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Abstract

Symmetry is a powerful shape regularity that’s been ex-
ploited by perceptual grouping researchers in both human
and computer vision to recover part structure from an im-
age without a priori knowledge of scene content. Draw-
ing on the concept of a medial axis, defined as the locus of
centers of maximal inscribed discs that sweep out a sym-
metric part, we model part recovery as the search for a
sequence of deformable maximal inscribed disc hypothe-
ses generated from a multiscale superpixel segmentation,
a framework proposed by [13]. However, we learn affinities
between adjacent superpixels in a space that’s invariant to
bending and tapering along the symmetry axis, enabling us
to capture a wider class of symmetric parts. Moreover, we
introduce a global cost that perceptually integrates the hy-
pothesis space by combining a pairwise and a higher-level
smoothing term, which we minimize globally using dynamic
programming. The new framework is demonstrated on two
datasets, and is shown to significantly outperform the base-
line [13].

1. Introduction

In the formulation of object recognition as object detec-

tion, a strong top-down object prior minimizes the need for

bottom-up perceptual grouping, i.e., weaker, mid-level pri-

ors. However, as object databases grow towards human-

like capacities, i.e., tens of thousands of objects, a linear

search through a large space of object detectors quickly be-

comes intractable. It’s clear that as object databases grow,

the role of perceptual grouping to extract a discriminative,

domain-independent indexing structure that can prune a

large database down to a small number of promising can-

didates will increase dramatically.

One of the most powerful indexing structures is a con-

figuration of parts, in which a set of parts (and their rela-

tions) belonging to the same object is recovered without

any a priori knowledge of scene content, i.e., without the

help of an object detector. The bottom-up recovery of a

set of generic parts can be traced back to the earliest days

of computer vision, and includes Blum’s medial axis trans-

form (MAT) [3], Binford’s generalized cylinders [2], Pent-

land’s superquadrics [25], and Biederman’s geons [1], to

name just a few examples. What do all these representa-

tions have in common? They’re all based on symmetry,

a physical regularity in our world that has been exploited

by the human visual system to yield a powerful perceptual

grouping mechanism – something that the early Gestalt psy-

chologists understood practically a century ago [37] (for a

definitive survey on symmetry and its analysis in computer

vision, see [16]).

In an attempt to harness the power of a MAT-like rep-

resentation yet avoid its inapplicability to cluttered scenes,

Levinshtein et al. [13] introduced a bottom-up approach

which first detects symmetric parts and then groups them

nonaccidentally to form indexing structures. The key con-

tribution is the modeling of a “deformable” maximal in-

scribed disc as a superpixel. The image is segmented into

superpixels at multiple scales, where each scale yields a

graph in which nodes are superpixels. Adjacent superpixels

are linked by an edge, to which a learned affinity function

assigns a measure of how likely two superpixels represent

adjacent maximal discs belonging to the same part. A graph

clustering algorithm is then applied to the superpixel graph

to yield a set of connected components representing sym-

metric object parts.

While the framework outperformed previous approaches

to symmetric part detection, it suffered from a number

of serious limitations, as illustrated in Figure 1. To be-

gin with, the symmetry model was restrictive in assuming

that parts had straight axes and constant width. This pre-

vented the correct detection of significantly curved and/or

tapered parts, as illustrated in Figure 1(a). Second, super-

pixel grouping was restricted to a single scale, rather than

integrated across multiple scales, preventing the detection

of tapered parts whose component superpixels span multi-

ple scales (Figure 1(c)). Finally, the superpixel grouping

algorithm did not enforce a notion of good continuation,

which led to incorrect detections when faced with ambigu-

ous grouping possibilities, as reflected in the undersegmen-

tation of the two symmetric parts (leaves) into a single part

in Figure 1(e).

In this paper, we extend the approach of [13] to over-
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come these limitations. Like [13], superpixels are generated

at multiple scales and represent hypotheses of maximal in-

scribed discs. Like [13], adjacent hypotheses are assigned

an affinity by a learned affinity function trained on manu-

ally detected symmetric parts. And like [13], hypotheses

must ultimately be selected and grouped to form symmet-

ric parts. But the model we use to assign the affinities, the

nature of the search space of hypotheses which are selected

and grouped to become parts, and the grouping algorithm

that selects and groups hypotheses are different from [13],

and represent the three main contributions of this paper.

