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Abstract

In this paper, we raise important issues concerning
the evaluation complexity of existing Mahalanobis metric
learning methods. The complexity scales linearly with the
size of the dataset. This is especially cumbersome on large
scale or for real-time applications with limited time bud-
get. To alleviate this problem we propose to represent the
dataset by a fixed number of discriminative prototypes. In
particular, we introduce a new method that jointly chooses
the positioning of prototypes and also optimizes the Ma-
halanobis distance metric with respect to these. We show
that choosing the positioning of the prototypes and learning
the metric in parallel leads to a drastically reduced eval-
uation effort while maintaining the discriminative essence
of the original dataset. Moreover, for most problems our
method performing k-nearest prototype (k-NP) classifica-
tion on the condensed dataset leads to even better general-
ization compared to k-NN classification using all data. Re-
sults on a variety of challenging benchmarks demonstrate
the power of our method. These include standard machine
learning datasets as well as the challenging Public Fig-
ures Face Database. On the competitive machine learning
benchmarks we are comparable to the state-of-the-art while
being more efficient. On the face benchmark we clearly out-
perform the state-of-the-art in Mahalanobis metric learning
with drastically reduced evaluation effort.

1. Introduction

Among the various different classification schemes

k-nearest neighbor (k-NN) based approaches as Maha-

lanobis metric learning have recently attracted a lot of in-

terest in computer vision. Several powerful metric learn-

ing frameworks (e.g. [28, 29], [8], or [11]) have been pro-

posed that study different loss functions or regularizations.

Conceptually, these methods take advantage of prior infor-

mation in form of labels over simpler though more general

similarity measures. Significant improvements have been

(a) Euclidean (b) Metric

(c) Prototypes (d) Classification

Figure 1: Condensating a dataset by discriminative pro-
totypes: Learning the distance metric (b) and the position-

ing of the prototypes (c) in parallel allows to drastically re-

duce the evaluation effort while maintaining full discrimi-

native power. With our method k-nearest prototype classi-

fication results improve even over k-NN classification for

most problems (d).

observed for tracking [24], image retrieval [16], face iden-

tification [11], clustering [32], or person re-identification

[14].

The large-scale nature of computer vision applications

poses several challenges and opportunities to the class of

Mahalanobis metric learning algorithms. For instance one

can take the chance and learn a sophisticated distance metric

that captures the structure of the dataset, or learn multiple

local metrics that better adapt to the intrinsic characteristics

of the feature space. On larger datasets this usually leads

to lower error rates [29]. In contrast, this is challenged by

the computational burden in training and the needed label

effort. To reduce the required level of supervision, algo-
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rithms such as [8, 18] have been introduced that are able

to learn from pairwise labels. Others tackle the problem of

time complexity in learning by special optimization tech-

niques [8, 29]. Ultimately, for many applications the time

complexity in learning is not too critical. Nevertheless, one

important aspect that is often neglected is the computational

burden at test time.

One inherent drawback of Mahalanobis metric learning

based methods is that the k-NN search in high-dimensional

spaces is time-consuming, even on moderate sized datasets.

For real-time applications with limited time budget this is

even more critical. To alleviate this problem, different so-

lutions have been proposed that focus on low dimensional

embeddings. The resulting space should enable efficient re-

trieval and reflect the characteristics of the learned metric.

For instance, one can accelerate nearest neighbor search by

performing a low dimensional Hamming embedding. This

can be done by applying locality sensitive hash functions di-

rectly [16] or on kernelized data [19]. Another strategy is to

learn a low-rank Mahalanobis distance metric [29] that per-

forms dimensionality reduction. Nevertheless, a too coarse

approximation diminishes at least some of the benefits of

learning a metric. Further, special data structures as metric

ball trees have been introduced to speed up nearest neighbor

search. Unfortunately, there is no significant time gain for

high dimensional spaces.

Another technique is to reduce the number of training

samples and introduce sparsity in the samples. Ideally,

one maintains only a relatively small set of representative

prototypes which capture the discriminative essence of the

dataset. This condensation can be either seen as drawback,

as it’s likely to loose classification power, or taken as op-

portunity. In fact, the theoretical findings of Crammer et
al. [6] provide even evidence that prototype-based methods

can be more accurate than nearest neighbor classification.

