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Abstract

In interactive image search, a user iteratively refines his
results by giving feedback on exemplar images. Active se-
lection methods aim to elicit useful feedback, but traditional
approaches suffer from expensive selection criteria and
cannot predict informativeness reliably due to the impreci-
sion of relevance feedback. To address these drawbacks, we
propose to actively select “pivot” exemplars for which feed-
back in the form of a visual comparison will most reduce the
system’s uncertainty. For example, the system might ask,
“Is your target image more or less crowded than this im-
age?” Our approach relies on a series of binary search
trees in relative attribute space, together with a selection
function that predicts the information gain were the user to
compare his envisioned target to the next node deeper in a
given attribute’s tree. It makes interactive search more effi-
cient than existing strategies—both in terms of the system’s
selection time as well as the user’s feedback effort.

1. Introduction
In image search, the user often has a mental picture of

his or her desired content. For example, a shopper wants to

retrieve those catalog pages that match his envisioned style

of clothing; a witness wants to help law enforcement locate

a suspect in a database based on his memory of the face.

Therefore, a central challenge is how to allow the user to

convey that mental picture to the system. Due to the well

known semantic gap, one-shot retrieval is generally insuf-

ficient. Instead, an interactive approach lets the user help

the system refine the top-ranked results via iterative feed-

back [3, 19, 13, 23, 11, 26, 5]. The most common form of

interaction consists of binary relevance feedback, in which

the user declares certain exemplars to be relevant or irrel-

evant, and then the system updates its relevance metric in

response. With each round of feedback, the results are re-

ranked, and the top-ranked images (ideally) gradually con-

verge on the user’s target.

While this basic pipeline is well established, an impor-

tant question remains: On which images should the user

? 
More 

Less 

 Are the shoes you seek 
 more or less feminine than               ? 

     … more or less bright than              ? 

Figure 1. Our image search approach actively requests feedback

on selected images in terms of visual attribute comparisons. To

formulate the optimal question to ask next, it unifies an entropy

reduction criterion with binary search trees in attribute space.

give feedback? Typically, the system simply displays a

screen full of top-ranked images, leaving a user free to pro-

vide feedback on any of them. This strategy has the appeal

of simultaneously showing the current results and accepting

feedback [26]. However, the images believed to be most

relevant need not be most informative for reducing the sys-

tem’s uncertainty. As a result, this passive approach may

fail to explore relevant portions of the feature space, and

can waste interaction cycles eliciting redundant feedback.

Thus, methods to actively select exemplar images for

user feedback are needed. The goal is to solicit feedback on

those exemplars that would most improve the system’s no-

tion of relevance. Many existing methods exploit classifier

uncertainty to find useful exemplars (e.g., [23, 11, 3, 26]).

However, traditional approaches have two main limitations.

First, the imprecision of binary relevance feedback (“Image

X is relevant; image Y is not.”) makes it difficult to reli-

ably eliminate database images as irrelevant since the sys-

tem does not know what about the images led to the user’s

response. This makes it ambiguous how to extrapolate rel-

evance predictions to other images, which in turn clouds

the active selection criterion. Second, existing active selec-

tion techniques add substantial computational overhead to

the interactive search loop, since ideally they must scan all

database images to find the most informative exemplars.

We introduce a novel approach that addresses these

shortcomings. We propose to guide the user through a

coarse-to-fine search using a relative attribute image rep-

resentation. At each iteration of feedback, the user pro-

vides a visual comparison between the attribute in his en-
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visioned target and a “pivot” exemplar, where a pivot sep-

arates all database images into two balanced sets. Further-

more, we show how to actively determine along which of

multiple such attributes the user’s comparison should next

be requested, based on the expected information gain that

would result. See Figure 1.

The approach works as follows. Given a database of im-

ages, we first construct a binary search tree for each relative

attribute of interest (e.g., “pointiness”, “shininess”, etc.).

