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Abstract

Recognition of gesture sequences is in general a very dif-
ficult problem, but in certain domains the difficulty may be
mitigated by exploiting the domain’s “grammar”. One such
grammatically constrained gesture sequence domain is sign
language. In this paper we investigate the case of finger-
spelling recognition, which can be very challenging due to
the quick, small motions of the fingers. Most prior work on
this task has assumed a closed vocabulary of fingerspelled
words; here we study the more natural open-vocabulary
case, where the only domain knowledge is the possible fin-
gerspelled letters and statistics of their sequences. We de-
velop a semi-Markov conditional model approach, where
feature functions are defined over segments of video and
their corresponding letter labels. We use classifiers of let-
ters and linguistic handshape features, along with expected
motion profiles, to define segmental feature functions. This
approach improves letter error rate (Levenshtein distance
between hypothesized and correct letter sequences) from
16.3% using a hidden Markov model baseline to 11.6% us-
ing the proposed semi-Markov model.

1. Introduction

Recognition of gesture sequences is in general very chal-

lenging. However, in some cases there may be a domain

“grammar” that can be used to provide a prior on possi-

ble gestures and sequences, as in certain forms of dancing,

sports, and aircraft marshalling. One of the most practi-

cally important of such grammatically constrained gesture

sequence domains is sign language.

In this paper we consider American Sign Language

(ASL), and focus in particular on recognition of finger-

spelled letter sequences. In fingerspelling, signers spell out

a word as a sequence of handshapes or hand trajectories

corresponding to individual letters. The handshapes used

in fingerspelling are also used throughout ASL. In fact, the

fingerspelling handshapes account for about 72% of ASL

handshapes [7], making research on fingerspelling applica-

ble to ASL in general.

Figure 1 shows the ASL fingerspelling alphabet. Fin-

gerspelling is a constrained but important part of ASL, ac-

counting for up to 35% of ASL [22]. Fingerspelling is typi-

cally used for names, borrowings from English or other spo-

ken languages, or new coinages. ASL fingerspelling uses a

single hand and involves relatively small and quick motions

of the hand and fingers, as opposed to the typically larger

arm motions involved in other signs. Therefore, finger-

spelling can be difficult to analyze with standard approaches

for pose estimation and tracking from video.

Most prior work on fingerspelling recognition has as-

sumed a closed vocabulary of fingerspelled words, often

limited to 20-100 words, typically using hidden Markov

models (HMMs) representing letters or letter-to-letter tran-

sitions [14, 20, 26]. In such settings it is common to obtain

letter error rates (Levenshtein distances between hypothe-

sized and true letter sequences, as a proportion of the num-

ber of true letters) of 10% or less. In contrast, we address

the problem of recognizing unconstrained fingerspelling se-

quences. This is a more natural setting, since fingerspelling

is often used for names and other “new” terms, which may

not appear in any closed vocabulary.

We develop a semi-Markov conditional random field

(SCRF) approach to the unconstrained fingerspelling recog-

nition problem. In SCRFs [28, 41], feature functions are de-

fined over segments of observed variables (in our case, any

number of consecutive video frames) and their correspond-

ing labels (in our case, letters). The use of such segmental

feature functions is useful for gesture modeling, where it

is natural to consider the trajectory of some measurement

or the statistics of an entire segment. In this work we de-

fine feature functions based on scores of letter classifiers, as

well as classifiers of handshape features suggested by lin-

guistics research on ASL [6, 19]. Linguistic handshape fea-

tures summarize certain important aspects of a given letter,

such as the “active” fingers or the flexed/non-flexed status
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Figure 1. The ASL fingerspelled alphabet. All of the letters except

for J and Z are static. [From Wikipedia]

of the fingers; these are hopefully the most salient aspects of

each letter, which should be more discriminative for recog-

nition. We also use the statistics of raw visual descriptor

derivatives over entire segments to define basic “expected

motion” feature functions.

In the remaining sections we describe the approach,

its relationship to earlier work, and experimental results

demonstrating that our approach provides an improvement

over HMM baselines similar to those of prior work.

