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Abstract

We present a method to identify and exploit structures
that are shared across different object categories, by us-
ing sparse coding to learn a shared basis for the ‘part’ and
‘root’ templates of Deformable Part Models (DPMs).

Our first contribution consists in using Shift-Invariant
Sparse Coding (SISC) to learn mid-level elements that can
translate during coding. This results in systematically
better approximations than those attained using standard
sparse coding. To emphasize that the learned mid-level
structures are shiftable we call them shufflets.

Our second contribution consists in using the resulting
score to construct probabilistic upper bounds to the exact
template scores, instead of taking them ‘at face value’ as is
common in current works. We integrate shufflets in Dual-
Tree Branch-and-Bound and cascade-DPMs and demon-
strate that we can achieve a substantial acceleration, with
practically no loss in performance.

1. Introduction

Deformable Part Models (DPMs) [9, 8] have been es-
tablished as a robust framework to tackle a broad range of
problems in object recognition, but a main impediment to
their broader application is their computation time. In this
work we use the models of [8] and focus on accelerating
multiple-category detection by sharing computation.

Part score computation is the first, and most time-
consuming step in the pipeline of object detection with
DPMs; at this stage Histogram-of-Gradient (HOG) features
[3] are convolved with part filters to provide local part
scores, which are then combined to deliver object scores.
This second stage of part combination can be efficiently im-
plemented using low-constant linear-time algorithms such
as Generalized Distance Transforms (GDTs) [9] or faster
Branch-and-Bound alternatives, such as Dual-Tree Branch-
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Figure 1: We introduce shufflets as a mid-level basis for
object representation; what distinguishes shufflets is that the
basis elements are ‘shiftable’, namely a single shufflet, like
the corner in the top-left, can be used at many locations to
reconstruct both part (top) and root (bottom) filters.

and-Bound (DTBB) [16]; the real bottleneck is the front-
end convolution with the part filters.

In this work exploit the redundancy that exists among the
part filters of multiple categories to reduce the cost of com-
puting part scores. For this, we learn a common, ‘shared’,
basis to reconstruct the part and root filters; this basis serves
as a mid-level interface between parts and HOG features.

This approach was recently advocated in [29, 12], while
[17, 33, 27] have pursued similar ideas, either by replac-
ing the 32-dimensional inner products of HOG cells with
lookup-based approximations [17, 33] or by building a com-
mon basis for multiple part filters [27]. Along a comple-
mentary path, [6] developed a highly-optimized frequency
domain acceleration technique for part score computation.
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Figure 2: A dictionary of 128 3× 3 shufflets learned with Shift-Invariant Sparse Coding (SISC).

More recently [4] used hashing to efficiently retrieve the ap-
proximate top-K scoring templates at every candidate part
position. Our work presents advances with respect to these
works in the following aspects:

First, regarding quality of approximation, compared to
[29] we obtain a better approximation for the same number
of terms, by allowing the mid-level parts to translate.

Second, regarding detection accuracy, unlike [27, 33,
29] who take the midlevel-based approximation ‘at face
value’, we only use it as a rough initial estimate of the part
scores, which is then refined around a subset of locations
shortlisted based on the approximation. For this we use the
probabilistic bounding technique of [17], and thereby attain
virtually identical performance to the DPMs of [8].

Third, unlike [6] who compute the part scores densely we
have the option of computing part scores ‘on demand’, i.e.
at given locations, which is useful for cascaded detection.

Fourth, by virtue of being ‘shiftable’ our midlevel parts
can be used as a common basis to reconstruct both the part
and the root filters. This is not straightforward for the tech-
niques of [29, 27], which require predefining the filter size.

Finally, even though our method is linear in the number
of categories -unlike the constant complexity of [4]- it has
the advantage of coming with controllable accuracy, and we
demonstrate that it yields virtually identical results as [8].

In particular we combine the proposed shufflets with the
Dual-Tree Branch-and-Bound technique [16, 17] which was
originally developed to accelerate the stages following part
computation. We use shufflets to construct probabilistic up-
per bounds for the part scores, and use these bounds to drive

branch-and-bound to a small set of candidate object loca-
tions. Our algorithm eventually computes the exact val-
ues of the part scores and the correct object score, but only
around the locations shortlisted by the preliminary bound-
ing stage. This spares us from computing the exact part
scores at locations that do not merit it.