Initially, the pivot exemplar for each attribute is the database

image with the median relative attribute value. Starting at

the roots of these trees, we predict the information gain that

would result from asking the user how his target image com-

pares to each of the current pivots. To compute the expected

gain, we introduce methods to estimate the likelihood of the

user’s response given the feedback history. Then, among the

pivots, the most informative comparison is requested, gen-

erating a question to the user such as, “Is your target image

more, equally, or less pointy than this image?” Following

the user’s response, the system updates its relevance predic-

tions on all images. It also moves the current pivot down

one level within the selected attribute’s tree (unless the re-

sponse is “equally”, in which case we no longer need to

explore this tree). The procedure iterates until the user is

satisfied with the top-ranked results.

In technical terms, our problem setting demands repeat-

edly estimating the total expected error reduction over all

unlabeled database images, as a function of requesting any

possible comparison from the human searcher. Whereas

prior information-gain methods would require a naive scan

through all database images for each iteration, the proposed

attribute search trees allow us to limit the scan to just one

image per attribute. Thus, our method is efficient both for

the system (which analyzes a small number of candidates

per iteration) and the user (who locates his content via a

small number of well-chosen interactions).

We demonstrate our method applied to several realistic

search tasks for shoes, people, and scenes. We quantify

its advantages over conventional passive and active meth-

ods [8, 23]. The results strongly support our pivot-based

approach as an efficient means to guide user feedback. For

example, in a database of∼15K images, a user can typically

locate his exact target image with just 12 rounds of feed-

back, whereas the standard approach requires 21 rounds to

reach the same level of accuracy.

Our main contributions are: (1) a new format for visual

search in which the system guides the user through a series

of informative visual comparisons, (2) an entropy reduction

criterion that exploits the proposed attribute binary search

trees for both efficiency and regularization, (3) a technique

to predict the likelihood of a user’s comparative response

given their feedback history, and (4) a probabilistic formu-

lation for using relative attribute feedback.

2. Related Work
Feedback in image search. The benefits of interactive

feedback for image search are well studied [3, 19, 26, 5]. In

practice, the images displayed to the user for feedback are

usually those ranked best by the system’s current relevance

model. However, if a user is cooperative, it can be more

valuable to present a mix of probable relevant and irrelevant

examples for feedback. If feedback is binary, with the user

labeling examples as relevant (positive) or irrelevant (nega-

tive), the selection can naturally be cast as an active learning

problem: the best examples to show are those that the rele-

vance classifier is most uncertain about [13, 23, 11, 26].

Notably, prior efforts to display the exemplar set that

minimizes uncertainty were forced to resort to sampling or

clustering heuristics due to the combinatorial optimization

problem inherent when categorical feedback is assumed

(e.g., [18, 3, 5]). In contrast, we show that eliciting compar-
ative feedback on ordinal visual attributes naturally leads to

an efficient sequential selection strategy, where each com-

parison is guaranteed to decrease the predicted relevance of

half of the unexplored database images.

Attributes for image search. Visual attributes are se-

mantic properties of objects (e.g., “fuzzy”, “plastic”) that

serve as a middle ground between low-level features (e.g.,

color, texture) and high-level categories. Attributes (or

“concepts”, their counterpart in multimedia retrieval) are

known to provide an effective representation for image

search [15, 10, 20, 22, 4, 8, 25, 7], especially since they per-

mit content-based keyword queries [10, 22, 7]. While often

treated as categorical (“is smiling” vs. “is not smiling”), at-

tributes can more generally be modeled as continuous or

relative properties (“is smiling more than X”) [16, 21].

While binary relevance feedback is most common, our

recent work [8] shows how relative visual attributes are use-

ful for feedback (e.g., “retrieve faces that are smiling more
than this one”). While this work also uses relative attribute

feedback, the similarity to [8] ends there. Whereas in [8]

search proceeds in a standard passive manner, with the user

offering feedback on images of his choosing among the top-

ranked ones, our main idea is an actively guided search pro-

cedure based on a sequence of system-requested compar-

isons. This entails novel methods for active selection with

binary attribute trees (Sec. 3.2) and user response predic-

tion (Sec. 3.4). Furthermore, we refine the simple counting

model of [8] to account for uncertainty in attribute predic-

tions (Sec. 3.3).

Active testing and “20 questions”. Active testing meth-

ods choose a series of useful “tests” (e.g., features to

extract) or label requests (“does the bird have a yellow

beak?”) [6, 2]. In the case where a human answers the

tests, attributes are well-suited to query for intermediate la-

bels that will lead to the right category label, as shown for

298



bird labeling [2]. Our work shares the spirit of rapidly re-

ducing uncertainty through a sequence of useful questions.

