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Abstract

Given a set of plausible detections, detected at each time
instant independently, we investigate how to associate them
across time. This is done by propagating labels on a set
of graphs that capture how the spatio-temporal and the ap-
pearance cues promote the assignment of identical or dis-
tinct labels to a pair of nodes. The graph construction is
driven by the locally linear embedding (LLE) of either the
spatio-temporal or the appearance features associated to
the detections. Interestingly, the neighborhood of a node in
each appearance graph is defined to include all nodes for
which the appearance feature is available (except the ones
that coexist at the same time). This allows to connect the
nodes that share the same appearance even if they are tem-
porally distant, which gives our framework the uncommon
ability to exploit the appearance features that are available
only sporadically along the sequence of detections.

Once the graphs have been defined, the multi-object
tracking is formulated as the problem of finding a label as-
signment that is consistent with the constraints captured by
each of the graphs. This results into a difference of con-
vex program that can be efficiently solved. Experiments are
performed on a basketball and several well-known pedes-
trian datasets in order to validate the effectiveness of the
proposed solution.

1. Introduction
In this paper, we address the problem of multi-object

tracking. We assume that the targets have been detected

at each time instant and their appearance features (if avail-

able) have been extracted. Then, our objective is to link

these detections into consistent trajectories using a graph-

based formalism.

A graph-based formalism assigns a node to each detec-
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tion. Edges are then defined to connect the nodes, and each

edge gets a cost that reflects the dissimilarity between the

two nodes, it connects. Afterwards, a (K)-shortest path al-

gorithm [10] is typically used to find the trajectories of the

(K) targets. Alternatively, other approaches use network

flow [21], maximum weighted independent set [12], etc.

to solve the same problem. These approaches have been

proven to be effective in scenarios for which the features

are collected with the same level of accuracy and reliabil-

ity for each detection. With such a stationary measurement

process, the likelihood that the detections along a path cor-

respond to the same physical object can be reasonably es-

timated based on the accumulation of dissimilarities (simi-

larities) between consecutive nodes in the path. In contrast,

these approaches are not appropriate in cases for which ap-

pearance features cannot be measured with same accuracy

and reliability in every space and time co-ordinates. Such

problems are prevalent in many real-life situations. For ex-

ample, color histograms tend to be noisy in presence of

occlusions. In some cases, highly discriminative features

are available only sporadically. This happens, for example,

while imaging biological cells in varying illuminations in

which each illumination level highlights certain features of

the cell. As another example, a digit, printed on the jersey of

a player, is available only when it faces the camera. In such

cases, the task of tracking multiple objects, while exploiting

such features, becomes non-trivial.

Recently, there have been some efforts to address this

problem. In [23], the authors assume that a discrete set of

L possible appearances is known beforehand, which allows

the creation of a L-layered graph. In the i-th layer, run-

ning through a node is penalized when the appearance of

the node is available and differs from the i-th presumed ap-

pearance. Afterwards, a K-shortest path algorithm is ap-

plied in order to find the K shortest paths across L-layers.

This method demonstrates that exploiting sporadic features

can significantly improve the tracking performance. How-

2013 IEEE International Conference on Computer Vision

1550-5499/13 $31.00 © 2013 IEEE

DOI 10.1109/ICCV.2013.250

2000



Time
(a) Two trajectories with 2× 2 appearance measurements (c) Appearance graph (d) Exclusion graph(b) Spatio-temporal graph

Figure 1. Best viewed in color. (a) An example with two targets (red and blue) with associated detections at each time. Gray detections

mean that no appearance feature is available. (b) Spatio-temporal graph that depicts the spatio-temporal association between the nodes, (c)

Appearance graph that connects nodes even if they are far in time. (d) Exclusion graph in which edges connect nodes that coexist at the

same time. In graphs (b) and (c), thickness of an edge is proportional to its weight.

ever, it is restricted to cases for which the number and the

appearance of the targets are known a priori.