We quantitatively evaluate our method and demonstrate
that it allows for a multi-fold speedup over the methods of
[8, 11], while yielding virtually identical results. Our im-
plementation will be available from [1].

2. Previous Work

The idea of using shared parts to detect multiple cat-
egories has its roots in the earliest days of recognition
[7, 14, 37, 5], but its application to detection with statis-
tical object models started later. A ground-breaking work
was [32] who proposed the sharing of weak learners for
multi-view and multi-class object detection, using region-
based features as inputs to decision stumps. In [25] this
idea was applied to the implicit shape models ISM [21]
to learn a library of shared contour parts, while the ISM
was also extended to multi-view [30] and multi-class [23]
recognition by employing a shared dictionary across dif-
ferent views/categories; more recent work in [28] revisited
the dictionary construction stage to ensure a more distinc-
tive per-class distribution of votes for multi-class detection.
However, since most of these works rely on voting, where
correspondence information is lost, the performance of the
raw, voting-based detector is substantially lower than that
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of DPMs, as demonstrated in [28].
Data-driven approaches to discovering shared structures

in object categories include [10], who used agglomera-
tive clustering to recover hierarchical, shape-based repre-
sentations, [31] where co-segmentation was used to extract
shared structures among similar categories, the test hierar-
chy work of [36] as well as a host of works around convolu-
tional learning of deep networks [35, 20, 15, 19]. These
works have consistently demonstrated that the learned
shared parts correspond to generic grouping rules at the
lowest levels and more semantic configurations at the higher
parts of the hierarchy.

Part sharing for DPMs has recently been explored from
the multi-task/transfer learning perspective, examining the
improvements in classification attained by transferring in-
formation across categories; in particular part sharing in
[26] and root sharing in [2] were demonstrated to facili-
tate the learning of category models from smaller number
of training images. The sparselets work of [29] introduced
a sparse coding-based approach to express multiple part fil-
ters on a common basis and thereby accelerate detection
with DPMs; in [12] this was shown to improve accuracy
in large-scale category classification, if properly integrated
during training. In [27] the steerability of the part filters
was enforced during training, and was shown to result in
both better training and faster testing. Even though shuf-
flets could potentially be integrated in training, we have not
explored this direction yet. In that respect when it comes to
part sharing for DPMS, the most relevant works are those
covered in the introduction.

3. Shufflets: shiftable mid-level parts
We start by describing the operation that we want to ac-

celerate through our mid-level basis. The score of a filter
p at position y is expressed as the inner product of a weight
vector wp and a HOG feature hy , sp(y) = 〈wp,hy〉, with
wp ∈ RD. For a part filter of size v · h = (6 · 6) we have
D = v · h · d = (6 · 6 · 32) where d = 32 is the size of
each HOG cell. So every part requires roughly a thousand
multiplications per candidate location.

Our goal is to recover a basis b of B vectors to approx-
imate a large set of weight vectors wp, p = 1 . . . P . Once
this basis is available, we can perform the high-dimensional
inner products once with the basis elements and then lin-
early combine their scores to approximate all of the the part
scores, by linearity:

wp '
∑
b∈Ip

αp(b)bb (1)

〈wp,hy〉 '
∑
b∈Ip

αp(b)〈bb,hy〉 (2)

where αp is the expansion vector for the p-th part and Ip

indicates the non-zero elements of the vector for part p.
When working with multiple categories/viewpoints the

cost of computing the convolution with the midlevel parts
will eventually become amortized. This approach can thus
be understood as cutting the computation cost down from a
thousand operations per location to the number of nonzero-
elements in αp, L = ‖αp‖0.

Coming now to finding a good basis, b, we consider first
the basis that minimizes the `2 norm of the distortion, while
using expansion vectors of bounded `0 norm. This results
in the following sparse coding problem:

(P1) min
b,α1...αP

P∑
p=1

‖wp − bαp‖2 (3)

s.t. ‖αp‖0 ≤ L, p = 1, . . . P (4)
‖bb‖2 ≤ 1, b = 1, . . . B (5)

where bb is the b-th row of the basis. The criterion in Eq. 3
penalizes the distortion of the basis elements, the constraint
in Eq. 4 enforces the sparsity of the expansion vector and
the constraint in Eq. 5 ensures that the basis elements will
have unit `2 norm. We can find (local) minima of this non-
convex optimization problem with alternating optimization:
for given expansion coefficients the optimal basis elements
can be recovered through matrix inversion, and for given
basis elements an approximate optimizer of αp can be ob-
tained by Orthogonal Matching Pursuit (OMP) (we use the
implementation of [22]). This standard sparse coding for-
mulation was used for sparselets [29].