However, our aim is distinct. Active testing entails selecting

queries to classify a single novel image efficiently, whereas

we select queries to efficiently find a target in a database

of images. Moreover, our approach solicits visual com-
parisons—key to eliminating irrelevant content in search—

whereas prior work solicits traditional image labels.

Active classifier training with attributes. More distant

from our work, other work investigates training classifiers

with actively selected attribute labels. By modeling object

and attribute relationships [24, 9, 14], one can request the

most useful labels to refine the classifiers. Our goal is very

different: we do active feedback requests for image search,

not classification, and our approach requests visual compar-

isons, not attribute labels.

3. Approach
A user initiates a search with a multi-attribute query

(e.g., “black high-heels”) or a sample image (e.g., a snap-

shot of a pair of heels she saw). Our approach then re-

fines the results. It interacts with the user through multiple-

choice questions of the form: “Is the image you are looking

for more, less, (or equally) A than image I?”, where A is

a semantic attribute and I is an exemplar from the database

being searched. Our goal is to generate the series of such

questions that will most efficiently narrow down the rele-

vant images in the database, so that the user finds his target1

in few iterations. To this end, at each iteration we will ac-

tively select a comparison for the user to provide, that is,

the (A, I) pair which yields the expected maximal infor-

mation gain. Rather than exhaustively search all database

images as potential exemplars, however, we consider only a

small number of pivot exemplars—the internal nodes of bi-

nary search trees constructed for each attribute. The output

of the system is the list of database images, sorted by their

predicted relevance.

After reviewing an existing method [16] to predict rela-

tive attribute strengths (Sec. 3.1), we explain how we con-

struct attribute binary search trees (Sec. 3.2). Next we

present our model of image relevance that accounts for the

user’s attribute-based feedback (Sec. 3.3). Finally, we in-

troduce our active selection approach to determine which

comparison should be requested next (Sec. 3.4).

In the following, let I = {I1, . . . , IN} denote the N im-

ages in the database, each of which has a corresponding im-

age descriptor x1, . . . ,xN (e.g., GIST, bag of words, etc.).

Suppose we have an attribute vocabulary consisting of M
properties A1, . . . , Am, . . . , AM . For example, for a shoe

1Throughout we use “target” to refer to the imagined visual content of

the user. It could be a literal image s/he has seen before, or simply a mental

model of content of interest.

shopping database, those properties might be “pointiness”,

“shininess”, “heel height”, etc. We use Am(Ii) to denote

the true strength of an attribute m in image Ii—that is, as

would be perceived by a human viewer.

3.1. Relative Attribute Predictions

In order to utilize attribute-based comparisons, we need

to estimate the strength of each attribute in each database

image. To this end, following [16], we learn one ranking

function per attribute. For each attribute m, we obtain a set

of ordered pairs Om = {(Ii, Ij)}, for which each image Ii

has greater strength of attribute m than image Ij does, as

well as a set of unordered pairs Em = {(Ii, Ij)}, for which

both images in a pair exhibit the attribute equally. All such

pairs come directly from comparative human judgments.

For each attribute m, we use its associated training pairs

to learn a (possibly kernelized) ranking function: am(Ii) =
wT

mxi, which maps the image descriptor xi for image Ii

to its real-valued attribute strength. The projection pa-

rameters wm are optimized using a large-margin ranking

objective. It aims to satisfy the ordered pair constraints

above, such that wT
mxi > wT

mxj , ∀(Ii, Ij) ∈ Om, and

wT
mxi ≈ wT

mxj , ∀(Ii, Ij) ∈ Em, while at the same time

maintaining a wide margin in the output ranks of the nearest

training examples. See [16] for details.

These predicted attribute values am(Ii) are what we can

observe for image Ii. They are a function of (but distinct

from) the “true” latent attribute strengths Am(Ii). We will

refer to both below. Using standard features and kernels, we

find that 75% of held-out human comparisons are preserved

by attribute predictors trained with ∼200 pairs. Thus, they

are quite reliable; more elaborate features [10] or learning

algorithms [12] would likely improve them even further.