In contrast, [5] proposes an iterative hypothesis testing

strategy to exploit appearances features that are corrupted

by non-stationary noise or are only sporadically available.

In short, the authors iteratively consider each node in the

graph as a key-node, and investigate how to link this key-

node with other nodes in its neighborhood, under the as-

sumption that the target appearance is defined by the key-

node appearance. This is done through a shortest-path com-

putation in the temporal neighbourhood, while promoting

the nodes that have an appearance similar to that of the key-

node. This not only allows to handle the cases for which the

discrete set of possible appearance is not known, but also al-

leviates the construction of the L-layered graph. The greedy

and iterative nature of the algorithm makes it computation-

ally more efficient. Its main disadvantage is that it is greedy

and consequently there is no guarantee about some global

optimality of the solution.

In this paper, we propose an alternate formulation of the

problem, for which an optimal solution can be computed

and does not require to know the possible appearances be-

forehand. We adopt a graph-based label propagation frame-

work. For this, we construct a number of distinct graphs,

one for each appearance feature, apart from the usual spatio-

temporal graph. Additionally, we also construct an exclu-

sion graph in order to reflect the fact that two detections

that occur at the same time should be assigned to distinct

labels. Therefore, we construct K + 2 graphs (one spatio-

temporal, K appearance, one exclusion), where K � L is

the number of appearance features. An example is shown

in Figure 1. In case of a sport game, for example, the jer-

sey color and the digit, printed on it, can be considered as

two appearance features, and result in two distinct appear-

ance graphs. The framework is scalable in that it allows in-

corporating as many appearance features as needed. Graph

construction is described in Section 2.1. In short, a node is

assigned to each detection. An edge connects two nodes and

has a weight that increases with the similarity between the

nodes in terms of space, time and appearance. The higher

the weight, the more likely the two nodes correspond to the

same physical target. Exceptionally, in case of the exclu-

sion graph, the weights among the nodes, which occur at

the same time, are equal.

Given these graphs, the tracking problem is then formu-

lated as finding a label assignment that jointly and consis-

tently labels the nodes. Here, the notion of consistent la-

belling means that (i) the nodes that are sufficiently close

in space and time are labelled similarly, (ii) the nodes that

are close (respectively, far) in appearance are labelled sim-

ilarly (respectively, differently), and (iii) the nodes that co-

exist at the same time are labelled differently. The quality

of labelling is measured by the labelling error, that accumu-

lates the difference in the labels between a node and other

nodes that are connected to it. If the nodes are more likely to

have similar labels, then the labelling error is small and vice

versa. Due to the definition of weights in our graph, a good

labelling should minimize the labelling error in the spatio-

temporal and the appearance graphs while maximizing the

error due to the exclusion graph.

The rest of the paper is organized as follows: the con-

struction of graphs and the formulation of the problem are

presented in Section 2. A brief review of the related work is

presented in Section 3. Experimental results are presented

in Section 4. Finally, Section 5 concludes our paper.

2. Algorithm
This section first describes the construction of the asso-

ciated graphs. Afterwards, the multi-object tracking is for-

mulated as a consistent labelling problem in the graphs. Fi-

nally, the optimal solution to the proposed formulation is

presented.

2.1. Graph construction

As presented earlier, we consider three distinct types of

the graphs. Hence, each graph should be constructed sep-

arately. Nevertheless, the constructions of spatio-temporal

and appearance graphs are similar. We derive those graphs

from the locally linear embedding (LLE) technique [22]. It

assumes that data points can be accurately reconstructed by

a weighted combination of their local neighbors. If two data

points are close (respectively, far) in some space, then the

weight to reconstruct/approximate one point from the other

is high (respectively, low). The number of neighbors, n, is

a design parameter, and should thus be chosen according to

the type of the graph.