One reason might be that the condensation reduces overfit-

ting. Choosing the positioning of the prototypes wisely can

lead to a drastically reduced effort while maintaining the

discriminative power of the original dataset.

Addressing challenges and opportunities of larger

data sets and applications with limited time budget, this

paper proposes to bridge the gap between Mahalanobis

metric learning and discriminative prototype learning as

illustrated in Figure 1. In particular, we are interested in

joint optimization of the distance metric with respect to the

discriminative prototypes and also of the positioning of the

prototypes. This combination enables us to drastically re-

duce the computational effort while maintaining accuracy.

Furthermore, we provide evidence that in most cases the

proposed Discriminative Metric and Prototype Learning

(DMPL) method generalizes even better to unseen data

compared to recent Mahalanobis metric k-NN classifiers.

The rest of this paper is structured as follows: In Section

2 we give a brief overview of related work in the field of

Mahalanobis metric and prototype learning. Succeeding, in

Section 3 we describe our Discriminative Metric and Proto-

type Learning (DMPL) method as an alternating optimiza-

tion problem. Detailed experiments on standard machine

learning datasets and on the challenging PubFig [20] face

recognition benchmark are provided in Section 4.

2. Related Work
Compared to other classification models Mahalanobis

Metric Learning provides with k-NN search not only rea-

sonable results but is also inherently multi-class and directly

interpretable, based on the assigned neighbors. Several dif-

ferent methods (e.g., [28], [8], or [11]) have been proposed

that show good results for many real world problems. A

particular successful instance of this class of algorithms is

the approach of Weinberger et al. [28, 29], which aims at

improving k-NN classification by exploiting the local struc-

ture of the data. It mimics the non-continuous and non-

differentiable classification error of the k-NN scheme by a

convex loss function. The main idea bases on two simple in-

tuitions. First, the k-NNs of each sample that share the class

label (target neighbors) should move close to each other.

Second, no differently labeled sample should invade this lo-

cal k-NN perimeter plus a safety margin. This safety margin

allows for focusing on samples near the local k-NN deci-

sion boundary and ensures that the model is robust to small

amounts of noise.

Prototype methods such as learning vector quantization

(LVQ) share some of the favorable characteristics of Maha-

lanobis metric learning. They deliver intuitive, interpretable

classifiers based on the representation of classes by proto-

types. The seminal work of Kohonen [17] updates proto-

types iteratively based on a clever heuristic. A data point

attracts the closest prototype in its direction if it matches

the class label. Vice-versa it is repelled if it shows a differ-

ent class label. Various extensions have been proposed that

modify the original update heuristic. For instance, updating

both the closest matching and non-matching prototype or

restricting the updates close to the decision boundary. Oth-

erwise LVQ can show divergent behavior.

Seo and Obermayer [23] explicitly avoid the divergent

behavior by an underlying optimization problem. The main

idea is to treat the prototypes as unit size, isotropic Gaus-

sians and maximize the likelihood ratio of the probability of

correct assignment versus the total probability in the Gaus-

sian mixture model. The resulting robust learning scheme

updates only prototypes close to the decision boundary by

incorrectly classified samples. Also, the work of Crammer

et al. [6] derives a loss-based algorithm for prototype posi-

tioning based on the maximal margin principle. LVQ arises

as special case of this algorithm. Remarkably, the au-
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thors provide evidence that prototype methods follow max-

margin principles. However, for this class of algorithms

classification is solely based on a predefined metric.

Therefore, to alleviate this issue variants have been pro-

posed that learn some parameters of the distance function.

For instance, Parametric Nearest Neighbor (P-NN) and its

ensemble extension (EP-NN) [36] learn weights on the Eu-

clidean distance function. Bonilla and Robles-Kelly [1] pro-

pose a probabilistic discriminative generalization of vector

quantization. They jointly learn discriminative weights on

soft-assignments to prototypes and further the prototype po-

sitions. Nevertheless, as these approaches learn only re-

stricted parameters of the distance function these may miss

different scalings or correlations of the features.

In contrast to these previous works we want to exploit

a more general metric structure. In particular, we are

interested in improving runtime and classification power

by combining the favorable characteristics of Mahalanobis

metric learning and prototype methods. Our method inte-

grates a large margin formulation with focus on samples

close to the decision boundary. Further, it naturally inte-

grates with k-NN, which may be in some situations the fa-

vorable choice over nearest neighbor assignment.