3.2. Attribute Binary Search Trees

For each attribute m = 1, . . . , M , we construct a bi-

nary search tree. The tree recursively partitions all the

database images into two balanced sets, where the key at

a given node is the median relative attribute value occur-

ring within the set of images passed to that node. To

build the m-th attribute tree, we start at the root with all

database images, sort them by their predicted attribute val-

ues am(I1), . . . , am(IN ), and identify the median value.

Let Ip denote the “pivot” image—the one that has the me-

dian attribute strength. Those images exhibiting the at-

tribute less than Ip, i.e., all Ii such that am(Ii) ≤ am(Ip),
are passed to the left child, while those exhibiting the at-

tribute more, i.e., am(Ii) > am(Ip), are passed to the right

child. Then the splitting repeats recursively, each time stor-

ing the next pivot image and its relative attribute value at the

appropriate node.

Note that both the relative attribute ranker training and

the search tree construction are offline procedures; they are
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performed once, before handling any user queries.

Already, one could imagine a search procedure that

walks a user through one such attribute tree, at each suc-

cessively deeper level requesting a comparison to the pivot,

and then eliminating the appropriate portion of the database

depending on whether the user says “more” or “less”. How-

ever, there are two problems with such a simple approach.

First, we cannot assume that the attribute predictions are

identical to the attribute strengths a user will perceive; thus,

a hard pruning of a full sub-tree is error-prone. Second, this

approach fails to account for the variable information gain

that could be achieved depending on which attribute is ex-

plored at any given round of feedback. Therefore, we pro-

pose a probabilistic representation of whether images sat-

isfy the comparison constraints (Sec. 3.3), and we use the

pivots to limit the pool of candidate images that are evalu-

ated for their expected information gain (Sec. 3.4).

3.3. Predicting the Relevance of an Image

Now we explain how we predict the relevance of a

database image, given the user’s comparative feedback. Let

yi ∈ {1, 0} denote the binary label for image Ii, which

reflects whether it is relevant to the user (matches his tar-

get), or not. Let F = {(Ipm , r)k}T
k=1 denote the set

of comparative constraints accumulated in the T rounds

of feedback so far. The k-th item in F consists of a

pivot image Ipm
for attribute m, and a user response r ∈

{“more”, “less”, “equally”}. The final output of our search

system will be a sorting of the database images Ii ∈ I ac-

cording to their probability of relevance, given the image

content and all user feedback: P (yi = 1|Ii,F).
Let Sk,i ∈ {0, 1} be a binary random variable represent-

ing whether image Ii satisfies the k-th feedback constraint.

For example, if the user’s k-th comparison yields response

r = “more”, then Sk,i = 1 if the database image Ii has

attribute m more than the corresponding pivot image Ipm .

The probability of relevance is thus the probability that all

T feedback comparisons in F are satisfied:

P (yi = 1|Ii,F) =
T∑

k=1

log P (Sk,i = 1|Ii), (1)

where we use a sum of log probabilities rather than a prod-

uct for numerical stability.

The probability that the k-th individual constraint is sat-

isfied given that the user’s response was r for pivot Ipm is:

P (Sk,i = 1|Ii) =

⎧⎪⎨
⎪⎩

P (Am(Ii) > Am(Ip)) if r = “more”

P (Am(Ii) < Am(Ip)) if r = “less”

P (Am(Ii) = Am(Ip)) if r = “equally”.

To estimate these probabilities, we map the attribute pre-
dictions am(·) to probabilistic outputs, by adapting Platt’s

method [17] to the paired classification problem implicit in
the large-margin ranking objective. Specifically, this yields:

P (Am(Ii) > Am(Ip)) =
1

1 + exp(αm(am(Ii)− am(Ip)) + βm)
(2)

P (Am(Ii) = Am(Ip)) =
1

1 + exp(γm|am(Ii)− am(Ip)|+ δm)
, (3)

where the sigmoid parameters are learned using the sets

Om and Em from above. In particular, to learn αm and

βm, we use pairs with “more” judgments from Om as pos-

itive paired-instances, and “less” judgments as negative in-

stances. For γm and δm, we use “equally” pairs from Em as

positive labels, and both “more” and “less” responses from

Om as negative instances. Note P (Am(Ii) < Am(Ip)) =
1 − P (Am(Ii) > Am(Ip)). When computing the user re-

sponse likelihoods in Sec. 3.4, we normalize these values so

the three probabilities (“more”/“less”/“equally”) sum to 1.