2001



In the following, we represent the i-th data point by xi

and its n-neighbours by X(i) = (x
(i)
1 , ...,x

(i)
n ). As xi and

n depend on the type of the graph, they should be defined

separately for each graph. Afterwards, the graph construc-

tion can be formulated as the problem of finding the vector

of reconstruction weights w�
i that minimizes following op-

timization problem

minimize
∥∥∥xi −X(i)wi

∥∥∥
2

2
+ δ

2‖wi‖22
subject to 1�wi = 1,wi � 0.

(1)

where δ > 0 ensures that the objective function is strongly

convex resulting in a unique w�
i . We use δ = 10−2.

The reason to choose the weights to be non-negative and

to sum to unity is two-fold. On the one hand, the matrix

W =
(
w1, ...,w|V |

)�
can be considered as a transition

matrix of a Markov chain and thus it has a random walk in-

terpretation. On the other hand, the weight vector is sparse.

Once the weights for each data point are computed, we

gather them into a graph G = (V,E,W ), where

– V is the set of nodes, with i-th node corresponding to

the i-th sample. We denote the number of nodes by

|V |.

– E ⊆ V ×V defines the connectivity between the sam-

ples. We create an edge from node j to node i if

Wij > 0.

– W assigns a weight to each edge, Wij being equal to

the j-th component of w�
i , and being non-zero when

the j-th data point contributes to the approximation of

the i-th data point in Equation 1.

Now, we explain the specific issues in the construction

of each graph.

Spatio-temporal graph. In the case of the spatio-

temporal graph, the data point xi is defined by the time in-

stant ti and the location information (e.g., bounding box) ci
as xi = (γti, ci)

�, where γ affects the relative importance

of the time difference compared to the location difference

between the data points. We use γ = 3. The neighbors

X(i) are defined to be the samples whose time indices fall

within a temporal window of size T > 1, centered around

ti. Therefore, n depends on T . The temporal window T
makes the system robust to missed detections. Since the

window includes the samples from both the past and the fu-

ture, a linear motion model is implicitly embedded.

Appearance graph. In the case of the appearance graph,

a data point xi corresponds to an appearance feature (e.g.
color histograms, etc.). Since we are considering the fact

that a feature might occur only sporadically, we consider

all other samples as the neighbors, except the ones that co-

occur with the i-th sample.

Exclusion graph. The exclusion graph captures the con-

straint associated to the fact that the detections that occur at

the same time instant should have different labels. Hence,

the neighborhood of the i-th sample for the exclusion graph

is defined to comprise all other samples that occur at the

same time instant, and their weights are taken uniformly,

i.e., Wij = 1/n if j is neighbor of i and Wij = 0 other-

wise, where n is the size of the neighborhood so defined,

2.2. Tracking problem formulation

In this section, we formulate the multi-object tracking as

a consistent labelling problem in a set of associated graphs.

Given a graph G = (V,E,W ), we consider a label as-

signment Y = (y1, ...,y|V |)
� that assigns a label distribu-

tion yi ∈ [0, 1]|V | to each node i. It should be noted that Y
is a row-stochastic matrix, with each row summing to unity.

Therefore, we write Y ∈ P , where P is the set of all row-

stochastic matrices of size |V | × |V |. In the following, we

often refer to P as the probability simplex.

In order to measure the inconsistency between the labels

with respect to the graph G, we adopt the harmonic function

approach, introduced in [28], and define the labelling error

as

EG(Y ) =
1

2

|V |∑
i=1

∑
j∈Ni

Wij ‖ yi − yj ‖2 = Tr(Y �LY ),

(2)

where Tr is the trace of a matrix, Ni is the neighbourhood

of node i, and L = D − W is the graph Laplacian where

D = diag(d1, d2, ..., d|V |) is a diagonal matrix with its di-

agonal elements defined as di =
∑

j∈Ni
Wij . By the defi-

nition of our graphs, we have D = I , where I is |V | × |V |
identity matrix. From spectral graph theory, L is positive-

semi definite and therefore the labelling error Tr(Y �LY )
is convex in Y .