3. Discriminative Mahalanobis Metric and
Prototype Learning

In the following, we derive a new formulation that jointly

chooses the positioning of prototypes and also optimizes

the distance metric with respect to these. This allows us

to exploit the global structure of the data (via metric) and

to drastically reduce the computational effort during evalu-

ation (via prototypes). Finally, this reduces evaluation time

and improves k-NP classification.

3.1. Problem Formulation

For the following discussion let us introduce a train-

ing set X = {(x1, y1) , . . . , (xN , yN )}, with N samples

xi ∈ R
D and corresponding labels yi ∈ {1, 2, . . . , C}.

Let Z = {(z1, y1) , . . . , (zK , yK)} correspond to a set of

K prototypes. Then, the squared Mahalanobis distance be-

tween a data sample xi and a prototype zk is defined as

d2M(xi, zk) = (xi − zk)
�M(xi − zk), (1)

where M � 0 is a symmetric positive semidefinite matrix.

Our goal is to estimate the metric matrix M and the proto-

types {zk}K1 in parallel. The idea to fuse metric and proto-

type learning is general and can be adapted to various Ma-

halanobis metric learning methods. In particular, we adopt

ideas of LMNN [28] and locally establish a perimeter sur-

rounding each data sample. Prototypes with different class

label should not invade this perimeter plus a safety margin.

This behavior can be realized by minimizing the following

energy:

εi(M, {zk}Kk=1) = (1− μ)
∑
j�i

d2M(xi, zj) (2)

+μ
∑
j�i

∑
l

(1− yil)ξijl(M),

where j � i indicates that zj is a target prototype of sam-

ple xi and μ ∈ [0, 1] is a weighting factor. The first term

attracts target prototypes zj while the second term emits a

repelling force on differently labeled prototypes zl that in-

vade the perimeter. We refer to these invaders as impostor

prototypes. Note that the pairwise label yil is zero if yi �= yl
and one otherwise.

If a prototype invades the local perimeter plus margin is

monitored by

ξijl(M) =
[
1 + d2M(xi, zj)− d2M(xi, zl)

]
+
, (3)

where [a]+ = max(a, 0) is the hinge loss. It activates only

if the prototype is closer to the sample xi than the target pro-

totype zj plus margin. Finally, the overall energy function

is a sum of the local contributions:

ε(M, {zk}Kk=1) =
N∑
i=1

εi(M, {zk}Kk=1). (4)

In order to minimize the energy function we use an al-

ternating optimization based on gradient descent w.r.t. the

prototype positions {zk}Kk=1 and the distance metric M. At

each iteration we take a sufficiently small gradient step and

monitor boundary conditions as M � 0. In the following,

we derive alternating update rules in terms of prototypes

and the metric matrix.

3.2. Learning Prototypes

First, we derive the update rules w.r.t. to the prototype lo-

cations. As the particular role of an individual prototype as

target or impostor is ambiguous on global scope we express

the gradient

∂ε(M, {zk}Kk=1)

∂zk
=

N∑
i=1

∂εi(M, {zk}Kk=1)

∂zk
(5)

as sum over the (unambiguous) gradient contribution of

each data sample xi on the respective prototype zk. A pro-

totype can be a target neighbor (k = j), an impostor (k = l),
or simply irrelevant as too far away. Therefore, we specify

the gradient contribution of a sample on a prototype as fol-

lows:
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∂εi(M, {zk}Kk=1)

∂zk
=

⎧⎪⎪⎨
⎪⎪⎩

∂εi(M,{zk}Kk=1)
∂zj

if k=j

∂εi(M,{zk}Kk=1)
∂zl

if k=l

0 otherwise.