2. Related work
There has been significant work on sign language recog-

nition from video1, but there are still large gaps, especially

for continuous, large-vocabulary signing settings. Much

prior work has involved hidden Markov model (HMM)-

based approaches [30, 35, 15, 11], which serves as a nat-

ural baseline for our work. There have also been a number

of successful approaches using conditional models [40] and

more complex (non-linear-chain) graphical models [32, 38].

Some prior work has used representations of handshape

and motion that are linguistically motivated, e.g., [5, 10, 32,

38, 37, 36, 35, 23, 33]. However, a much finer level of detail

is needed for the sub-articulators of the hand, which moti-

vates our use of linguistic handshape features here.

A subset of ASL recognition work has focused on fin-

gerspelling and/or handshape classification [4, 27, 24] and

fingerspelling sequence recognition [14, 20, 26], where let-

ter error rates of 10% or less have been achieved when the

1A good deal of prior work on sign language recognition has also used

other instrumentation, such as specialized gloves or depth maps [17, 16,

21, 39, 13]. These interfaces are sometimes feasible, but video remains

more practical in many settings, and we restrict our discussion to video

here.

recognition is constrained to a small (up to 100-word) lex-

icon of possible sequences. The only unrestricted finger-

spelling recognition work of which we are aware is [19],

using HMM-based approaches; we consider this work as

the most competitive baseline and compare to it in the ex-

periments section.

The relatively little work on applying segmental (semi-

Markov) models to vision tasks has focused on classifica-

tion and segmentation of action sequences [29, 12] with a

small set of possible activities to choose from, including

recent work on spotting of specific signs in sign language

video [8]. In natural language processing, semi-Markov

CRFs have been used for named entity recognition [28],

where the labeling is binary. Such models have been applied

more widely in speech recognition [41]. One aspect that

our work shares with the speech recognition work is that we

have a relatively large set of labels (26 letters plus non-letter

“N/A” labels), and widely varying lengths of segments cor-

responding to each label (typically 7-10 video frames, but

all lengths from 2-40 frames are seen in our data), which

makes the search space large and the inference task cor-

respondingly difficult. We address this difficulty similarly

to [41], by adopting a two-stage approach of generating a

graph of candidate segmentations and reranking them using

the semi-Markov model.

The work presented in this paper is the largest-scale use

of semi-Markov models in computer vision, as well as the

least constrained fingerspelling recognition experiments, of

which we are aware.

3. A semi-Markov CRF approach
We begin by defining the problem and our notation. Let

the sequence of visual observations for a given video (cor-

responding to a single word) be O = o1, . . . , oT , where

each ot is a multidimensional image descriptor for frame t.
Our goal is to predict the label (letter) sequence. Ideally we

would like to predict the best label sequence, marginaliz-

ing out different possible label start and end times, but in

practice we use the typical approach of predicting the best

sequence of frame labels S = s1, . . . , sT . We predict S
by maximizing its conditional probability under our model,

Ŝ = argmaxSP (S|O). In generative models like HMMs,

we have a joint model P (S, O) and we make a prediction

using Bayes’ rule. In conditional models we directly repre-

sent the conditional distribution P (S|O). For example, in a

typical linear-chain CRF, we have:

p(S|O) =
1

Z(O)
exp

⎛
⎝∑

v,k

λkfk(Sv, Ov) +
∑
e,k

μkgk(Se)

⎞
⎠

where Z(O) is the partition function, fk are the “node” fea-

ture functions that typically correspond to the state in a sin-

gle frame Sv and its corresponding observation Ov , gk are
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“edge” feature functions corresponding to inter-state edges,

e ranges over pairs of frames and Se is the pair of states

corresponding to e, and λk and μk are the weights.

It may be more natural to consider feature functions

that span entire segments corresponding to the same la-

bel. Semi-Markov CRFs [28], also referred to as segmental

CRFs [41] or SCRFs, provide this ability.

