5, with the power law in (4) specified by a = 0.35 and

p = 2.7. The discount factor η used in the facility cost

discount scheme(algorithm 1) is set to 0.05.
Since the number of motion is no longer known a priori,

we need to generalize the misclassification rate to take into

account the wrong number of motion group given by model

selection. In [24], the misclassification rate is given by the

label permutation with the lowest misclassification rate. For

the generalized misclassification rate, the label permutation

process is naturally extended to account for the case when

the wrong number of motion group is given by model se-

lection. Any groups (either in the segmentation result or

in the ground truth) whose labels are not assigned after the

label permutation process contribute to the misclassified el-

ements. This generalized misclassification rate thus penal-

izes both model selection error and error in classifying the

trajectories according to their motion.

We find that using SSC for classification, based on the

number of motion given by the MB-FLoSS model selec-

tion gives the best overall performance. This combination

is compared against the state-of-the-art LRR.

5.1. Augmented Hopkins 380

The need for augmenting the dataset arises from two

considerations. Firstly, the model selection algorithms

should work for arbitrary number of motion. In particular,

for the Hopkins 155 dataset, the model selection algorithms

should be tested against not just two and three motion but

one motion as well. Secondly, the skewed distribution of

the number of two vs. three motion sequences distorts the

model selection rate, since focusing solely on two motion

sequences will lead to good model selection rate. This dis-

tortion due to the uneven distribution is illustrated in [3]

where [12] shows a better model selection performance by

estimating two motion most of the time.

In view of these considerations, we choose to augment

the Hopkins 155 dataset with one motion sequences and

additional three motion sequences. The one motion se-

quences are derived from the original two and three mo-

tion sequences by treating each motion as a one mo-

tion sequence. For example, from the three motion se-

quence 1R2RC, we derive three sequences of one motion

1R2RC g1, 1R2RC g2, 1R2RC g3. The additional three

motion sequences are generated by concatenating the two

motion traffic sequences with the foreground one motion

sequences derived from the two motion traffic sequences.

The summary of this augmented data in table 1 shows a

more even distribution in terms of the number of sequence

for each number of motion.

No. of motion One Two Three

No. of sequence(original) 0 120 35

No. of sequence(augmented) 135 120 125

Table 1. Summary of the augmented Hopkins 155 dataset
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Figure 5. Facility cost model used for the experiments

5.2. Result

Table 2 shows the model selection result for the Hop-

kins 155 dataset. Our work enjoys an advantage over LRR

and outperforms KO decisively. It is worthwhile noting that

both LRR and KO show better performance for 2 motion

at the expense of 3 motion whereas our proposed method

handles both 2 and 3 motion more evenly.

For the augmented Hopkins 380 dataset, table 3 shows

the advantage of our proposed work over LRR more deci-

sively. Once again, it is worth noting the more even perfor-

mance of our proposed work compared to LRR.

The tracked points and basis set chosen for the checker-

board sequence 2rt3rcr g12 are shown in figure 6 and 7.

For classification, table 4 shows that our proposed

method compares favorably to the state-of-the-art LRR.
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MB-FLoSS LRR KO

Overall 79.35%(123) 78.06%(121) 74.84%(116)

2 motion 81.67%(98) 84.17%(101) 82.50%(99)

3 motion 71.43%(25) 57.14%(20) 48.57%(17)

Table 2. No. of motion prediction rate for Hopkins 155. The num-

ber of sequences predicted correctly is shown in parenthesis

MB-FLoSS LRR

Overall 83.68%(318) 81.05%(308)

1 motion 87.41%(118) 85.93%(116)

2 motion 81.67%(98) 84.17%(101)

3 motion 81.60%(102) 72.80%(91)

Table 3. No. of motion prediction rate for the Hopkins 380

Motion 1
Motion 2

Figure 6. Ground truth for the checkerboard sequence 2rt3rcr g12

Motion 1
Motion 2

Figure 7. Overlapping basis for the checkerboard sequence

2rt3rcr g12

MB-FLoSS + SSC LRR

Hopkins 155 380 155 380

Overall 10.04% 8.36% 10.16% 8.98%

1 motion - 8.74% - 7.99%

2 motion 9.45% 9.45% 8.59% 8.59%

3 motion 12.07% 6.90% 15.51% 10.43%

Table 4. Generalized misclassification rate for the Hopkins 155

and 380

6. Conclusion
We formulated and realized the minimal basis approach

to subspace segmentation and demonstrated its model

selection strength. The success hinges on the use of an

enhanced FLoSS framework, employing a convex relax-

ation formulation for subspace hypothesis generation, and a

power-law facility cost with a simple discount scheme that

favors overlapping subspace. Despite the added complexity

due to the modified facility cost, we show how the message

passing can be made tractable and efficient.
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