(6)

Taking into account that

∂d2M(xi, zk)

∂zk
= −2(xi − zk)

�M (7)

we can re-write the gradients defined in Eq. (6). Substi-

tuting Eq. (7) into Eq. (6) for a target prototype (k = j,

attraction force) we get

∂εi(M, {zk}Kk=1)

∂zj
= (1− μ)

∑
j�i

−2(xi − zj)
�M (8)

+ μ
∑

l s.t. (i,j,l)∈I
−2(xi − zj)

�M,

where I = {(i, j, l)|ξijl > 0} is the set of active sample-

impostor triplets. Similarly, we get

∂εi(M, {zk}Kk=1)

∂zl
= − μ

∑
l s.t. (i,j,l)∈I

−2(xi − zl)
�M (9)

for an impostor prototype (k = l, repelling force). Finally,

we can specify the iterative update rule at iteration t for the

prototypes as

z
(t+1)
k = z

(t)
k − η

∂ε

(
M(t),

{
z
(t)
k

}K

k=1

)

∂z
(t)
k

, (10)

where η denotes the learning rate. Reasonable choices for

the initial prototypes are all variants of clustering algo-

rithms such as k-means or using training samples as initial-

ization. We emphasize that compared to the update rules of

LVQ or P-NN [36] our formulation is more general and na-

tively integrates in k-NP classification. Further, it accounts

for different scalings and correlations of the feature space.

3.3. Distance Metric Learning

Next, we derive the update rule w.r.t. the distance met-

ric in terms of the local contribution of each sample to its

neighboring prototypes. Hence, the derivative can be ex-

pressed as

∂ε(M, {zk}Kk=1)

∂M
=

N∑
i=1

∂εi(M, {zk}Kk=1)

∂M
. (11)

To estimate M, gradient descent is performed along

the gradient defined by the set of active sample-impostor

triplets I. We can write the gradient as

∂εi
(

M, {zk}Kk=1

)
∂M

= (1− μ)
∑
j�i

Cij (12)

+ μ
∑

(j,l) s.t. (i,j,l)∈I
(Cij − Cil) ,

where Cik denotes the outer product of pairwise differ-

ences. This is the gradient of the distance function d2M:

Cik = (xi − zk)(xi − zk)
� =

∂d2M(xi, zk)

∂M
. (13)

Eq. (12) conceptually tries to strengthen the correlation

between the sample and target prototypes while weakening

it between the sample and impostor prototypes. Finally, we

can specify the iterative update rule at iteration t as

M(t+1) = M(t) − η

∂ε

(
M(t),

{
z
(t)
k

}K

k=1

)

∂M(t)
. (14)

Initially, we start with the Euclidean distance (M = I).

Note that after each iteration we check if M induces a

valid pseudo-metric. To satisfy metric conditions we use

a projection operator similar to [13] by back-projecting

the current solution on the cone of positive semidefinite

(p.s.d.) matrices.

3.4. Evaluation Complexity

In the following, we want to to assess the efficiency of

our proposed method at test time. For that purpose we

derive the computational complexity and compare it to re-

lated algorithms. Since M is p.s.d. we can decompose it as

M = L�L. This allows to express the squared distance in

Eq. (1) by computing the Euclidean distance after perform-

ing a linear transformation as

d2M(xi, zk) = (xi − zk)
� L�L︸︷︷︸

M

(xi − zk) = (15)

= (Lxi − Lzk)�(Lxi − Lzk) = (16)

= ||L(xi − zj)||2. (17)
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One advantage of this formulation is that for all proto-

types {zk}Kk=1 the linear transformation Lzk can be pre-

computed prior to testing. Further, the test sample Lxi has

to be projected only once at test time. The complexity of

the matrix-vector multiplication is O(D2), where D is the

feature dimensionality. Then, the complexity of comparing

one test sample with one prototype is O(D2 +D). Straight

forward for the k-NP search we arrive at O(D2 + DKC),
where K is the number of prototypes for each of the C
classes. In typical scenarios this reduces to O(DKC) as

the matrix-vector multiplication is negligible due to D2 �
DKC. Thus, the k-NP search is linear in terms of the over-

all number of prototypes and the feature dimensionality.

The comparison to related methods reveals some in-

teresting results. If we assume the same number of an-

chor points a local-linear SVM has the same complexity

O(DCA), where A is the number of anchor points. For

a kernel SVM and the kernelized hashing approach of [19]

the evaluation scales linearly with the number of support

vectors S or kernel samples times the kernel complexity

Kc, O(SKc). The locality-sensitive hashing approach of

[16] scales with O(MD). M is the length of the short list

of samples generated by approximate search in Hamming

space [5]. This list is considered for exact search under

the learned metric. k-NN based approaches scale linearly

with the number of training samples N , O(DN). Note

that in typical scenarios the overall number of prototypes is

considerable smaller than the number of training samples:

KC � N .