In the sequel, we frequently refer to a graph by its Lapla-

cian L. In our framework, we have K + 2 distinct graphs.

We represent the exclusion graph by L(−), and other graphs

by L
(+)
p , p = 0, ...,K, where p = 0 corresponds to the

spatio-temporal graph and 1 ≤ p ≤ K corresponds to the

p-the appearance graph. We explicitly introduce the minus

(respectively, plus) superscript in order to emphasize that

we would like to maximize (respectively, minimize) the la-

belling error on the corresponding graph.

Given the measure of labelling error on each graph, we

want to define a label assignment Y � that minimizes the

labelling errors due to L
(+)
p and maximizes the labelling

error due to L(−). Mathematically, we have

Y � := argmin
Y ∈P

K∑
p=0

αpTr(Y �L(+)
p Y )− Tr(Y �L(−)Y )

= argmin
Y ∈P

Tr(Y �L(+)
eff Y )− Tr(Y �L(−)Y ) (3)
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where L
(+)
eff =

∑K
p=0 αpL

(+)
p , and αp ≥ 0 weighs the con-

tribution of labelling error due to p-th graph. Since αp ≥ 0

and L
(+)
p is positive semi-definite, L

(+)
eff is also positive

semi-definite. Given Y �, the i-th node is assigned the la-

bel that corresponds to the largest entry in y�
i .

2.3. Optimization

In this section, we describe an algorithm to compute the

optimal solution Y �. Let us rewrite Equation 3 as

Y � = argmin
Y ∈P

Tr(Y �L(+)
eff Y )− Tr(Y �L(−)Y )

:= argmin
Y ∈P

f(Y )− g(Y ) (4)

As L
(+)
eff and L(−) are positive semi-definite matrices,

both f(Y ) := Tr(Y �L(+)
eff Y ) and g(Y ) := Tr(Y �L(−)Y )

are convex in Y , whereas f(Y )−g(Y ) is non-convex. How-

ever, it belongs to a family of problems, called difference

of convex (DC) programming and efficient algorithms have

been developed to solve such problems [24]. An iterative

algorithm to solve the problem in Equation 4 is presented

in Algorithm 1. Starting with a random label distribution

Y (0) ∈ P , the algorithm iteratively linearizes g(Y ) around

the k-th iterate Y (k) and solves the resulting convex func-

tion f(Y )−∇g�
(
Y (k)

)
Y until convergence. The conver-

gence tolerance, ε, is set to 10−4 in our experiments. As

shown in Appendix 1, solving a sequence of such convex

programs solves the original problem.

Algorithm 1 Iterative algorithm to solve Equation 3

Input: Graph Laplacians {L(+)
p , p = 0, ...,K}, L(−), a

set of weights {αp, p = 0, ...,K}, tolerance ε
Output: Optimal solution Y �.

Procedure:
Choose the initial solution Y (0) as a random point in P .

Set k = 0.

repeat
1. Compute ∇g(Y (k)), gradient of g(Y ) at Y (k).

2. Solve the convex optimization problem

Y (k+1) = argminY ∈P
[
f(Y )−∇g�(Y (k))Y

]
by projected gradient method [13].

3. k = k + 1.

until ‖ Y (k+1) − Y (k) ‖F< ε.
Return Y � = Y (k).

3. Related work
In this section, we provide a brief review of the recent

and related works under the following categories:

Label propagation in graphs. Propagation of labels in

a graph has been extensively studied in machine learning

as a semi-supervised learning approach, and a concise sur-

vey of recent developments can be found in [18]. In short,

most of these approaches assume that the label of a node

is approximated as the linear combination of the labels of

its neighbours [26]. In [25], the authors use a mixed label

propagation in which (i) they measure the bipolar similar-

ity (e.g., Karl Pearson’s correlation coefficient that lies in

the range [-1,1]) between the samples, and (ii) construct a

’positive’ and a ’negative’ graph based on the sign of the

coefficient. Afterwards, they minimize the ratio between la-

belling errors due to the positive and negative graphs. This

is done by semi-definite relaxation in order to assign a bi-

nary label to each node of the graph. Our method differs

from [25] both in the definition of the graph similarities,

and the label propagation method. Specifically, since we

use multi-class labels instead of binary labels, and impose

that the label distribution at each node should lie on a prob-

ability simplex, our problem is difficult to cast into their

formalism. Therefore, we adopt difference of convex pro-

gramming approach to solve our problem.