Our probabilistic model of relevance accounts for the

fact that predicted attributes can deviate from true perceived

attribute strengths. In contrast, prior work using relative at-

tribute feedback [8] makes hard decisions, simply counting

how many predicted attribute values satisfy the user’s con-

straints to measure relevance. We find that a hard pruning of

images on irrelevant branches of an attribute tree eliminates

the true target for 93% of the queries, clearly supporting the

proposed probabilistic formulation.

3.4. Actively Selecting an Informative Comparison

The proposed binary trees serve to guide the active ex-

emplar selection and reduce its computational overhead,

rather than completely eliminate images from considera-

tion. Our system maintains a set of M current pivot im-

ages (one per attribute tree) at each iteration, denoted P =
{Ip1 , . . . , IpM

}. The pivots are initially the root pivot im-

ages from each tree. During active selection, our goal is to

identify the pivot in this set that, once compared by the user

to his target, will most reduce the entropy of the relevance

predictions on all database images. Note that selecting a

pivot corresponds to selecting both an image as well as an

attribute along which we want it to be compared; Ipm
refers

to the pivot for attribute m.

Entropy reduction objective. Given the feedback history

F , we want to predict the information gain across all N
database images for each pivot in P . We will request a

comparison for the pivot that most reduces the total rele-

vance entropy over all images—or equivalently, the pivot

that minimizes the expected entropy when used to augment

the current set of feedback constraints.
The entropy based on the feedback thus far is:

H(F) = −
NX

i=1

X

�

P (yi = �|Ii,F) log P (yi = �|Ii,F), (4)
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where � ∈ {0, 1}. Let R be a random variable denoting
the user’s response, R ∈ {“more”, “less”, “equally”}. We
select the next pivot for comparison as:

I∗
p = arg min

Ipm∈P

X

r

P (R = r|Ipm ,F) H(F ∪ (Ipm , r)). (5)

The basic idea of expected error reduction was first pro-

posed in [18] for active learning in text classification, and

variations have been explored in vision tasks (e.g., [2, 9,

14]). Our formulation is novel in that we survey only the

attribute pivots, exploiting the special structure of rankable

visual properties for substantial computational savings. In

contrast, existing work resorts to sampling heuristics [3],

approximations [5], or simply small data pools [9] to make

the problem tractable.

Furthermore, as we will show in the results, the pivots

also enhance selection accuracy, by essentially isolating

those images likely to impact relevance predictions. Intu-

itively, if a user has ruled out a subtree (“Target is bluer than

image with blueness X .”), it is likely redundant (low info

gain) to ask how the target compares to more data on that

path (“Is target bluer than image with blueness X − Y ?”),

i.e., ask the user to comment on something even less blue

than the previous exemplar.

User response likelihood. Optimizing Eqn. 5 requires es-

timating the likelihood of each of the three possible user re-

sponses to a question we have not issued yet. We develop

three possible strategies to estimate it. In each case, we use

cues from the available feedback history to form a “proxy”

for the user, essentially borrowing the probability that a new

constraint is satisfied from previously seen feedback.
For the first strategy, which we call All Relevant, we use

all relevant database images as the proxy. The assumption is
that the images that are relevant to the user thus far are (on
the whole) more likely to satisfy the user’s next feedback
than those that are irrelevant. This is reminiscent of active
classifier training, where posteriors estimated with the cur-
rent classifier are used as weights in the expected entropy
reduction of acquiring a new label. Ideally we would av-
erage the P (Sc,i = 1|Ii) values among only the relevant
images Ii, where c indexes the candidate new feedback for
a (yet unknown) user response R. Of course, we can only
predict relevance, so we compute the weighted probability
of each possible response R:

Pall(R = r|Ipm ,F) =
1

N

NX

i=1

P (yi = 1|Ii,F)P (Sc,i = 1|Ii),

(6)

where the all subscript stands for All Relevant.
The second strategy, which we call Most Relevant, is

similar, but uses only our current best guess for the target

image as the proxy:

Pmost(R = r|Ipm
,F) = P (Sc,b = 1|Ib), (7)

Pointy: more or less?  Shiny: more or less?  1 2 

3 

4 

Figure 2. We request feedback on images that elicit the most in-

formation, using binary search trees to focus the active selection.

