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Abstract

One fundamental assumption in object recognition as
well as in other computer vision and pattern recognition
problems is that the data generation process lies on a man-
ifold and that it respects the intrinsic geometry of the man-
ifold. This assumption is held in several successful al-
gorithms for diffusion and regularization, in particular, in
graph-Laplacian-based algorithms. We claim that the per-
formance of existing algorithms can be improved if we ad-
ditionally account for how the manifold is embedded within
the ambient space, i.e., if we consider the extrinsic geom-

etry of the manifold. We present a procedure for charac-
terizing the extrinsic (as well as intrinsic) curvature of a
manifold M which is described by a sampled point cloud in
a high-dimensional Euclidean space. Once estimated, we
use this characterization in general diffusion and regular-
ization on M , and form a new regularizer on a point cloud.
The resulting re-weighted graph Laplacian demonstrates su-
perior performance over classical graph Laplacian in semi-
supervised learning and spectral clustering.

1. Introduction
One of the fundamental assumptions in manifold-based

data processing algorithms is that the intrinsic geometry of

a manifold is relevant to the data which lie upon it. For in-

stance, the graph Laplacian matrix is used to measure the

pair-wise dissimilarities of the evaluation of a function f on

a given point cloud X , and subsequently this can be used

for discretized diffusion and regularization of f on X . One

way of justifying the use of the graph Laplacian comes from

its limit case behavior as |X | → ∞: When the data X is

generated from an underlying manifold M , i.e., when the

corresponding probability distribution P has support in M ,

the graph Laplacian converges to the Laplace-Beltrami op-

erator [2, 10] that respects only the intrinsic geometry of

M . Accordingly, for a large X , the graph Laplacian helps

us measure the variation of functions along M and neglect

any random perturbations normal to M that might be ir-

relevant noise. Graph Laplacian and other manifold-based

approaches (e.g., [7, 13]) are justified in exploiting intrinsic

geometry by successes in semi-supervised learning, spectral

clustering, and dimensionality reduction applications.

In this paper, we question a fundamental assumption of

manifold-based algorithms. It is well known that the ex-

trinsic geometry of M , that is, how M is embedded in an

ambient space, is important for image and mesh surface pro-

cessing. However, is the extrinsic geometry relevant at all

for high-dimensional data processing? Our main contribu-

tion is to suggest that the answer might be yes.

The anisotropic diffusion process on manifolds mo-

tivates our question above, and connects the high-

dimensional data processing problem with low-dimensional

image and mesh surface processing (Sec. 2). The

anisotropic diffusion process exploits the extrinsic (as well

as intrinsic) geometry, and we discuss how this can be ex-

tended to any sub-manifold with arbitrary dimension and

co-dimension. This presents a practical diffusion and regu-

larization scheme which can be applied even when the man-

ifold is not observed directly but is indirectly presented as

a sampled point cloud (Sec. 3). This regularization leads

to a re-weighted graph Laplacian, which we evaluate in the

context of semi-supervised learning and spectral clustering,

and discover that the new algorithm significantly improves

the performance over classical graph Laplacian (Sec. 5).

2. Anisotropic diffusion on manifolds
The Laplace-Beltrami operator Δ on a manifold M is

defined from the divergence and gradient operators:

Δf = − div grad f, (1)

where f is a smooth function on M . This is one of the most

important operators in differential geometry and is applied

to describe physical phenomena on M . In particular, it is

the generator of the isotropic diffusion process:

∂f

∂t
= −Δf (2)

which describes the evolution of f on M as how the values

of f spread over time. This process is isotropic and ho-

mogeneous in the sense that the diffusivity is the same for
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any location and any direction on M . When f represents

an image as a two-dimensional manifold embedded in R
3

(x, y, f(x, y)), it can be shown that evolving f according

to Equ. 2 has an effect corresponding to convolution with

Gaussian kernels [19, 17].

It is often desirable to non-uniformly distribute the dif-

fusivity, as shown by many image processing applications.