In our first contribution, we relax the assumption that a

symmetric part is straight with constant width, and extend

the model to allow a part to bend and taper. Given two adja-

cent hypotheses, we fit a deformable ellipse to their union,

from which an estimate of bending and tapering can be re-

covered. We then warp the image of the union, effectively

“undoing” the bending and tapering, and yielding an invari-

ant model of a symmetric part whose axis is straight and

whose width is constant. By factoring out these deforma-

tions, we reduce the variability of the symmetry data used

to train the classifier, and allow ourselves to adopt the learn-

ing framework of [13] while accommodating much greater

within-class variation. In Figure 1(b), we see how this new

model can detect curved symmetric parts.

In our second contribution, we relax the assumption that

maximal disc hypotheses can only be grouped within a

given scale, and extend the grouping process to integrate

the hypotheses from multiple scales. In our multiscale ap-

proach, we make no assumptions about how the scales relate

to each other, nor do we assume that adjacent maximal discs

comprising a part must be drawn from adjacent scales. We

construct a single, integrated search space of deformable
discs and assign an affinity to any adjacent or overlapping

discs, regardless of which scale they come from. This al-

lows superpixels from different scales to be grouped into

the same part, an essential requirement for detecting signif-

icantly tapered parts, as illustrated in Figure 1(d).

In our third contribution, we remove the global part sym-

metry constraint of [13] and relax it with smoothed local

symmetry. Moreover, we reformulate the problem from a

graph segmentation problem to a sequence finding problem,

replacing a simple agglomerative clustering algorithm with

an optimal grouping algorithm that captures the percep-

tual grouping principle of good continuation. Specifically,

we adapt the salient curve detection framework of Felzen-

szwalb & McAllester [11], in which edgels are grouped to

form salient, continuous curves, to group superpixels (hy-

pothesized maximal discs) into salient, continuous, sym-

metric parts. The continuity model provides a much more

powerful and flexible global constraint that can help select

from among many locally ambiguous groupings, as illus-

trated in Figure 1(f).

(a) (b)

(c) (d)

(e) (f)
Figure 1. Illustrating the limitations of Levinshtein et al. [13] (left

column) and demonstrating how our improved framework over-

comes them (right column): (a) [13] cannot handle curved parts,

and overpartitions them into piecewise straight; (b) we introduce

a more powerful model for symmetry that removes this restric-

tion, allowing curved parts to be correctly detected; (c) [13] detects

parts by grouping superpixels from the same scale, preventing the

detection of parts whose superpixels span multiple scales, e.g., a

tapered part; (d) we introduce a multiscale framework that allows

superpixels at multiple scales to be grouped into the same part,

allowing tapered parts to be detected; (e) [13] adopts a greedy su-

perpixel grouping strategy that can lead to a graph structure which,

while exhibiting good symmetry, can undersegment parts; in this

case, the two sequences of superpixels representing the two leaves

are bridged by a high-affinity path, yielding a tree-structured clus-

ter that fails to distinguish the individual leaves (superpixels are

shown as points and affinities in the cluster are colored, with red-

ness proportional to affinity); (f) we adopt a new optimal grouping

algorithm, based on the salient curve detection framework in [11],

that combines local symmetry and continuity to better choose from

among a set of ambiguous groupings; in this case, both symmetric

parts (leaves) are correctly detected.
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2. Related Work
While Blum’s MAT, along with its many descendant rep-

resentations such as the shock graph [29, 33] and bone

graph [19], provided an elegant decomposition of a shape

into symmetric parts, it assumed that the shape was seg-

mented, an unrealistic assumption when the recognition do-

main consists of cluttered, occluded scenes. Other classes

of approaches have taken a less restrictive approach that first

attempts to detect local symmetries, in the form of parts,

and then finds nonaccidental groupings of the detected parts

to form indexing structures. Example approaches in this

domain include the multiscale peak paths of Crowley and

Parker [9], the multiscale blobs of Shokoufandeh et al. [32],

the ridge detectors of Mikolajczyk and Schmid [22], and the

multiscale blobs and ridges of Lindeberg and Bretzner [14],

and Shokoufandeh et al. [31]. Unfortunately, these filter-

based approaches yield many false positive and false nega-

tive symmetric part detections, and the lack of explicit part

boundary extraction makes part attachment detection unre-

liable.