In this sketch, M = 2 attribute trees are shown. Images with the

same color outline are the pairs considered at each round, and the

number in this color marks the image chosen at this round. Red

arrows denote the user’s responses. Here, first the user is asked to

compare his target to the boot pivot (1) in terms of pointiness; then

he is asked to compare it to (2) in terms of shininess, followed by

(3) in terms of pointiness, and so on. Best viewed in color.

where Ib is the database image that maximizes P (yi =
1|Ii,F), for i = 1, . . . , N .

The third strategy, which we call Similar Question, ex-

amines all previously answered feedback requests, and

copies the answer from the question that is most similar to

the new one. We define question similarity in terms of the

Euclidean distance between the pivot images’ descriptors

plus the similarity of the two attributes involved in either

question. We quantify the latter by the Kendall’s τ correla-

tion between the ranks they assign to a set of validation im-

ages. For example, this reflects that “feminine” and “heel

height” are more aligned than “feminine” and “grayness”.

Let r∗k denote the response to the most similar question k
found in the history F for the new pivot Ipm

under consid-

eration. Then we have:

Pquestion(R = r|Ipm ,F) =

{
1 if r = r∗k
0 otherwise .

(8)

We evaluate all three likelihood strategies in the results.

Recap of interaction loop. At each iteration, we present

the user with the pivot selected with Eqn. 5 and request the

specified attribute comparison. In order for the user to mon-

itor the search progress and stop if an image similar to his

target has been found, we also show him the current top-

ranked images. If further feedback is given, we first update

F with the user’s new image-attribute-response constraint.

Then we either replace the pivot in P for that attribute with

its appropriate child pivot (i.e., the left or right child in the

binary search tree if the response is “less” or “more”, re-

spectively) or terminate the exploration of this tree (if the

response is “equally”). Note that this means that the set of

pivots consists of pointers into the binary trees at varying
levels. See Figure 2. This is because our active selection

criterion considers which attribute will most benefit from

more refined feedback at any point in time.
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Finally, the approach iterates until the user is satisfied

with the top-ranked results, or until all of the attribute trees

have bottomed out to an “equally” response from the user

(in which case, our method can gain no further knowledge

about the target given the available attribute vocabulary).

The cost of our selection method per round of feedback is

O(MN), where M is the size of the attribute vocabulary, N
is the database size, and M � N . In contrast, a traditional

information gain approach would scan all database items

paired with all attributes, requiring O(MN2) time.

4. Experiments
We validate with three public datasets: Shoes [1], with

the attributes from [8] (14,658 images and 10 attributes);

outdoor Scenes (2,688 images and 6 attributes); and PubFig

celebrity Faces [10] (772 images and 11 attributes). We

concatenate GIST and color features for Shoes and Faces,

and GIST alone for Scenes. To train the relative attributes

am(·) and fit the sigmoid parameters in Sec. 3.3, we use the

human judgment data provided online by [8], with about

200 image pairs per attribute. See supp. file for details.

Evaluation metrics. In order to quantify accuracy pre-

cisely, we tell the user which image to search for. That

is, for a given search session, the user is instructed to give

feedback by comparing the target we specify to the vari-

ous methods’ selected exemplars. We report the percentile
rank each method assigns to the target at each iteration, de-

fined as the fraction of database images ranker lower than

the target. Higher percentile ranks are better; the ideal

method would rank the target at the top of the search results

page after very few iterations of feedback. Additionally, we

measure the NDCG@40 correlation between the method’s

full ranking and the ground truth ranking. Higher correla-

tions are better. To define the ground truth ranking, we sort

all database images according to their perceptual distance (a

learned metric on attributes and low-level features) from the

target, following [8]. The two metrics give complementary

information: while rank reveals how the exact target image

ranks, NDCG reveals how many images very similar to the

target are found among the top-ranked results.