For instance, in image denoising, important structures such

as edges should remain unchanged, so diffusion should be

weak near edges. Furthermore, diffusion should be stronger

in the direction along edges rather than across edges. This

can be realized with anisotropic diffusion on R
2 [19, 18]:

∂f

∂t
= −ΔDf := divD grad f, (3)

where D is a positive definite operator that controls the

strength and direction of diffusion. For instance, Weick-

ert et al. [19], construct D from the tensor product of gradf
with itself. In this case, D depends on f and Equ. 3 be-

comes a non-linear equation. A similar approach has also

been taken for processing a two-dimensional surface em-

bedded in R
3. A typical application is surface processing

where f represents the three-dimensional locations of sam-

pled surface points in R
3 [6, 5, 21]. In this context, D can be

constructed based on how the surfaces are curved in R
3. We

wish the diffusivity to be strong for planar regions and weak

across highly curved regions. For instance, Clarenz et al. [5]

proposed constructing D based on the principal curvatures

and the corresponding principal directions at each location

on the surface. The resulting diffusion process smooths flat

regions and enhances ridges on the surface. A similar effect

can also be obtained by diffusing surface normal vectors us-

ing mean and Gaussian curvatures [21].

Anisotropic diffusion has been successful in processing

two-dimensional objects embedded in R
3 such as images

and surfaces (in which the normal is uniquely defined up

to the change of sign); however, its application to high-

dimensional data has not yet been explored. The aim of

our paper is to extend this framework to construct a gener-

ator of anisotropic diffusion processes (ΔD) and, with it, to

build a discretized anisotropic regularizer on X .

We first note that the Laplace-Beltrami operator (Equ. 1)

can also be used as a regularizer on a manifold. It can be

used to measure the first-order variation of f on M :

‖f‖2Δ :=

∫
M

f(x)Δf(x)dV (x) =

∫
M

‖∇f‖2gdV (x),
(4)

where g and dV are the Riemannian metric and the natural
volume element [15] of M , respectively. The connection

between the two aspects of Δ as a regularizer and as a gen-

erator of isotropic diffusion processes on M is well estab-

lished: Intuitively, from the regularization perspective, min-

imizing ‖f‖2Δ corresponds to penalizing the variation of f

Figure 1. A manifold with high extrinsic curvature and zero intrin-

sic curvature at the green dot. Since it has zero intrinsic curvature

here, intrinsically it is equivalent to R
2.

isotropically. More rigorous discussion is available [19, 11].

Extending this connection to anisotropic diffusion (Equ. 3)

is straightforward: with ΔD as a regularizer, we emphasize

the variation of f along the direction of high diffusivity.

The success of anisotropic diffusion on images and sur-

faces and the reinterpretation of the Laplace-Beltrami oper-

ator as a regularizer leads us to the conjecture that it would

be desirable to perform anisotropic regularization on man-

ifolds of any dimension and co-dimension: Regularization

should be weak along paths in regions with high (extrinsic

and/or intrinsic) curvature. Fig. 1 visualizes the underlying

idea with an example of a two-dimensional surface embed-

ded in R
3. In this example, the red arrows pass through

planar regions, and here diffusivity should be strong in the

directions of the red arrows. Conversely, the blue arrow

passes through a highly extrinsically curved region that cor-

responds to a boundary between two manifolds. Here, the

diffusivity should be weak in the direction of the blue ar-

row. However, existing manifold-based data diffusion and

regularization operators are not capable of this (e.g., the

Laplace-Beltrami or the Hessian [7] operators). These op-

erators respect only intrinsic geometry. Since the surface in

Fig. 1 is intrinsically identical to R
2, these operators do not

distinguish between the two spaces. In particular, diffusiv-

ity is the same at every point in the surface and in R
2.1

This constructed example intuition extends to real prob-

lems like pattern classification. Fig. 2 shows the results of

our preliminary pattern classification experiment, where the

directions of estimated high curvature are often perpendicu-

lar to the directions of class decision boundaries. This sup-

ports the idea of controlling diffusivity based on the direc-

tion and strength of both intrinsic and extrinsic curvature.

To build upon this, we next discuss a procedure which

estimates the extrinsic and intrinsic curvature and, with it,

develops a practical regularization operator on a manifold.