Figure 2 illustrates the SCRF notation, which we now

describe. In a SCRF, we consider the segmentation to be a

latent variable and sum over all possible segmentations of

the observations corresponding to a given label sequence to

get the conditional probability of the label sequence S =
s1, . . . , sL, where the length of S is now the (unknown)

number of distinct labels L:

p(S|O) =

∑
q s.t. |q|=|S| exp

(∑
e∈q,k λkfk(se

l , s
e
r, Oe)

)

∑
S′

∑
q s.t.|q|=|S′| exp

(∑
e∈q,k λkfk(se

l , s
e
r, Oe)

)

Here, S′ ranges over all possible state (label) sequences, q
is a segmentation of the observation sequence whose length

(number of segments) must be the same as the number of

states in S (or S′), e ranges over all state pairs in S, se
l

is the state which is on the left of an edge, se
r is the state

on the right of an edge, and Oe is the multi-frame obser-

vation segment associated with se
r. In our work, we use a

baseline frame-based recognizer to generate a set of candi-

date segmentations of O, and sum only over those candidate

segmentations. In principle the inference over all possible

segmentations can be done, but typically this is only feasi-

ble for much smaller search spaces than ours.

3.1. Feature functions

We define several types of feature functions, some of

which are quite general to sequence recognition tasks and

some of which are tailored to fingerspelling recognition:

3.1.1 Language model feature

The language model feature is a smoothed bigram probabil-

ity of the letter pair corresponding to an edge:

flm(se
l , s

e
r, Oe) = pLM (se

l , s
e
r).

3.1.2 Baseline consistency feature

To take advantage of the existence of a high-quality base-

line, we use a baseline feature like the one introduced

by [41]. This feature is constructed using the 1-best output

hypothesis from an HMM-based baseline recognizer. The

feature value is 1 when a segment spans exactly one letter

label hypothesized by the baseline and the label matches it:

fb(se
l , s

e
r, Oe) =

⎧⎨
⎩

+1 if C(t(e), T (e)) = 1,
and B(t(e), T (e)) = w(se

r)
−1 otherwise

where t(e) and T (e) are the start and end times correspond-

ing to edge e, C(t, T ) is the number of distinct baseline

labels in the time span from t to T , B(t, T ) is the label cor-

responding to time span (t, T ) when C(t, T ) = 1, and w(s)
is the letter label of state s.

3.1.3 Handshape classifier-based feature functions

The next set of feature functions measure the degree of

match between the intended segment label and the appear-

ance of the frames within the segment. For this purpose

we use a set of frame classifiers, each of which classifies

either letters or linguistic handshape features. As in [19],

we use the linguistic handshape feature set developed by

Brentari [6], who proposed seven features to describe hand-

shape in ASL. Each such linguistic feature (not to be con-

fused with feature functions) has 2-7 possible values. Of

these, we use the six that are contrastive in fingerspelling.

See Table 1 for the details. For each linguistic feature or

letter, we train a classifier that produces a score for each

feature value for each video frame. We also train a separate

letter classifier. We use neural network (NN) classifiers, and

consider several types of NN output-layer functions as the

classifier scores:

NN output layer types

• linear: g(v|x) = wT
vφ(x)

• softmax: g(v|x) = exp(wT
vφ(x))

P
i exp(wT

i φ(x))

• sigmoid: g(v|x) = 1
1+exp(−wT

vφ(x))

where x is the input to the NN (in our case, the visual

descriptors concatenated over a window around the current

frame), wv is the weight vector in the last layer of the NN

corresponding to linguistic feature v, and φ(x) is the input

to the last layer. We then use these score functions g(v|x)
to define four types of segment feature functions:

Feature functions Let y be a letter and v be the value of

a linguistic feature or letter, Ne = |Oe| = T (e) + 1 −
t(e) the length of an observation segment corresponding to

edge e, and g(v|oi) the output of a NN classifier at frame i
corresponding to class v. We define

• mean: fyv(se
l , s

e
r, Oe) =

δ(w(se
r) = y) · 1

Ne

∑T (e)
i=t(e) g(v|oi)

• max: fyv(se
l , s

e
r, Oe) =

δ(w(se
r) = y) ·maxi∈(t(e),T (e)) g(v|oi)

• divs: a concatenation of three mean feature functions,

each computed over a third of the segment
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Figure 2. Illustration of SCRF notation. For example, edge e2 is associated with the “left state” s
(2)
l , the “right state” s

(2)
r , and the segment

of observations O(2) spanning frames t(2) through T (2).