Thus, if we recapitulate the characteristics of the differ-

ent approaches our method scales linearly with the number

of prototypes. This allows for classification with a fixed

time budget which is beneficial for time critical applica-

tions. Succeeding, we show that we outperform methods

that have a lower computational complexity. Further, we are

comparable to, or even improve over methods with a sim-

ilar or higher complexity. Only drastically more complex

methods show better results.

4. Experiments
To show the broad applicability of our method we con-

duct experiments on various standard benchmarks with

rather diverse characteristics. The goals of our experiments

are twofold. First, we want to show that with a drastically

reduced prototype set we get comparable or even better re-

sults than related work. Second, we want to prove that we

are more efficient in evaluation. This is clearly beneficial

for large scale or real-time applications.

4.1. Machine Learning Databases

In the following, we benchmark our proposed method on

MNIST [10], USPS [15], LETTER [10] and CHARS74k

[3]. First, we give a brief overview of the databases. Sec-
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Figure 2: Benchmark of our proposed method (DMPL)
to baseline approaches: K-Nearest Prototype Learning

(kNPL, Eq. (10)), Large Margin Nearest Prototype (LMNP,

Eq. (14)) learning, k-means and plain LMNN [29]. We

compare the 1-NP classification error in relation to the num-

ber of prototypes per class. The numbers in parenthesis de-

note the classification error with 100 prototypes per class.

ond, we compare our method Discriminative Metric and

Prototype Learning (DMPL) to several baselines such as

learning only the prototypes or the distance metric. Finally,

we compare the performance related to the evaluation com-

plexity between our method and state-of-the-art approaches.

The MNIST database [10] of hand written digits contains

in total 70,000 images in one train-test split. 60,000 sam-

ples are used for training and 10,000 for testing. The images

have a resolution of 28×28 pixels and are in grayscale. Sim-

ilarly USPS [15] contain grayscale images of hand written

digits with a resolution of 16 × 16 pixels. 7291 images are

organized for training and 2007 images for testing.

In contrast, the LETTER [10] database contains a large

number of synthesized images showing one of the 26 capital

letters of the English alphabet. The images are represented

as 16 dimensional feature vector which describes statistical

moments and edge counts.

Chars74K [3] contains a large mixed set of natural and

synthesized characters. The images comprise either one of

the 26 capital or lowercase letters and digits. Thus, the

dataset features 62 classes. 7,705 characters are cropped of

natural images, 3,410 are hand drawn and 62,992 are syn-

thesized. Similar to [36] we apply a color space conversion

to grayscale and resizes each image to 8 × 8 pixels. Fur-

ther, the database is split into one train-test set where 7400

samples are organized for testing and the rest for training.

For MNIST we perform a dimensionality reduction of

the raw features by PCA to a 164 dimensional subspace, to

make the learning more tractable. For all other databases we

use the raw data without calculating any complex features,

in order to get a fair comparison.

In Figure 2 we compare our method (DMPL) to base-

line approaches on the respective benchmarks. Therefore,

we plot the classification error in relation to the number of

prototypes. In particular, we report the following results:
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Methods MNIST USPS LETTER Chars74K
Prototype DMPL 1-NP (40 prototypes) 2.13 5.68 3.13 19.81

Methods DMPL 1-NP (100 prototypes) 1.83 4.93 2.48 13.93

DMPL 3-NP (200 prototypes) 1.66 4.83 2.50 14.05

Parametric NN (40 prototypes) [36] 3.13 7.87 6.95 29.46

Ensemble of P-NN (800 prototypes) [36] 1.65 4.88 2.90 19.53

Nearest Nearest Neighbor 1-NN,3-NN 2.92 - 3.09 4.88 - 5.08 4.30 - 4.35 17.97 - 19.99

Neighbors LMNN 1-NN,3-NN [28, 29] 1.70 - 2.09 4.73 - 4.78 2.93 - 3.54 17.07 - 19.08