Baselines. We compare our method ACTIVE ATTRIBUTE

PIVOTS against the following six methods:

• ATTRIBUTE PIVOTS is a simplified version of our

method that uses the proposed attribute trees to select

candidate images, but cycles among the attributes in a

round-robin fashion.

• ACTIVE ATTRIBUTE EXHAUSTIVE uses entropy to se-

lect questions like our method, but it evaluates all pos-

sible MxN candidate questions.

• TOP selects the image that has the current highest

probability of relevance and pairs it with a random at-

tribute. This method represents traditional interactive

methods that assume an “impatient” user for whom

feedback exemplars and search results must be one and

the same. It is similar in spirit to [8].

• PASSIVE selects a random image paired with a random

attribute for its question.

• ACTIVE BINARY FEEDBACK does not use statements

about the relative attribute strength of images, but

rather asks the user whether the exemplar is similar to

the target. This popular method uses a binary SVM to

rank images, and treats similar images as positives and

dissimilar images as negatives. It actively chooses the

image whose decision value is closest to 0, as in [23].

• PASSIVE BINARY FEEDBACK works as above, but ran-

domly selects the images for feedback.

Relative feedback methods use the same relevance pre-

diction function and only differ in the feedback they gather.

4.1. Results with Feedback by Simulated Users

To thoroughly test the methods, we first conduct exper-

iments where we simulate the user’s responses.2 We gen-

erate the response for, “Is the target image more, equally,
or less m than Ipm?” using the difference in the predicted

attribute values for the target and Ipm
. For a response of

“equally”, we use a threshold derived from the training

data. By extrapolating a sparse set of real human judgments

through a learned ranking function, we can perform large-

scale comparisons and isolate the impact of our idea from

the impact of the attribute rankers’ precision.

We initialize all attribute search methods with the same

feedback constraint. For ACTIVE BINARY FEEDBACK, we

respond with “similar” if the target and exemplar images are

within one standard deviation of the distances used for the

ground truth ranking. We initialize this method with one

positive and one negative image by peeking at the distances

between the target image and a pool of 40 images. We add

Gaussian noise to the relevance predictions of all methods in

order to reflect the discrepancy between perceived and pre-

dicted attributes. See supp. for more details. We show all

results over 200 randomly chosen queries (target images).

Comparison of likelihood models. Figure 3 compares

the three proposed methods of predicting the user response.

Most Relevant consistently outperforms the other two meth-

ods on all but the Scenes. This suggests that our best guess

at the target tends to be a sufficient proxy, having a fairly

similar attribute signature. All Relevant is slightly weaker,

indicating that isolating the most relevant instance gives a

2The protocol is related to standard validation for active learning, where

the algorithm receives the labels for those examples it queries, even if a

human is not answering “live” in the loop. Note, gathering all possible

comparisons in advance would cost $2B if paying Turkers 1 cent each!
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Figure 3. Comparing the proposed models for the likelihood of a

user’s response (higher curves are better). Best viewed in color.
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Figure 4. Comparison to existing interactive search methods

(higher and steeper curves are better). Best viewed in color.

Method/Dataset Shoes Scenes Faces

Active attribute pivots (Ours) 0.05 0.01 0.01

Active attribute exhaustive 656.27 28.20 3.42

Table 1. Selection time for one iteration of our method vs. the ex-

haustive active baseline, in seconds.

“cleaner” likelihood than attempting to refine it with our

uncertainty about each relevant instance. Similar Question
performs the best for a fraction of the iterations on Scenes,

but does poorly on Faces. This is likely because we can-

not estimate attribute similarity reliably due to the distinct

face attributes (e.g., face “chubbiness” has no strongly cor-

related attributes, whereas scene “openness” does). In all

remaining results, we use the Most Relevant method.

Comparison to existing methods. Figure 4 compares all

methods on all three datasets. Overall, our method finds the

target image most efficiently. Not only does it outperform

traditional passive selection (PASSIVE), but it also substan-

tially improves over the TOP approach. This shows that

relative attribute feedback alone (the contribution of [8])

does not offer the most efficient search; rather, our idea to

actively elicit comparisons is essential. We also see that

our full active approach outperforms the round-robin vari-

ant of our method (ATTRIBUTE PIVOTS), with an average

percentile rank 7.6% better after only 3 iterations. This

shows actively interleaving the trees allows us to focus on

attributes that better distinguish the relevant images.