• divm: a concatenation of three max feature functions,

each computed over a third of the segment

3.1.4 Peak detection features

Fingerspelling a sequence of letters yields a corresponding

sequence of “peaks” of articulation. Intuitively, these are

frames in which the hand reaches the target handshape for

a particular letter. The peak frame and the frames around

it for each letter tend to be characterized by very little mo-

tion as the transition to the current letter has ended while the

transition to the next letter has not yet begun, whereas the

transitional frames between letter peaks have more motion.

To use this information and encourage each predicted let-

ter segment to have a single peak, we define letter-specific

“peak detection features” as follows. We first compute ap-

proximate derivatives of the visual descriptors, consisting

of the l2 norm of the difference between descriptors in ev-

ery pair of consecutive frames, smoothed by averaging over

5-frame windows. We expect there to be a single local min-

imum in this approximate derivative function over the span

of the segment. Then we define the feature function corre-

sponding to each letter y as

f peak
y (se

l , s
e
r, Oe) = δ(w(se

r) = y) · δpeak(Oe)

where δpeak(Oe) is 1 if there is only one local minimum in

the segment Oe and 0 otherwise.

4. Experiments
Data and annotation We report on experiments using

video recordings of four native ASL signers. The data were

recorded at 60 frames per second in a studio environment.

Each signer signed a list of 300 words as they appeared on

a computer screen in front of the signer. There were two

Feature Definition/Values
SF point of side of the hand where

reference SFs are located

(POR) SIL, radial, ulnar, radial/ulnar
SF joints degree of flexion or

extension of SFs

SIL, flexed:base, flexed:nonbase,
flexed:base & nonbase,
stacked, crossed, spread

SF quantity combinations of SFs

N/A, all, one,
one > all, all > one

SF thumb thumb position

N/A, unopposed, opposed
SF handpart internal parts of the hand

SIL, base, palm, ulnar
UF open/closed

SIL, open, closed
Table 1. Definition and possible values for phonological features

based on [6]. The first five features are properties of the active

fingers (selected fingers, SF); the last feature is the state of the in-

active or unselected fingers (UF). In addition to Brentari’s feature

values, we add a SIL (“silence”) value to the features that do not

have an N/A value. For detailed descriptions, see [6].

non-overlapping lists of 300 words (one for signers 1 and

2, the other for signers 3 and 4). Each word was spelled

twice, yielding 600 word instances signed by each signer.

The lists contained English and foreign words, including

proper names and common English nouns. For comparison

with prior work, we use the same data from signers 1 and

2 as [18, 19], as well as additional data from signers 3 and

4. The recording settings, including differences in environ-
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ment and camera placement across recording sessions, are

illustrated in Figure 3.

Figure 3. Example video frames from the four signers.

The signers indicated the start and end of each word

by pressing a button, allowing automatic partition of the

recording into a separate video for every word. Every video

was verified and manually labeled by multiple annotators

with the times and letter identities of the peaks of articula-

tion (see Sec. 3.1.4). The peak annotations are used for the

training portion of the data in each experiment to segment a

word into letters (the boundary between consecutive letters

is defined as the midpoint between their peaks).

Hand localization and segmentation For every signer, we

trained a model for hand detection similar to that used

in [19, 20]. Using manually annotated hand regions, marked

as polygonal regions of interest (ROI) in 30 frames, we fit

a mixture of Gaussians Phand to the color of the hand pix-

els in L*a*b color space. Using the same 30 frames, we

also built a single-Gaussian color model P x
bg for every pixel

x in the image excluding pixel values in or near marked

hand ROIs. Then, given a test frame, we label each pixel as

hand or background based on an odds ratio: Given the color

triplet cx = [lx, ax, bx] at pixel x, we assign it to hand if

Phand(cx)πhand > P x
bg(cx)(1− πhand), (1)

where the prior πhand for hand size is estimated from the

same 30 training frames.

Since this simple model produces rather noisy output,

we next clean it up by a sequence of filtering steps. We

suppress pixels that fall within regions detected as faces

by the Viola-Jones face detector [34], since these tend to

be false positives. We also suppress pixels that passed the

log-odds test but have a low estimated value of Phand.