SVMs Linear [9] 8.18 8.32 23.63 35.08

Kernel [4, 7, 25, 2] 1.36 - 1.41 4.24 - 4.58 2.12 - 2.80 16.86

Locally linear Lin. SVM + LCC (4,096 anchor p.) [34, 33, 27] 1.64 - 2.28 4.38 4.12 20.88

classifiers Lin. SVM + DCN (L1 = 64,L2 = 512) [22] 1.51 - - -

Local Linear SVM (100 anchor p.) [21] 1.85 5.78 5.32 25.11

LIB-LLSVM + OCC [35] 1.61 3.94 6.85 18.72

ALH [31] 2.15 4.19 2.95 16.26

Locality sensitive Spectral hashing [30, 12] 4.25 - 5.27 8.72 - 13.35 7.42 - 33.67 26.03

Hashing Fast Image Search for Learned Metrics (ε = 0.6) [16] 5.51 5.53 8.55 -

KLSH [19] (10,000 kernel samples) 6.15 5.68 7.38 88.76

Spherical Hashing [12] 2.22 5.13 19.00 16.65

Table 1: Comparison of classification error rates on MNIST, USPS, LETTER and Chars74k. Our method (denoted

DMPL) outperforms several state-of-the-art approaches while being more efficient. With 200 prototypes we improve even

over LMNN which requires the full dataset for classification. The top performing method of each category is highlighted.

K-NP refers to the number of prototypes used for classification.

DMPL vs . . . LMNN [28] SVM [9] LLC [27, 34, 33] LL-SVM [21] P-NN [36] EP-NN [36] FSLM [16]

1
0
0 Rel. Compl. 60 1

100 40 1 1
2.5 8 1.94

Rel. Error + 0.13% - 6.35% - 0.45% to + 0.19% - 0.02% - 1.30% + 0.18% - 3.68%

2
0
0 Rel. Compl. 30 1

200 20 1
2

1
5 4 0.97

Rel. Error - 0.05% - 6.52% - 0.62% to + 0.02% - 0.19% - 1.47% + 0.01% - 3.86%

Table 2: Relative comparison of the evaluation complexity and the difference of classification errors using MNIST [10].

We compare DMPL 1-NP with 100 and DMPL 3-NP with 200 prototypes vs related state-of-the-art. For instance, compared

to LMNN DMPL 3-NP with 200 prototypes is 30 times faster and has a 0.05 percentage points lower classification error.

The direct assignment of the k-means cluster label, thus ig-

noring discriminative information in learning at all. Sec-

ond, we compare to training standard LMNN on the pro-

totypes. Here, the main goal is to stress the difference be-

tween optimizing for k-NP classification or k-NN classifi-

cation. Third, we compare to only tuning the positioning

of the prototypes, referred as k-Nearest Prototype Learning

(kNPL). Finally, we optimize only the distance metric as-

suming fixed prototypes, referred as Large Margin Nearest

Prototype (LMNP) learning.

For the following discussion we focus on the respective

results on MNIST visualized in Figure 2 (a), although the

relative results are comparable on the different datasets. As

expected LMNN and k-means perform initially worse than

the prototype based methods. In case of LMNN the per-

formance gap is rather big. By increasing the number of

prototypes the gap gets smaller as the k-means centroids

behave more similar to the actual data samples. However,

ultimately for MNIST a performance gap of about 4.5% re-

mains. Comparing LMNN to LMNP reveals that it is bene-

ficial to optimize the distance metric in respect to the proto-

types. The drop in terms of classification error is about 4%

with 100 prototypes. Interestingly, k-means is more com-

petitive compared to LMNN right from the beginning. Nev-

ertheless, it is outperformed by both, kNPL and also LMNP.

Comparing the baselines to our discriminative metric and

prototype learning (DMPL) method reveals that the power

lies in the combination of distance metric learning and pro-

totype methods. DMPL outperforms LMNN by roughly

4.5% and k-means by 1.3%. As MNIST is a rather com-

petitive dataset this is a reasonable performance gain.

Next, in Table 1 we benchmark our method to vari-

ous state-of-the-art approaches. These include recent lo-

cal linear methods, support vector machines, nearest neigh-

bor and prototype based methods. Further, Table 2 gives

a relative comparison of the evaluation complexity of se-

lected methods and their classification error on MNIST. The

performance comparison between local linear methods as
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LL-SVM [21] and prototype methods is especially interest-

ing as a nearest prototype classifier is essentially a local lin-

ear classifier. The decision boundaries are perpendicular to

the connection lines between the prototypes.