A more powerful filter-based approach was recently pro-

posed by Tsogkas and Kokkinos [36], in which integral im-

ages are applied to an edge map to efficiently compute 13

features, including a novel spectral symmetry feature, at

each pixel at each of 13 scales. Multiple instance learning is

used to train a detector that combines these features to yield

a probability map which, after nonmaximum suppression,

yields a set of skeleton points. The method is computation-

ally intensive yet parallelisable, and the skeleton points still

need to be parsed and grouped into parts. But the method

shows promise in recovering an approximation to a medial

axis transform of an image.

Another class of approaches takes a less holistic ap-

proach, and addresses the combinatorial challenge of group-

ing extracted contours. Example approaches in this domain

include Brady and Asada [5], Connell and Brady [8], Ponce

[27], Cham and Cipolla [6, 7], Saint-Marc et al. [28], Liu

et al. [15], Ylä-Jääski and Ade [38], and Stahl and Wang

[35]. Since these methods are contour-based, they have to

deal with the issue of computational complexity of contour

grouping, particularly when cluttered scenes contain many

extraneous edges. Some require smooth contours or ini-

tialization, while others were designed to detect symmet-

ric objects and cannot detect and group the symmetric parts

that make up an asymmetric object. A more recent line of

methods extract interest point features, such as SIFT [17],

and group them across an unknown symmetry axis [18, 12].

While these methods exploit distinctive pairwise correspon-

dences among local features, they critically depend on reli-

able feature extraction.

A recent approach by Narayanan and Kimia [24] pro-

poses an elegant framework for grouping medial fragments

into meaningful groups. Rather than assuming a figure-

(a) (b) (c)
Figure 2. Deformable disc model of an object part: (a) Many max-

imal discs (red circles) are required to “flesh out” a part in the

classical medial axis (from [13]); (b) by allowing maximal discs

to deform to the shape of the part, far fewer deformable dics are

required to define the part – in this case, the deformable discs are

modeled as superpixels drawn from the same scale (from [13]);

(c) a symmetric part is defined as the union of deformable discs –

in this case, the deformable discs making up the tapered part are

modeled as superpixels drawn from different scales.

ground segmentation, the approach computes a shock graph

over the entire image of a cluttered scene, and then applies

a sequence of medial transforms to the medial fragments,

maintaining a large space of grouping hypotheses. While

the method compares favorably to figure-ground segmen-

tation and fragment generation approaches, the high com-

putational complexity of the approach restricts it to images

with no more than 20 contours.

Our approach, extending that of [13], is qualitatively dif-

ferent from both filter-based and contour-based approaches,

offering a “region-based” approach which perceptually

groups together compact regions (segmented at multiple

scales using superpixels) representing deformable maximal

discs into symmetric parts. We avoid the low precision that

often plagues the filter-based approaches, along with the

high complexity that often plagues the contour-based ap-

proaches.

3. A Representation for Symmetric Parts
Adopting the framework of [13], we define a symmet-

ric part as a sequence of deformable discs, where each de-

formable disc d is a compact image region (a pixel mask)

that roughly corresponds to a maximal inscribed disc. Un-

like the classical medial axis transform in which maxi-

mal inscribed discs are bitangent to the part’s boundary, as

shown in Figure 2(a), our deformable discs are not con-

strained to be circular, and are allowed to deform to the

shape of the boundary while maintaining high compactness.

As a result, the number of deformable discs required to cap-

ture the shape of the part is far less than the number required

using maximal discs, as shown in Figure 2(b).
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Superpixels, being compact and having the tendency to

deform to image boundaries, are ideally suited as a model

of a deformable disc. Therefore, a superpixel segmenta-

tion can be seen as a set of deformable disc hypotheses.

But since we have no a priori knowledge of part scale, and

since a tapered part may be captured by deformable discs

of different sizes, as shown in Figure 2(c), we generate su-

perpixels (deformable disc hypotheses) at different scales.

In contrast to [13], whose framework restricted grouping

to superpixels at the same scale and thus could not handle

significant taper, we group superpixels from a single hy-

pothesis set that combines superpixels from all scales. We

segment each image into 25, 50, 100, and 200 superpixels

using a modified version [23] of the normalized cuts algo-

rithm [30].