Message passing. Message passing approaches have

been used to label the nodes in a graph [19, 6]. In [19],

a subset of the nodes are initially labelled and then a con-

ditional random field is used to infer the label of the re-

maining nodes. For this, the authors compute various ap-

pearance features and assume that the features are always

available with similar accuracies. Hence, their approach

cannot exploit appearance features that are sporadic or af-

fected by non-stationary noise. In [6], the authors utilized

such non-stationary and sporadic features in order to priori-

tize the propagation of belief, related to the label probability

distribution. Even though this approach allows to exploit

sporadically available appearance features, it relies on the

assumption that the target appearances are known before-

hand, which is not the case of our approach.

Mutual exclusion. The exploitation of a specific con-

straint associated to the structure of the graph (e.g., the ex-

clusivity constraint associated to the detections that coexist

in time) has been considered in [16, 17] in order to learn

discriminative appearance features. In these papers, first of

all, a low-level but reliable tracker is used to connect un-

ambiguous detections into tracklets. Afterwards, positive

samples are defined by pairs of detections that belong to the

same tracklet, while negative samples correspond to pairs

that belong to tracklets that likely correspond to distinct ob-

jects (because they overlap in time). Lastly, these samples

are used to train an AdaBoost [15], which in turn selects

the discriminative appearances. Our approach could benefit

from the above approach in order to select the discrimina-

tive features, while defining the appearance graph(s).

In [7, 8], the authors define a mutual exclusion term

based on the physical distance between two detections that

occur at the same time. The term goes to infinity as the dis-

tance goes to zero. This is motivated by the fact that two

objects cannot occupy the same space simultaneously. Our
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formulation is different in that our mutual exclusion term

is defined in terms of the similarity in the label distribution

rather than the position.

4. Evaluation
The proposed algorithm has been evaluated on the fol-

lowing well-known and challenging datasets: APIDIS [1],

PETS-2009 S2/L1 [2] and TUD Stadtmitte [3]. APIDIS is a

multi-camera sequence acquired during a basketball match,

whereas the other two are monocular sequences.

In the remainder of the section, we first describe these

datasets. We then discuss the evaluation metrics and the

implementation details. Finally, we present our results and

compare with several state-of-the-art methods.

4.1. Datasets

APIDIS dataset. This 1 minute dataset is generated by

7 cameras, distributed around a basketball court. The can-

didate detections are computed independently at each time

instant based on a ground occupancy map, as described in

[14]. For each detection, the jersey color and its digit are

computed to define the appearance features. In short, the

jersey color is computed as the average blue component di-

vided by the sum of average red and green components, over

the foreground silhouette of the player within the detected

rectangular box. The digit feature is obtained by running a

digit-recognition algorithm in the same rectangular region.

The digit feature is inherently sporadic as it is available only

when the digit on the jersey faces the camera. The ground-

truth is obtained from [1].

Pedestrian datasets. In order to evaluate the perfor-

mance of our method in monocular views, we use publicly

available PETS-2009 S2/L1 and TUD Stadtmitte datasets.

The PETS dataset is 795-frames long, with moderate tar-

get density. However, the pedestrians wear similar dark

clothes, which makes appearance comparison very chal-

lenging. TUD Stadtmitte is 179 frames long but the tar-

gets frequently occlude each other because of the low view-

point. Detection results and the ground-truth are obtained

from [4]. Afterwards, 8-bin CIE-LAB color histograms are

computed for each channel of each bounding box, resulting

in a 24-bin appearance vector. We ignore the histogram(s) if

the overlap ratio between any two bounding boxes exceeds

5%. This makes the features sporadic over time.