We propose instead to use Shift-Invariant Sparse coding,
which intuitively amounts to having ‘shiftable’ basis ele-
ments. This exploits the fact that the weight vectors are not
arbitrary high-dimensional vectors, but rather have an un-
derlying spatial structure.

Namely, instead of using a basis with arbitrary vectors of
dimension v ·h ·d, we first consider a kernel k for our basis
elements on a smaller domain of size v′ · h′ · d. We then
consider every displacement of this kernel that allows the
displaced kernel to be fully contained in the original basis
domain. This provides us with (v − v′ + 1) · (h − h′ + 1)
translated replicas of k, denoted as kν,η . Using these in
Eq. 1 and Eq. 2 we have:

wp '
∑
b∈Ip

αp(b)k
νb,ηb
b (6)

〈wp,hy〉 '
∑
b∈Ip

αp(b)〈k0,0
b ,hy+(νb,ηb)〉, (7)

where kb, νb, ηb denote the kernel and displacements corre-
sponding to the b-th basis element while hy+(νb,ηb) corre-
sponds to HOG features extracted at a position displaced by
(νb, ηb); we have used 〈kνb,ηbb ,hy〉 = 〈k0,0

b ,hy+(νb,ηb)〉 to
obtain the bottom expression.
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This illustrates the merit of this scheme: during the ap-
proximation of wp we are free to use any of the replicas
kν,η of k; but at test time we only need to convolve with
a single replica k0,0, and then use appropriately displaced
convolution scores.

Turning to learning the kernels, kk, k = 1, . . . ,K, we
consider the following optimization problem:

(P2) min
k,α1...αP

P∑
p=1

‖wp − bαp‖2 (8)

s.t. ‖αp‖0 ≤ L, p = 1, . . . , P (9)
‖ki‖2 ≤ 1, i = 1, . . . ,K (10)

bb = kvb,hb

b , b = 1, . . . B (11)

where the last constraint indicates that the replica kvb,hb

b

of kernel kb is used to form the b-th basis element. As
in P1, we face a non-convex optimization problem, so we
need to resort to alternating optimization. For known basis
elements, the expansion coefficients are obtained through
OMP, as in P1. However the estimation of the basis el-
ements is more challenging, since we no longer optimize
over an arbitrary basis b, but rather constrain the basis to be
‘shiftable’, through the set of constraints in Eq. 11.

This results in a problem where the different dimensions
of the kernel k become coupled in the objective. Its direct
solution is non-trivial, but an efficient technique for solving
this optimization problem was introduced in [13] by casting
it in the frequency domain - there the translations are turned
into multiplications with complex exponentials, and the set
of constraints in Eq. 11 becomes decoupled in the different
frequencies; we refer to [13] for further details, since we
rely entirely on their approach for basis learning.

Our main difference with the method of [13] is that we
use the `0 instead of `1 sparsity penalty on the expansion
vectors. This more aggressive sparsity cost reflects our
setup, where we only care about the number of operations,
rather than the magnitude of the coefficients.

We demonstrate in Table 1 the decrease in reconstruc-
tion error attained by our method, when compared to the
simpler sparse coding technique employed in [29]. Actually
we used the sparse coding results of [29] as initialization for
our optimization procedure, which practically ensures a bet-
ter approximation quality. For most categories we have sub-
stantial reductions, while paying the same computation bud-
get at test time. Furthermore, the approximation of the root
scores can be effortlessly achieved by our method; qualita-
tive results are provided in Fig. 3.

4. From approximate scores to score bounds
We now describe how shufflets can be used to provide

not only an estimate of the part score, but also a probabilis-
tic upper bound to it. This allows us to avoid a pitfall of

Root filters for components 1 and 3 of class ‘aeroplane’

Reconstructions using shufflets (SISC).

Original part filters, class ‘aeroplane’

Shufflet-based reconstructions (SISC)

Sparselet reconstructions, [29] (Sparse Coding)
Figure 3: Shufflet-based reconstructions of filters for class
‘aeroplane’, using a dictionary with 128 elements, 16 coef-
ficients for parts and 32 coefficients for root filters. Compar-
ing to the sparselet-based reconstructions of [29], we obtain
better localized and sharper reconstructions.

most of the existing works on fast approximate part score
computation, which take the approximated score ‘at face
value’, which incurs performance degradation as faster -and
cruder- approximations are used.