Given a set D of deformable disc hypotheses, our goal

is to perceptually group deformable discs that belong to

the same part. Since the vast majority of superpixels will

not correspond to true deformable discs, we must manage

the complexity of the search space. We adopt a proxim-

ity constraint between any two deformable discs and con-

sider grouping together only deformable discs whose un-

derlying superpixels are adjacent or overlapping. We thus

capture the set D in a graph G, whose nodes di represent

deformable discs and whose edges (di, dj) span pairs of de-

formable discs whose underlying superpixels are adjacent

or overlapping. Pairs of superpixels in which one superpixel

is entirely contained by the other are redundant groupings

and are not included as edges in G. Each edge is assigned

a symmetry-based affinity which, as described in Section 4,

reflects the degree to which the pair of deformable discs is

believed to belong to the same symmetric part.

4. Defining a Deformable Disc Affinity
A restricted model of symmetry was used in [13], in

which the axis was straight and the width was constant

along the axis. An ellipse was fit to the region defined by

two adjacent superpixels, defining a scale- and orientation-

invariant coordinate system into which a grid was placed;

edgels in the vicinity of the region boundary were then pop-

ulated into the grid. The resulting shape feature, along with

a set of appearance-based features computed over the same

region, were fed to a classifier that evaluated to the edge

affinity between two superpixels. Connected components

with high edge affinity yielded symmetric parts.

To handle curvature and taper in symmetric parts, we re-

lax the model of symmetry by replacing the ellipse with a

deformable ellipse that accommodates bending and tapering

[26]. An overview of the approach is illustrated in Figure 3.

A deformable ellipse is fit to the boundary of the region, as

shown in Figure 3(a). The axis is allowed to curve and the

width to taper along the axis. Figure 3(b) shows edgels in

the vicinity of the region boundary to which the model was

(a) (b)

(c) (d)

Figure 3. (a) A deformed ellipse fitted to the region shaded in blue.

The boundary of the deformed ellipse along with its two axes are

shown in red. The boundary edgels shown in (b) are warped into

W resulting in (c), where the medial axis, shown bold, has been

straightened and any taper removed. The descriptor formed on W
is shown in (d).

fitted. Next, we “undo” the fitted bending and tapering de-

formations using the warp W that maps the boundary into

the invariant coordinate systemW as shown in Figure 3(c).

Finally, boundary edgels are populated into a grid on W to

compute the shape feature of [13], as shown in Figure 3(d).

Details of our model are described as follows. Recall that

an ellipse is implicitly defined by a mapping into a space

where each mapped point W (x) is constrained to lie on the

unit circle, satisfying W (x) ·W (x) = 1. In our deformable

ellipse, the warp W is composed of a rigid transformation

R(p, θ) at position p and orientation θ, scaling S(a) to ma-

jor and minor axes lengths a = (ax, ay), and two deforma-

tions, namely, circular bending B(b) at radius b and linear

tapering T (t) at slope t. We denote the full set of parame-

ters of the warp by w = (p, θ, a, b, t).
We compute W by fitting the parameters to boundary

points x1, . . . ,xN . The problem is framed as least-squares

minimization in which we seek a parameter vector w that

locally minimizes the squared errors between the warped

boundary points and the unit circle. The sum of squared

errors objective,

N∑

i=1

e(xi;w)2, (1)

is defined using the regularized algebraic distance

e(x;w) = c · (W (x;w) ·W (x;w)− 1) , (2)

where c =
√
axay penalizes highly elongated axes [34].

Deformation parameters are initialized to b = 0 and t = 0
while the position, orientation, and scale parameters are ini-

tialized by fitting a regular ellipse. All parameters are itera-

tively fit using a nonlinear least squares algorithm, yielding

the solution ŵ.
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We compute the shape feature in the invariant coordinate

systemW defined by the fitted deformable ellipse. An edge

map is computed using the Pb detector [21], thresholding

responses at 0.01 to obtain a set of edgel coordinates lying

in the vicinity of the region boundary. The edgels are then

warped by W (·; ŵ) into W , thereby reducing shape vari-

ability, in particular straightening the symmetry axis and

removing taper. Finally, we compute a normalized spatial

histogram of the warped edgels over a 10x10 grid to ob-

tain a 100-dimensional feature. In addition, we compute

an appearance feature based on color and texture features

computed over the same region. A 27-dimensional feature

is obtained from the dissimilarity of RGB and HSV means

and variances and color and texture histogram distances.