4.2. Evaluation metrics

We adopt the widely used CLEAR MOT metrics[11] to

evaluate our approach. The Multi-Object Tracking Accu-

racy (MOTA) combines missed targets (MS), false positives

(FP) and identity switches (SW) into one number that varies

from 0 to 100%. A tracker output and the ground-truth are

defined to be matched if their intersection-over-union ra-

tio exceeds 50% (respectively, if the distance < 30 cm for

APIDIS). The Multi-Object Tracking Precision (MOTP) av-

erages the bounding box overlap (respectively, distance be-

tween the ground truth and the tracker output for APIDIS)

over all tracked targets, as a measure of localization accu-

racy.

4.3. Implementation details

The algorithm has been implemented on MATLAB run-

ning on a 2.4 GHz dual core CPU with 4 GB RAM.

Pedestrian datasets. For these datasets, a node is as-

signed to each individual detection. The size of the tempo-

ral neighborhood in spatio-temporal graph is chosen to be

10 frames. Thus, T = 10. In the current implementation,

the graph construction step takes around 3 minutes for the

PETS dataset and 2 minutes for the TUD Stadtmitte and the

label propagation step is still the bottleneck. It takes around

1/2 hour for the TUD Stadmitte dataset and 1 hour for PETS

for the label propagation step. When processing time is an

issue, we can envision processing the dataset in batches or

running a low-level but reliable tracker first to reduce the

complexity (which we perform in the APIDIS dataset).

APIDIS dataset. We first pre-process the data by ag-

gregating some of the detections into tracklets based on

a spatio-temporally local but reliable tracker. The advan-

tages are twofold. On the one hand, it reduces the num-

ber of nodes in the graph, thereby reducing the complexity

of the algorithm. On the other hand, it helps to aggregate

the appearance feature(s) along the tracklet in order to in-

fer the appearance more accurately. The local but reliable

tracker associates unambiguous detections between succes-

sive frames. Two detections are supposed to be unambigu-

ous if the distance between them is less than 15 cm, and if

there are no other detections within that distance. The re-

sulting tracklets define the nodes in our graphs. The neigh-

borhood of the spatio-temporal graph is defined to extend

the tracklet size by 100 frames on each side, which allows

us to connect tracklets that are up to 4 seconds apart. In the

exclusion graph, the neighborhood of a node consists of all

the nodes that overlap in time. Finally, the appearance fea-

tures of a tracklet is inferred by averaging the appearance

features of the detections along the tracklet. The low-level

tracker takes 15 seconds, graph construction takes 1 minute

and label optimization step takes 5 minutes. With an opti-

mized implementation, it is possible to reach the real-time

performance.

4.4. Results

To better compare with the literature, we consider two

versions of our proposed method. The first one does not

take appearance into consideration. It uses only the spatio-

temporal information in order to label the nodes in the

graph. Thus, we construct only the spatio-temporal and

the exclusion graphs. This is equivalent to setting α0 = 1
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and αp = 0, ∀p �= 0 in our algorithm. In contrast, the

second one considers both the spatio-temporal and the ap-

pearance features. In this case, we use α0 > α1 (α0 for

the spatio-temporal graph and α1 for the appearance graph)

for the TUD and PETS datasets. This constrains the spatio-

temporal consistency more strictly than the appearance con-

sistency. The reason is that the targets wear similar clothes

and therefore have similar appearances in the datasets. In

the experiments, we use α0 = 1 and α1 = 0.5.