Instead, as in [17], we consider that we should be using
the shufflet-based scores only as proxies to the exact part
scores; these proxies serve to reduce the set of locations that
are considered for a subsequent, more refined estimation of
the exact part score. For this, we efficiently compute upper
bounds to the part scores, and use them in bounding-based
detection with DPMs. This guarantees accuracy, and allows
us to get the best of both worlds, namely a fast ‘bottom-up’
detection of objects with quickly computable scores, which
is then complemented by an exact, ‘top-down’ score refine-
ment around promising locations [17, 18].

Turning to how this can be achieved, we construct
bounds on the approximation error:

ε = s− ŝ = 〈w,h〉 − 〈ŵ,h〉 (12)

between the exact score s obtained by convolving with the
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Method SC SISC SC SISC SC SISC SC SISC SC SISC SC SISC
(L/B) (16/64) (16/64) (32/64) (32/64) (16/128) (16/128) (32/128) (32/128) (16/256) (16/256) (32/256) (32/256)

aeroplane 32.97 31.31 24.48 25.98 31.88 28.92 23.57 19.39 29.32 26.05 21.53 19.58
bicycle 67.02 59.57 48.66 47.10 65.74 51.59 47.63 33.65 60.70 48.37 43.67 32.87

bird 19.28 17.47 15.55 15.41 18.88 16.72 14.84 12.23 17.62 15.63 13.43 13.03
boat 12.67 12.09 9.74 10.32 12.06 11.62 9.17 8.16 10.91 10.84 8.16 8.70

bottle 36.57 33.83 28.78 28.59 35.10 31.25 27.18 21.65 32.98 28.24 24.57 21.44
bus 25.82 24.75 19.58 19.99 25.06 23.00 18.52 15.24 23.98 20.98 17.56 15.70
car 208.87 141.75 155.65 112.86 199.92 123.87 146.17 77.07 171.89 118.32 127.80 84.07
cat 27.38 25.14 21.37 21.22 27.24 23.62 20.48 16.50 25.80 21.86 18.96 17.16

chair 49.91 45.97 39.80 39.31 49.06 42.61 38.47 29.81 48.00 38.09 35.74 29.44
cow 19.59 18.78 15.23 15.66 19.35 17.72 14.50 12.11 18.17 16.56 13.34 13.03

diningtable 18.62 17.67 14.08 14.54 18.10 16.67 13.62 11.46 17.65 15.66 12.78 12.13
dog 26.63 23.95 20.89 20.72 25.93 22.80 20.30 16.22 25.06 21.01 18.70 17.06

horse 46.79 45.78 35.75 36.13 47.61 41.04 35.10 26.95 44.59 36.47 32.53 26.20
motorbike 46.98 42.53 35.07 34.48 45.94 38.96 34.06 26.17 43.10 34.31 31.65 25.38

person 597.17 359.05 455.53 270.02 589.53 326.24 431.17 202.72 540.43 326.58 403.42 229.58
pottedplant 18.91 17.51 15.46 15.48 18.38 16.82 14.70 12.25 16.67 15.60 12.94 13.03

sheep 12.51 11.68 9.86 10.00 11.97 11.23 9.16 7.85 11.01 10.47 8.00 8.46
sofa 20.70 19.57 15.82 16.03 20.50 18.45 15.21 12.55 19.61 17.09 14.12 13.28
train 31.97 31.34 24.23 25.23 31.65 28.87 23.35 19.37 30.69 25.97 22.38 19.63

tvmonitor 32.99 30.54 25.32 25.67 32.03 28.48 24.36 19.54 30.69 25.40 22.56 19.95

Table 1: Total reconstruction errors (scaled by 100) of the part filters for twenty categories, as a function of dictionary size,B,
and expansion length, L. We compare Sparse Coding [29] and our Shift-Invariant Sparse Coding-based method; we observe
that our method systematically achieves lower reconstruction errors at the same level of model complexity.

filter w and its shufflet-based approximation, ŝ, obtained
from the approximate weight vector ŵ.