We use a logistic regressor to combine shape and appear-

ance features computed over a region r into σ(r) ∈ [0, 1].
The logistic regressor combines the shape output σs(r), ob-

tained by an SVM with RBF kernel, and the appearance out-

put σa(r), obtained by a logistic regressor with quadratic

kernel. We train on a set of images containing symmetric

parts that are annotated with pixel masks. Positive masks

are adjacent deformable discs spanning the width of a part,

and negative masks oversegment across the width, span over

the part boundary, or undersegment the part. Details on part

annotation and examples are provided in Section 6.

5. Finding Sequences of Deformable Discs
Given a graph G capturing deformable disc hypotheses,

in which edge affinities reflect the degree to which adja-

cent deformable discs are believed to belong to the same

symmetric part, the final step is to find sequences of de-

formable discs representing symmetric parts. In [13], a

greedy agglomerative clustering algorithm based on [10]

was adopted. At each iteration a candidate node was added

to a cluster provided that the union of the node and cluster

satisfied a global symmetry constraint.

The strategy suffered from two serious limitations. First,

while the global symmetry constraint offered a useful ab-

straction mechanism, it was enforced by fitting an ellipse to

the region corresponding to the entire cluster, thus restrict-

ing detectable parts to straight axes. The second limitation

concerned the grouping algorithm, which was designed for

graph clustering rather than for sequence clustering. A lack

of a notion of continuation allowed clusters to branch into

tree structures, leading to undersegmentation.

We overcome both limitations by framing the problem

as a search for sequences over G. For any sequence P =
(d0, . . . , dn) of adjacent discs, the underlying graph edges

correspond to binary terms {s(di−1, di)}ni=1. We define

ternary terms {t(di−1, di, di+1)}n−1
i=1 to cover slightly larger

subsequences over which a notion of smoothed local sym-

metry can be computed. This is in contrast to the restric-

tive global scope over which symmetry was computed in

(a)

(b)
Figure 4. (a) Grouping is formulated as finding a sequence P of

adjacent deformable disc hypotheses. (b) In the dynamic program-

ming algorithm, a candidate sequence (yellow) is dequeued and

possible extending discs (green) are considered.

[13]. Moreover, as explained below, good continuation is

enforced by extending a candidate sequence only from its

last disc, thereby preventing branching from its sides.

We find optimal sequences P1, P2, . . . over G using the

global cost defined below in Eq. 3. We have adapted the

method of Felzenszwalb & McAllester [11], which grouped

sequences of edgels into salient curves, to our setting in or-

der to group sequences of deformable discs into salient sym-

metric parts. Accordingly, we sum over binary and ternary

terms and normalize by the length n:

cost(P ) =
A

n
+

∑n
i=1 s(di−1, di) +

∑n−1
i=1 t(di−1, di, di+1)

n
.

(3)

The cost includes a term A/n that favors longer sequences,

where we have set A = 0.1. The binary and ternary terms

are set to 1 − σ(r), where the region r is defined by the

set of discs given to the respective term. Note that we have

assumed an equal contribution to the total cost from each

disc regardless of its size.

The cost function in Eq. 3 is minimized by the dynamic

programming algorithm in [11], which pursues a best-first

search strategy to find the best sequence. Initially, a prior-

ity queue, Q, contains all possible (candidate) sequences of

unit length. As shown in Figure 4(a), each edge (di, di+1)
is directed such that a sequence of edges terminating at di+1

can be extended with an edge starting at di+1. At each it-

eration, the most promising sequence P ∗ is dequeued from

Q, and new candidate sequences are proposed by extending

the end of P ∗ with adjacent discs, as shown in Figure 4(b).

If an extended sequence ending at an edge s improves the

cost of another sequence ending at s, it is enqueued back

onto Q. Multiple sequences are found by successively min-
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Figure 5. Example images with manually annotated symmetric

parts.

imizing Eq. 3 over remaining disc hypotheses, and stopping

when a maximum cost is reached.

The algorithm keeps track of only the best sequence end-

ing at each edge for all possible lengths. It is possible for

a symmetric part to have a long spiral axis, however we do

not expect the length of a sequence to be on the order of the

number of superpixels. We have used a maximum length of

20 in our implementation. We refer the reader to [11] for

details of the algorithm.

6. Results

Following the criteria in [13] for symmetric part detec-

tion, we evaluate the ability of the algorithm to find de-
tection masks corresponding to object parts in a cluttered

scene. To obtain a variety of objects appearing in a range

of scales in background clutter, we have selected images

from the Berkeley Segmentation Database (BSDS) [20] for

evaluation. We denote as BSDS-Parts a set of 36 images

which are annotated with ground-truth masks correspond-

ing to the symmetric parts of prominent objects (e.g., duck,

horse, deer, snake, boat, dome, amphitheater); examples of

annotated images are shown in Figure 5. We also evaluate

on the Weizmann Horse Database [4], denoted as WHD,

using 61 annotated images as was done in [13]. Note that

while each image prominently features one or more horses,

we are interested in detecting object parts.