Our method also outperforms ACTIVE ATTRIBUTE EX-

HAUSTIVE.3 This shows that the attribute trees serve as a

form of regularization, helping our method focus on those

comparisons that a priori may be most informative. Fur-

thermore, our method is orders of magnitude faster (see Ta-

ble 1).

The results confirm the striking advantage of attribute

feedback compared to binary relevance feedback. Binary

feedback has an advantage only in the first few iterations,

likely because we generously initialize it with 2 feedback

statements. We find that both feedback modes require sim-

ilar user time: 6.4 s for relative, and 5.5 s for binary, and

so the trends remain if we plot rank as a function of user

time (see supp). Interestingly, we find that PASSIVE BI-

NARY FEEDBACK is actually stronger than its active coun-

terpart for this data. This is likely because images near the

decision boundary were often negative, whereas the passive

approach samples more diverse instances.

In practical terms, we are interested in how many iter-

ations it takes to get the target in the top 40 most relevant

images, since that is how many images fit on a typical search

page (e.g., on Google). On average our method uses 12, 10,

and 4 iterations to place the target in the top 40 for Shoes,

Scenes, and Faces, vs. 21, 21, and 9 iterations for TOP.

Thus, our method saves a user up to 70 seconds per query.

4.2. Results with Live Users

Next, we test our method “live” in real time with Me-

chanical Turk workers. We compare its performance against

our ATTRIBUTE PIVOTS and the strongest baseline, TOP.

We issue 50 queries for Shoes-1k (a random 1000-image

subset of Shoes), Scenes, and Faces-Unique (1 image for

each of 200 individuals from the original PubFig dataset

[10], using the 6 most predictable attributes). All methods

share one simulated feedback statement at iteration 0, which

we do not plot. See supp. for details. Note, this experiment

is only possible because our method can make decisions in

real time, unlike the exhaustive active method.

Figure 5 shows the results. Consistent with the results

above, we see that typically our method ranks the target im-

age better than the baselines. We achieve a 100-200 raw

3The exhaustive baseline was too expensive to run on all 14K Shoes.

On a 1000-image subset, it does similarly as on other datasets; see supp.

303



Active attribute pivots Attribute pivots Top

Pe
rc

en
til

e 
ra

nk

Iteration Iteration Iteration

Shoes-1k Scenes Faces-Unique

Figure 5. Our method makes quick and reliable choices, allowing

the MTurk users to more efficiently find the target.
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Figure 6. Using the user’s feedback on the left, we retrieve the

images on the right at the top of the results list.

rank improvement on two datasets, and a negligible 0-10

raw rank loss on Faces. This is a very encouraging result,

given the noise inherent in MTurk responses (in spite of

our best efforts at qualification tests) and the difficulty of

predicting all attributes reliably. Our informativeness pre-

dictions on Faces-Unique are imprecise since the facial at-

tributes are difficult for both the system and humans to com-

pare reliably (e.g., it is hard to say who among two white

people is whiter). This difficulty seems to hurt all methods,

judging by their flatter curves. Since the rank metric does

not give any credit for finding an image very close to the tar-

get, we also asked a separate set of workers to judge whether

any of the top 10 ranked images were “very similar” to the

target. For Shoes-1k, our full method takes only 1.9 itera-

tions on average to find one that is very similar, whereas our

ATTRIBUTE PIVOTS require 2.4 and TOP requires 3.15.

Figure 6 shows an example search done by an MTurker.

Notice how our method generates useful comparison ques-

tions across the different attributes, quickly converging on

top-ranked images that look like the target.

Conclusion Today’s visual search systems place the bur-

den on the user to initiate useful feedback by labeling im-

ages as relevant. In contrast, our system actively guides the

search based on visual comparisons, helping a user navi-

gate the image database via relative semantic properties.

Compared to existing active and passive methods, our pivot-

based formulation is both more efficient (by orders of mag-

nitude) and more accurate in practice. Results with both

simulated and live users confirm that we can rapidly pin-

point the visual target using a series of well-chosen com-

parative queries. In future work, we plan to explore ways to

personalize results given a user’s prior search sessions.
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