We could construct a deterministic bound for ε by us-
ing Holder’s inequality, but this is practically too loose to
be useful. Instead, we treat ε as a random variable, and
construct probabilistic bounds that are valid with control-
lable accuracy. We use Chebyshev’s inequality [24] which
ensures that a zero-mean random variable X with second
moment V = E{X2} satisfies:

P (|X| > α) ≤ V

α2
. (13)

This means that with probability larger than V/α2, X
will be contained in [−α, α], or equivalently X will be
contained in [−

√
V/pe,

√
V/pe] with probability of error

smaller than pe. We can use this fact to bound ε prob-
abilistically: with a probability of error pe we will have
ε ∈ [−

√
m/pe,

√
m/pe], where m is the estimated sec-

ond moment of ε - which we will describe below. Since
ε = s− ŝ, with probability 1− pe we will have:

ŝ−
√
m

pe
≤ s ≤ ŝ+

√
m

pe
, (14)

which provides upper and lower bouns for s in terms of ŝ.
What remains is to express the second moment of ε in a
manner that can be efficiently computed. For this, expand-
ing Eq. 12 we get:

ε = 〈w − ŵ,h〉 =
∑
c

εc, where (15)

εc =

D∑
d=1

(w[c, d]− ŵ[c, d])h[c, d] (16)

with c ranging over the C HOG cells comprising a part fil-
ter, and d ranges over the 32 HOG cell dimensions. Namely,
for every cell c we are taking the inner product between
then part score approximation error w[c, ·] − ŵ[c, ·] and
the associated HOG cell, h[c, ·]. We assume that the re-
construction error terms w[c, d] − ŵ[c, d] are zero-mean,
independent and identically distributed (iid) random vari-
ables, and use the `2 norm of the reconstruction error vector
to form an empirical estimate of their second moment, i.e.
Vc =

1
D

∑D
d=1 (w[c, d]− ŵ[c, d])

2. We can then see εc in
Eq. 16 as the weighted average of D iid variables, which
means that its second moment will be:

E{ε2c} = Vc‖h[c]‖22. (17)

where h[c] indicates the vector formed from the c-th HOG
cell. What we gain in this way is that instead of computing
a 32-dimensional inner product per HOG cell, we only need
to multiply the two quantities on the right of Eq. 17; Vc can
be precomputed, while the right term is computed once per
HOG cell, and reused across all parts.

Pushing this on, we can consider that the individual error
contributions in Eq. 15 are independent over c, which means
that we can express the second moment of ε as follows:

E{ε2} =
∑
c

E{ε2c} =
∑
c

Vc‖h[c]‖22 (18)

The last expression provides us with the quantity m used
in Eq. 14 to construct the upper and lower bounds to the
score. The quantities involved in this bounding scheme are
illustrated in Fig. 4 for a single part.
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(a) Input (b) Exact score, s

(c) Second moment, m (d) Shufflet-based estimate, ŝ

(e) Lower bound, s, pe = .1 (f) Upper bound, s, pe = .1

Figure 4: Part score approximation and bounding: our goal
is to rapidly bound the value of the part score s shown on the
top right. The bound we propose in Eq. 14 is formed from
two quantities, a shufflet-based approximation ŝ, in (d) and
an estimate of the approximation error’s second moment,
shown in (c). These two are combined to form an interval
that contains the actual value with a certain probability of
error pe. The values of the lower and upper bounds for pe =
0.1 are shown in (e) and (f) respectively.

4.1. Integration with DPM detection

We now describe how we integrate the bound obtained
above with the Dual-Tree Branch-and-Bound (DTBB)
method [16, 17]; for lack of space, we refer to [16, 17] for
details, and intend to provide a thorough presentation in a
forthcoming technical report.

In [16] Branch-and-Bound is used to bypass Generalized
Distance Transforms (GDTs); this can result in substantial
speedups for the part combination phase. However in [16]
we consider the part scores to be computed in advance of
DTBB, while this is actually the main bottleneck in detec-
tion with DPMs. Instead, following [17], we now integrate
into DTBB our efficient upper bound of the part scores.