Our quantitative evaluation is summarized in Figure 6,

which includes a baseline comparison with Levinshtein et
al. [13] on BSDS-Parts in Figure 6(a) and WHD in Fig-

ure 6(b). The results indicate a significant improvement

over the baseline. For each method, we obtain a precision-

recall curve varying a threshold over the costs of detected

parts. A detection mask mdet is counted as a hit if its

overlap with the ground-truth mask mgt is greater than 0.4,

where overlap is measured by intersection-over-union (IoU)

|mdet∩mgt|/|mdet∪mgt|. Note that low precision is partly

due to the lack of annotations on many background objects

in both datasets.

We have run our optimization method using the base-

line features to isolate the effect of the grouping algorithm.

To minimize our cost (Eq. 3), baseline features are com-

puted only at binary and ternary scope. The results for

both datasets (“baseline + sequences” in Figure 6), show

that the algorithm is responsible for a significant part of the

improvement. We also evaluate the contribution of comput-

ing symmetry over a 3-disc subsequence as compared to a

2-disc subsequence (“ours w/o smoothing” in Figure 6), and

find that the larger scope is beneficial.

Figure 7 highlights specific strengths and weaknesses of

our approach. Example (a) demonstrates the successful re-

covery of a snake along with a second symmetric part rep-

resenting its shadow (left side of snake). The image is over-

laid with detection masks, over which the linear structure

of each part is indicated by green line segments that join

adjacent deformable discs. Examples (b) and (c) show the

detected parts of a plane and a bird. Most of the plane parts

are correctly segmented, with the left wing overpartitioned

due to the engine, while the bird’s parts are correctly seg-

mented; configurations of such detected parts can provide a

powerful index into a database of part-based shape models.

In example (d), many of the symmetric parts (both straight

and curved) comprising the boat are correctly recovered.

Examples (e) and (h) show symmetric parts detected in a

variety of scenes of intermediate complexity.

Examples (f) and (g) illustrate limitations of our ap-

proach. The wing and abdomen of the fly are successfully

recovered, however the occluded leaf was not. In (g), low

contrast along segments of the snake cause overpartition-

ing of the part. One could imagine a higher-level group-

ing module that could group the symmetric parts produced

by our framework according to principles of collinearity/co-

curvilinearity. We also note that part recall depends on the

ability of the superpixel segmentation algorithm to yield de-

formable maximal discs that make up a symmetric part. Fi-

nally, we note that we trained our classifier on 20 WHD im-

ages to produce all of our detection results, even on images

from BSDS. Note that with our agnostic approach to class

labels, we have demonstrated that 1) symmetry is a power-

ful shape regularity that’s ubiquitous in nature; and 2) the

symmetry features learned from horse parts can reasonably

generalize to a much broader class of symmetric parts that

include curvature and taper.

7. Conclusions
Symmetry is a powerful regularity in our world that

projects to a powerful regularity in the image. In the ab-

sence of an object prior, symmetry is a powerful cue for

detecting parts whose configurations, in turn, can help man-

age search in a large-scale recognition task. The symmetric

part detection framework of Levinshtein et al. [13] draws

on the power of the medial axis while avoiding its pitfalls.

However, it suffers from some serious limitations that limit

its ability to detect more general classes of symmetric parts.

We have addressed these limitations by introducing a num-
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(a) Results on BSDS-Parts.
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(b) Results on WHD.

Figure 6. Our approach significantly improves the baseline of Levinshtein et al. [13] on BSDS-Parts and WHD.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7. Symmetric object parts detected by our approach.
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ber of extensions to [13], including both a richer yet more

flexible model for symmetry, a multiscale framework, and

an optimal grouping strategy based on the regularity of good

continuation. The resulting framework significantly outper-

forms that of [13], offering an improved perceptual group-

ing framework for recovering symmetric parts without a pri-

ori knowledge of scene content. In future work, we will ad-

dress the problem of part grouping to yield part configura-

tions whose relational information offers the discriminative

power to prune a large database down to a small number of

promising candidates.
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