These tend to correspond to movements in the scene, e.g.,

a signer changing position and thus revealing previously

occluded portions of the background; for such pixels the

value of Pbg may be low, but so is Phand. Finally, we

suppress pixels outside of a (generous) spatial region where

the signing is expected to occur. The largest surviving

connected component of the resulting binary map is treated

as a mask that defines the detected hand region. Some

examples of resulting hand regions are shown in Figures 6

and 7. Note that while this procedure currently requires

manual annotation for a small number of frames in our

offline recognition setting, it could be fully automated in a

realistic interactive setting, by asking the subject to place

his/her hand in a few defined locations for calibration.

Handshape descriptors The visual descriptor for a given

hand region is obtained by concatenation of histograms

of oriented gradients (HOG [9]) descriptors, computed on

a spatial pyramid of regions over the tight bounding box

of the hand region, resized to canonical size of 128×128

pixels. Pixels outside of the hand mask are ignored in this

computation. The HOG pyramid consists of 4×4, 8×8,

and 16×16 grids, with eight orientation bins per grid cell,

resulting in 2688-dimensional descriptors. To speed up

computation, these descriptors were projected to at most

200 principal dimensions; the exact dimensionality in each

experiment was tuned on a development set (see below).

Letter and linguistic feature classifiers We use feed-

forward neural network classifiers (NNs) (trained with

Quicknet [25]) for letters and linguistic feature labels for

each video frame. The inputs to the NNs are the HOG

descriptors concatenated over a window of several frames

around each frame. The training labels are obtained from

the manually labeled peak frames, as described above. We

tune the window sizes on the development set.

Baselines We compare our approach with two HMM

baselines, which reproduce the work in [19] except for

differences in our hand segmentation and visual de-

scriptors. Both baselines have one 3-state HMM per

letter, plus a separate HMM for the sequence-initial and

sequence-final non-signing portions (referred to as “n/a”),

Gaussian mixture observation densities, and a letter bigram

language model. The basic HMM-based recognizer uses

dimensionality-reduced visual descriptors directly as

observations. The second baseline uses as observations

the linear outputs of the NN linguistic feature classifiers,

reproducing the “tandem” approach of [19]. This was done

to confirm that we can reproduce the result of [19] showing

an advantage for the tandem system over standard HMMs.

Although we reproduce the models of [19] for comparison,

we tune all hyperparameters of each model on held-out data.

Generating candidate segmentations for SCRFs As

described above, we use a two-phase inference approach

where a baseline recognizer produces a set of candidate

segmentations and label sequences, and a SCRF is used

to re-rank the baseline candidates. We produce a list of
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N -best candidate segmentations using the tandem baseline

(as it is the better performer of the two baselines). Training

of the SCRFs is done by maximizing the conditional log

likelihood under the model, using the Segmental CRF

(SCARF) toolkit [1]. For those training examples where

the correct letter sequence is not among the baseline N -best

candidates, we have several choices. We can add a correct

candidate by using the baseline recognizer to align the

video to the correct labels (by performing a Viterbi search

constrained to state sequences corresponding to the correct

letters); use ground truth annotation as a correct candidate

segmentation; choose the best possible matching segmen-

tation from the N -best candidates; or finally, discard such

examples from training data. In each experiment, we chose

among these options by tuning on the development set.

Experimental setup For each signer, we use a 10-fold

setup: In each fold, 80% of the data is used as a training

set, 10% as a development set for tuning hyperparameters,

and the remaining 10% as a final test set. We report the av-

erage results over the 10 test sets. We independently tune

the parameters in each fold (that is, we run 10 separate,

complete experiments) and report the average letter error

rate (LER) over the 10 folds. We train the letter bigram

language models from large online dictionaries of varying

sizes that include both English words and names [2]. We

use HTK [3] to implement the baseline HMM-based recog-

nizers and SRILM [31] to train the language models.

The HMM parameters (number of Gaussians per state,

size of language model vocabulary, transition penalty and

language model weight), as well as the dimensionality of

the HOG descriptor input and HOG depth, were tuned to

minimize development set letter error rates for the baseline

HMM system. For the NN classifiers, the input window size

was tuned to minimize frame error rate of the classifiers on

the development set. All of the above parameters were kept

fixed for the SCRF (in this sense the SCRF is slightly disad-

vantaged). The NN output type was tuned separately for the

tandem HMM and the SCRF. Finally, additional parameters

tuned for the SCRF models included the N-best list sizes,

type of feature functions, choice of language models, and

L1 and L2 regularization parameters.