In DTBB we rely on upper bounding the quantity:

µsd = max
x∈Xd

max
x′∈X′

s

s[x′] +B[x′, x], (19)

which indicates the maximal contribution from a set of part
positions X ′

s to a set of object positions Xd; s[x′] is the ap-
pearance term at part location x′ andB[x′, x] is the geomet-

ric consistency between part x′ and the object location x.
Since maxx∈X f [x]+g[x] ≤ maxx∈X f [x]+maxx∈X g[x],
we can bound Eq. 19 as:

µsd ≤ max
x′∈X′

s

s[x′]︸ ︷︷ ︸
S

+ max
x∈Xd

max
x′∈Xd

B[x′, x] (20)

Further λsd = minx∈Xd
maxx′∈Xs s[x

′] + B[x′, x] is
used in [16] and is lower bounded as:

min
x′∈X′

s

s[x′]︸ ︷︷ ︸
S

+ min
x∈Xd

max
x′∈Xs

B[x′, x] ≤ λsd. (21)

The computation of the bounds relevant to the geometric
term, B[x′, x] exploits the fact that Xs, Xd are rectangu-
lar, and is detailed in [16]. Coming to bounding the unary
terms, the approach of [16] has been to compute the exact
part scores at every location s[x] and then obtain S, S. As
the domains Xs are organized in a kd-tree the latter maxi-
mization can be rapidly performed in a fine-to-coarse man-
ner, but the computation of s[x] was not avoided.

Instead we propose to accelerate the computation of S, S
by initially sidestepping the computation of s[x] using the
probabilistic bound of Eq. 14: the terms s = ŝ[x]−

√
mx/p

and s = ŝ[x] +
√
mx/p involved in Eq. 14 are with

probability 1 − pe lower and upper bounds of s[x] respec-
tively. Based on these we can upper and lower bound S
as follows: S = maxx′∈X′

s
s[x′] ≤ maxx′∈X′

s
s[x′] and

S = minx′∈X′
s
s[x′] ≥ minx′∈X′

s
s[x′], and thereby use

s, s as surrogates for s[x] in DTBB.
We note that we use s, s as surrogates for s only in

the first phase of DTBB. As soon as Branch-and-Bound
converges to singleton intervals, we evaluate the exact
part scores, s[x]; as we show in the experimental section,
this boosts performance when compared to using only the
midlevel-based approximation. This more elaborate com-
putation however is performed around a drastically reduced
set of points, namely around those image locations that sur-
vive the first, quick bounding phase. Our method thereby
combines the speed of shared part filter computation with
the accuracy of DPMs.

4.2. Combination with Cascaded DPMs

In [8] the authors exploit the fact that the DPM score is
expressed as the accumulation of the part scores to devise a
cascaded detection algorithm: after computing the contribu-
tion of each part to the overall object score, the computation
stops for any location where the sum falls below a conser-
vative threshold.

In order to accelerate the first stage of their algorithm, [8]
downproject the HOG features to a lower, five-dimensional
space obtained through PCA. This results in fewer multi-
plications per HOG cell-bin, but can distort the obtained
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result. The remedy used in [8] is to use separate conserva-
tive thresholds for the PCA-based part scores, and estimate
them from the training data.

We can replace the PCA-based approximation of [8] with
our faster, shufflet-based approximation. Instead of using
(36 · 5) operations per location, we only need L operations,
with L being 16, or 32. Even though we have the option of
using our bounding-based scheme to compute upper bounds
throughout, we can now avoid it altogether, since the em-
pirically computed thresholds for cascades can take into ac-
count the distortion due to the shufflet approximation. This
makes the part score computation even faster.

5. Results
We start with a qualitative illustration of the merit of our

approach using the bicycle class of the PASCAL VOC chal-
lenge; identical qualitative results have been obtained for
the other classes, but are omitted to save space. We report
Average Precision scores on all classes in Table 2.

On the left side of Fig. 5 we provide precision-recall
curves for bicycle detection when using (a) the ‘golden stan-
dard’ Truncated Distance Transform (TDT) detector of [11]
and (b) the raw shufflet score for different combinations of
basis size, B, and expansion size, L (we use 2L terms for
the larger root filters). As expected, increasing the size of
the basis and the expansion improves performance, but there
still remains a gap in performance.

However when taking even the weakest combination of
B,L parameters (B = 128, L = 16) and combining it with
the probabistic bounding scheme of the previous section,
we observe on the right side that the performance of the
shufflet-based detector becomes practically indisitnguish-
able from that of [11]. Moreover we observe that the exact
value of the probability of error pe is not that important, and
the performace is robust even for relatively large values of
pe.