The first important finding is that DMPL outperforms

methods that either use a predefined or learned metric

even though being more efficient. Compared to vanilla

k-NN search with plain Euclidean distance the main advan-

tage is the ability to model different scalings and correla-

tions of the feature space. Further, using less prototypes

DMPL improves over a recent prototype based method [36]

that learns only a relevance weighting of the features. One

advantage is that DMPL is able to account for different cor-

relations of the feature space. Compared to LMNN the flex-

ibility remains to discriminatively adapt the positioning of

the prototypes.

Second, like DMPL locality sensitive hashing based ap-

proaches focus on efficient retrieval. Nevertheless com-

pared to our method they trade off classification power for

efficiency. The results show that kernelized hashing needs

a large number of kernel samples to obtain comparable re-

sults. Standard LSH approaches need to consider a large

number of samples for exact search, diminishing at least

some of the speed advantages.

Finally, compared to kernel SVMs our method is outper-

formed only slightly while being able to perform classifica-

tion with a fixed time budget. For kernel SVMs it is known

that the number of support vectors scale linearly with the

size of the dataset. Local linear methods such as LL-SVM

[21] bypass this issue. Interestingly, they share our com-

putational complexity. On MNIST LL-SVM matches our

performance, however on USPS and LETTER we are able

to improve over LL-SVM. Only local linear methods using

a much larger number of anchor points are able to improve

over our method.

Recapitulating the different results and relating them to

the evaluation complexity of related works it reveals that we

get competitive results and are more efficient.

4.2. Public Figures Face Database

In the following, we demonstrate our method for face

identification on the Public Figures Face Database (Pub-

Fig) [20]. PubFig is a large, real-world face dataset con-

sisting of 58,797 images of 200 people. The evaluation set

contains 42,461 images of 140 individuals. PubFig is con-

sidered as very challenging as it exhibits huge variations in

pose, lighting, facial expression and general imaging and

environmental conditions. To represent the faces we use

the description of visual face traits [20]. They describe the

presence or absence of 73 visual attributes, such as gender,

race, hair color etc. Further, we apply a homogeneous χ2

feature mapping [26]. For the face identification benchmark

we organize the data similar to the existing verification pro-
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Figure 3: Face identification benchmark on the Pub-
Fig database [20]: The data is organized in 10

non-overlapping folds for cross-validation. (a) Precision /

Recall curves by ranking and thresholding classifier scores.

Numbers in parenthesis denote the precision and std. dev. at

full recall. (b) Difference of precision per person between

DMPL and LMNN.

tocol in 10 folds for cross-validation. Therefore, we split

the images of each individual into 10 disjoint sets.

In Figure 3 (a) we benchmark our method using 100

prototypes per class to recent Mahalanobis metric learning

methods. We report the face identification performance in a

refusal to predict style. In that sense, recall means the per-

centage of samples which have a higher classifier score than

the current threshold. Precision means the ratio of correctly

labeled samples.

In particular, we show that DMPL generalizes better than

LMNN [28], ITML [8] or LDML [11] which require on the

full training set for classification. At full recall the perfor-

mance difference to LMNN is 6.00%. Further, comparing

the results to the baseline approaches kNPL and LMNP re-

veals once more that the power lies in the combination of

metric learning and prototype learning. In Figure 3 (b) we

compare the relative change in classification accuracy per

person between our method and LMNN. Only for a small

number of classes the performance drops slightly while for

the vast number the performance increases. Thus, there is

no bias in terms of overrepresented classes. Intuitively, one

interpretation is that the fixed number of prototypes helps to

compensate for overfitting.
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5. Conclusion
In this work we presented a novel method to condense a

dataset to a fixed number of discriminative prototypes. In

particular, we jointly choose the positioning of prototypes

and also optimize the Mahalanobis distance metric with

respect to these. This leads to a drastically reduced effort

at test time while maintaining the discriminative essence

of the original dataset. Our method performing k-nearest

prototype classification on the condensed dataset leads to

even better generalization compared to k-NN classification.

To show the merit of our method we conducted several ex-

periments on various challenging large-scale benchmarks.
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