The tracking results for the TUD Stadtmitte dataset are

presented in Table 1. We can see that our method is much

Method MOTA MOTP SW
Continuous energy [7] 60.5 65.8 7

Discrete-continuous [8] 61.8 63.2 4

GMCP tracker [27] 77.7 63.4 0

Our method (without appearance) 62.6 73.5 17

Our method (with appearance) 79.3 73.9 4

Table 1. Performance on the TUD Statdmitte dataset. The results

are extracted from [8] and [27].

better than [7, 8] and [27] in terms of both MOTP and

MOTA. This is because our approach is able to connect the

detections even if they are far in time, resulting in longer

and consistent tracks. However, our method is slightly

worse than [27] in terms of ID switches. This might be

because [27] uses motion information in a global manner

in order to ensure a smooth motion while connecting the

tracklets, which is not the case in our formalism.

The results on the PETS-2009 S2/L1 dataset are pre-

sented in Table 2. The k-shortest paths [10], the continu-

Method MOTA MOTP SW
Discrete-continuous [8] 89.30 56.40 -

Continuous energy [7] 81.84 73.93 15

K-shortest paths [10] 80.00 58.00 28

GMCP tracker [27] 90.30 69.02 8

Global appearance [23] 81.46 58.38 19

Iterative hypothesis [5] 83.0 74.0 -

Our method (without appearance) 82.75 71.21 25

Our method (with appearance) 91.01 70.99 5

Table 2. Tracking results on the PETS 2009-S2/L1 dataset. The

results are obtained from [8, 5, 27].

ous optimization [7] and the discrete-continuous optimiza-

tion [8] approaches do not use the appearance features.

Therefore, we compare them to the first version of our ap-

proach, which does not use appearance information. Sim-

ilarly, the global appearance approach [23], the iterative

hypothesis testing [5] and the GMCP tracker [27] use ap-

pearance features. We compare them to the second version

of our approach, which uses appearance features. Specifi-

cally, since the global appearance approach [23] and the it-

We varied α1 ∈ [0.1, 1] but did not observe significant performance

changes.

erative hypothesis testing [5] also consider the fact that the

color histograms are sporadic, the comparison with them is

more relevant. From Table 2, we can see clearly that our

proposed approach outperforms several contemporary ap-

proaches. When the appearance features are ignored, the

MOTA metric is better than [10] but worse than [8]. This

might be because of the fact that [8] exploits higher-order

motion models, whereas our formalism does not. We as-

sert the fact that a linear motion is implicit in our formal-

ism in order to justify our superior performance against

[10] and [23], which do not take the motion information

into account. When the appearance information is incorpo-

rated, the performance is improved significantly from 82%

to 91%. Moreover, the switching error is drastically re-

duced.

The result for APIDIS dataset is presented in Table 3. As

before, first we computed the results without using any ap-

pearances. This is done by setting α0 = 1, α1 = 0, α2 = 0,

where the indices 0, 1 and 2 correspond to the spatio-

temporal,the color and the digit graphs respectively. Af-

terwards, we use both the digit and the color features. As

the color feature is less discriminant (because the players

from the same team wear jersey of the same color) than

the digit feature, we set α1 < α2. Empirically, we use

α0 = 1, α1 = 0.1, α2 = 0.5. Even though our ap-

Method MOTA MOTP SW
Iter. hypothesis (no app.) [5] 85.83 60.83 18

Iter. hypothesis (color+digit) [5] 86.19 60.90 12

Global app. (no app.) [23]∗ 72.91 53.13 108

Global app. (color+digit) [23]∗ 73.07 53.15 110

Our method (no app.) 81.25 57.13 49

Our method (color+digit) 83.80 60.01 45

Table 3. Results on the APIDIS dataset. The tracking results have

been provided by the authors of [5, 23]. [*] Since the detection

results for [23] are different than that for the [5] and ours, we re-

lax the distance threshold to 40 cm (from 30 cm) for the tracking

results of [23].

proach performs significantly better than [23], the results

are slightly worse than [5]. The reason might be because

of the fact that iterative hypothesis testing framework asso-

ciates two nodes only when the connection is sufficiently

reliable than alternative connections. This prevents poten-

tial track switches. This is well-reflected by the switching

errors.