Coming to timing results, we provide in Table 3 timings
gathered from 1000 images of the PASCAL VOC dataset,
and averaged over all 20 categories. The first row indicates
the time spent to compute part scores by the different meth-
ods, and the following rows indicate detection times. For
more conservative threshold values the part score is fully
evaluated at more points and the merits of having a quick
first fast pass get eliminated. Actually for a threshold of
−1.0 it turns out that the TDT-based implementation can be
almost as fast; but our shufflet-based approximation turns
out to be faster than both DTBB and TDT for moderate
values of the threshold θ. In particular for θ = −.7, or
θ = −.5 the shufflet-based variant of cascades requires ap-
proximately half the time of the PCA-based cascade, and a
small fraction of the time of TDT-based detection.

We note that these timings are (i) for a single-threaded
implementation and (ii) do not include steps that are shared

(a) Shufflet parameter variation (b) Raw vs bounding-based score

Figure 5: Precision-recall curves for bicycles on PASCAL
VOC 2007. The ‘golden standard’ is the black curve (TDT,
of [11]). The left plot shows the performance of the raw,
shufflet-based score for different shufflet parameter com-
binations, ans the right plot shows the performance of the
bounding-based scheme.

TDT [11] BB [16] Shuff-3 Shuff-1
Part terms 2.26 ± 0.77 1.69 ± 0.18 0.41 ± 0.10 0.41 ± 0.10
θ = −0.5 0.41 ± 0.06 0.21 ± 0.06 0.54 ± 0.22 0.82 ± 0.22

Sum 2.67 ± 0.83 1.90 ± 0.23 0.95 ± 0.24 1.23 ± 0.29
θ = −0.7 0.41 ± 0.06 0.42 ± 0.10 0.74 ± 0.25 0.83 ± 0.26

Sum 2.67 ± 0.83 2.10 ± 0.24 1.15 ± 0.34 1.24 ± 0.35
θ = −1.0 0.41 ± 0.06 1.31 ± 0.31 1.53 ± 0.24 1.71 ± 0.27

Sum 2.67 ± 0.83 3.00 ± 0.42 1.74 ± 0.34 2.12 ± 0.37

TDTs C-DPM C-Shufflet
θ = −0.5 2.67 ± 0.82 0.56 ± 0.07 0.23 ± 0.04
θ = −0.7 2.67 ± 0.82 0.72 ± 0.09 0.34 ± 0.04
θ = −1.0 2.67 ± 0.82 1.04 ± 0.16 0.57 ± 0.10

Table 3: Means and standard deviation timings, in seconds,
of the considered approaches. The top table indicates full-
blown detection, the bottom table indicates cascaded detec-
tion. TDT stands for truncated distance transform - [11], BB
for Dual Tree Branch-and-Bound [16], and Shuff-{3,1} are
the shufflet-based bounds for pe = .3 and .1 respectively,
with L = 16, B = 128. In the bottom table we compare the
original Cascade-DPM model of [8] with our shufflet-based
cascade.

by all classes, namely HOG pyramid construction, and shuf-
flet convolutions. The latter typically cost 0.5 seconds
and 1.1 seconds respectively (for 128 bases), but become
quickly amortized when working with multiple categories.
Finally, these timings may vary due to processor specifica-
tions; we will provide code to allow for the reproduction of
the experiments on different machines at [1].

6. Conclusion

In this work we have introduced shufflets, a shiftable ba-
sis for mid-level part representation, demonstrated its use-
fulness for part sharing in DPMs, and introduced probabilis-
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airplane bicycle bird boat bottle bus car cat chair cow d.table dog horse m.bike person p.plant sheep sofa train tv
[8] 0.331 0.593 0.103 0.155 0.265 0.520 0.537 0.224 0.200 0.243 0.268 0.124 0.565 0.483 0.433 0.133 0.208 0.358 0.450 0.421

Our work 0.328 0.588 0.101 0.153 0.261 0.513 0.532 0.221 0.201 0.241 0.269 0.122 0.561 0.481 0.428 0.130 0.202 0.352 0.448 0.418

Table 2: Average precision results on Pascal VOC, comparing the implementation of [8] to our shufflet-based cascade.

tic bounds to accommodate the effects of distortions due
to approximations on this basis, thereby enabligh fast and
accurate detection with DPMs. In future work we intend
to explore how this basis can be exploited during training
[2, 12, 27], incorporated in hierarchical models [18, 34] and
used for scalable object detection [4], while also exploring
connections with convolutional models [35, 20, 15, 19].
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