Results The main results are shown in Figure 4. First, we

confirm that the tandem baseline improves over a standard

HMM baseline. Second, we find that the proposed SCRF

improves over the tandem HMM-based system, correcting

about 21% of the errors (or 29% of the errors committed by

the basic HMM baseline). For reference, we also show the

performance of the NN classifiers in Figure 5. Note that in

our experimental setup, there is some overlap of word types

between training and test data. This is a realistic setup,

since in real applications some of the test words will have

been previously seen and some will be new. However, for
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Figure 4. Letter error rate for each signer, and average letter error

rate over all signers, for the two baselines and for the proposed

SCRF. Error bars show the standard deviations over the 10 folds.
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Figure 5. Neural network classifier error rates on letter classifica-

tion (blue) and linguistic feature classification (red) on test data

for each signer. The linguistic feature error rates are averaged over

the six linguistic feature classification tasks; error rates for each

linguistic feature type range between 4% and 10%. Chance error

rates (based on always predicting the most common class) range

from approximately 25% to approximately 55%.

comparison, we have also conducted the same experiments

while keeping the training, development, and test vocabu-

laries disjoint; in this modified setup, letter error rates in-

crease by about 2-3% overall, but the SCRFs still outper-

form the other models.

Figures 6 and 7 illustrate the recognition task, show-

ing examples in which the SCRF corrected mistakes made

by the tandem HMM recognizer. In each of these figures

we show the ground truth segments. The peak frames are

shown on top of each letter’s segment; the hand region

segmentation masks were obtained automatically using the

probabilistic model described in Section 4. We also show

intermediate frames, obtained at midpoints between peaks,
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L

∗

O

∗

R

∗

D

∗

n/a n/a
ground truth

L O Rn/a n/a
tandem HMM

L O R Dn/a n/a
SCRF

Figure 6. From top to bottom: frames from the word LORD, with asterisks denoting the peak frame for each letter and n/a denoting periods

before the first letter and after the last letter; ground-truth segmentation based on peak annotations; segmentation produced by the tandem

HMM; and segmentation produced by the proposed SCRF.

M

∗

E

∗

T

∗

H

∗

O

∗

D

∗

n/a
ground truth

M E T H En/a n/a
tandem HMM

M E T H O Dn/a n/a
SCRF

Figure 7. Similar to Figure 6 for the word METHOD.

as well as a frame before the first peak and after the last

peak. Below the ground truth segmentations are the seg-

mentations obtained with the baseline tandem HMM, and

at the bottom are segmentations obtained with the SCRF.

5. Discussion
This paper proposes an approach to automatic recogni-

tion of fingerspelled words in ASL, in a challenging open-

vocabulary scenario. This is a compelling task, due to its

complexity and its practical importance to a large commu-

nity of Deaf persons in the US. Our experiments demon-

strate the performance of a semi-Markov CRF model on

this challenging task. We report results superior to those

obtained with the model of [19], which to our knowledge is

the only published work that has addressed similar uncon-

strained recognition settings. The work has implications for

the larger task of general ASL recognition, where the same

handshapes used in fingerspelling are used throughout.

We believe that our results are promising in a broader

context of recognition of action sequences (and in particular

gesture sequences) with any sort of “grammar” – constraints

that limit a set of configurations, and introduce structure

into statistics of possible transitions. Part of our future work

is to investigate applications of the proposed SCRF model

to other scenarios in which a complex activity of interest

can be parsed into a sequence of identifiable building blocks

(primitives). Examples of such structured activities include

dancing, aircraft marshalling, and others. We also are in-

vestigating more complex segmental feature functions that

would capture additional properties of the data. Finally, al-

though user-dependent sign language recognition could be

useful in practice, as evidenced by the prevalence of such

applications for spoken language recognition (such as dic-

tation systems), we would like to develop methods that are

more signer-independent.
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