Some sample frames of our tracking results are presented

in Figure 2. In case of the APIDIS dataset, the frames from

camera 1 and 6 are stitched in order to provide an entire

view of the field. Two typical failure cases in our tracking

system are depicted below. In Figure 3, an identity switch

is depicted. The identities of two targets are momentarily

switched. This might be because of the fact that we do not

consider the appearance feature if the overlap between their

We performed a grid search on for various values of α1 and α2.

2005



Figure 2. Sample frames from the PETS2009-S2/L1 (first row), the TUD Statdmitte (second row) and the APIDIS (third and fourth rows)

datasets. For the sake of clarity, a tail of 50 frames is added. The numbers represent the distinct IDs of the tracks.

bounding boxes exceeds 5%. Therefore, neither the posi-

tion nor the appearance disambiguates the identities of the

targets. Later on, when the targets are separated, the al-

gorithm is able to assign the correct label to the targets.

Frame 703 Frame 708 Frame 710 rame 710 Frame 712 rame 712me 712 

Figure 3. Instantaneous identity switch. In frame 703, targets

18 and 22 come close. Their bounding boxes overlap significantly

in the frame 708 and their identities are momentarily switched.

Afterwards, the targets separate and their identities are retained in

frames 710 and 712.

Figure 4 shows an example of false positive. This happens

because of the spurious detections provided by the object

detector. Our current approach does not model such spu-

rious detections, which are typically characterized by their

low confidence values, explicitly.

Frame 7073 3 33 3333333 33 3 3 Frame 7077 Frame 7082 Frame 7094 

Figure 4. False positive. A false target 3 appears in frame 7073

and lasts until frame 7094.

5. Conclusion
In this paper, we focus on the problem of multi-object

tracking under sporadic appearance features. For this, a
number of distinct graphs are constructed in order to capture
the spatio-temporal (including the exclusivity constraint),
and the appearance information. Afterwards, we formu-
late the multi-object tracking as a consistent labelling prob-
lem in the associated graphs, and provide an efficient so-
lution based on DC (Difference of Convex) functions pro-
gramming. The effectiveness of the proposed approach
has been demonstrated with several challenging datasets.
One limitation of the approach is the scalability of the
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method with respect to the number of nodes. To some
extent, it has been taken care by pre-processing the de-
tections into tracklets. Nevertheless, algorithmic improve-
ments are possible. This issue will be investigated in the
future works.
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A. Appendix 1
Our problem can be written as

φ(Y ) = f(Y )− g(Y )

≤ f(Y )−
[
g(Y (k)) +∇g�(Y (k))(Y − Y (k))

]

= f(Y )−∇g�(Y (k))Y − g(Y (k))

+∇g�(Y (k))Y (k)

:= φ̂(Y, Y (k)) (5)

where the inequality in Equation 5 is due to the convexity

of g(Y ). We can see that φ(Y ) ≤ φ̂(Y, Y (k)), ∀Y ∈ P with

the equality holding only when Y = Y (k). In the literature,

φ̂(Y, Y (k)) is called the majorization of φ(Y ) [24]. The

solution
Y (k+1) = argmin

Y ∈P
φ̂(Y, Y (k)) (6)

follows the inequality

φ(Y (k+1)) ≤ φ̂(Y (k+1), Y (k)) ≤ φ̂(Y (k), Y (k)) = φ(Y (k)),

where the first inequality and the last equality follow from

Equation 5 and the second inequality follows from Equa-

tion 6. Therefore, above iterate in Equation 6 monotoni-

cally decreases φ(Y ). In order to solve the convex problem

in Equation 6, we use the projected gradient method [13] as

Y (l+1) = ProjP
(
Y (l) − βl∇φ̂(Y (l), Y (k))

)
, (7)

where Proj is the projection onto the probability simplex P ,

and βl is the step size. We use a fixed step size βl = 1/λmax

where λmax is the largest eigenvalue of L
(+)
eff .
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