1In this extreme example, only extrinsic curvature exists. In general,

sub-manifold curvature manifests both intrinsically and extrinsically.
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Figure 2. Directions of high curvature for COLT2 database (see Sec. 5): Each plot shows the nearest neighbors of a data point (at the

origin) projected onto Riemannian normal coordinates. We fixed the tangent space dimensionality at 2; in practice, it must be determined,

e.g., based on cross-validation. The data points are sampled randomly from a set of difficult points, the neighborhoods of which include

significant variation in ground truth labels. Circles and crosses represent two classes while magenta lines show the direction of highest

curvature. This direction is the first eigenvector of the generalized shape operator. Estimated high curvature directions are often perpendic-

ular to decision boundary directions: First two columns: the directions are strongly inversely correlated. Third column: the directions pass

through multiple decision boundaries but are still perpendicular. Last column: the directions are less strongly correlated but still reasonable.

3. Curvature-aware regularization
In general, the curvature of a Riemannian manifold M

is captured by a fourth-order tensor called the Riemann

curvature tensor. Then, how the manifold M (of dimen-

sion m) is curved with respect to the ambient manifold

M̃ (of dimension n), is characterized by the difference of

the corresponding curvature tensors. A theorem of Gauss

[15] states that this quantity is completely determined by

a third-order operator called the second fundamental form.

Suppose ∇ and ∇̃ are the (Riemannian) connections in

M and M̃ , respectively. The second fundamental form

II : T (M)×T (M)→ N (M), with T (M) andN (M) be-

ing the tangent and normal bundles of M in M̃ respectively,

quantifies how the ambient derivative ∇̃ deviates from the

intrinsic derivative ∇: For X,Y ∈ T (M):

∇̃XY = ∇XY + II(X,Y ). (5)

At each point p ∈ M , evaluating II(X,Y ) corresponds to

projecting (∇̃XY ) onto normal space Np(M) ⊂ N (M).
To facilitate the subsequent computation of II and to

gain a deeper insight into its geometric characteristics, we

represent II in a special coordinate frame. The analysis in

the reminder of this section focuses entirely on a coordinate

chart at a point p ∈ M and, accordingly, without loss of

generality we focus on II evaluated at p. For simplicity of

notation, we omit the specifier for p, e.g., T (M) actually

means Tp(M) ⊂ T (M).
First, we construct an adapted orthonormal frame [14,

15] {Y1, . . . , Yn} which specifies an orthonormal coor-

dinate chart {y1, . . . , yn} centered at p in M̃ such that

{ ∂
∂y1 , . . . ,

∂
∂ym } = {Y1, . . . , Ym} spans the tangent space

Tp(M) of Mp. In particular, we use Riemannian normal

coordinates in M̃ . Suppose that at an open neighborhood

Up (of p) in M , embedding i :M → M̃ is represented by:

yi = yi(x1, . . . , xm) for i = 1, . . . , n, (6)

where {x1, . . . , xm} is a coordinate chart at Up. Then, in

the combined coordinates {x1, . . . , xm, ym+1, . . . , yn}, the

second fundamental form has a particularly simple form:

II =

m∑
r,s=1

n∑
i=m+1

[(
∂2yi

∂xr∂xs

)
dxrdxs

]
Yi. (7)

This representation not only facilitates the subsequent com-

putation but also clearly manifests the geometrical signif-

icance of the second fundamental form: II corresponds

to the sum of the Hessians
(

∂2yi

∂xr∂xs

)
of coordinate values

{yi(x1, . . . , xm), i = m+1, . . . , n} at p as hyper-surfaces,
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each of which characterizes how the corresponding surface

is bending, i.e., the curvature.

This simplicity in the representation of II is due to the

use of the Riemannian normal coordinate in M̃ , in which

the manifold appears Euclidean up to second-order and, ac-

cordingly, the corresponding Riemannian metric g̃ becomes

Euclidean (at p). In general coordinates, the Christoffel

symbols Γ̃i
jk corresponding to ∇̃ appear in Equation 7.

Generalized shape operators. We have just seen how

to characterize the curvature of any arbitrary Riemannian

submanifold M with codimensionality higher than 1. Our

next step is to build a generalization of the operator Dp :
T (M)→ T (M) in Equation 3 using the second fundamen-

tal form II . First, we raise the first index of II in M :

II� :=
m∑

r,s,δ=1

n∑
i=m+1

[(
∂2yi

∂xr∂xs

)
grδ∂δdx

s

]
Yi. (8)

Then, the generalized (absolute) shape operator
s : T (M)→ T (M) is constructed by casting the individual

Hessians positive definite2 and removing the normal com-

ponent by taking the inner product of the normal component

of II� with
∑n

i=m+1 Yi. To cast, we take the absolute val-

ues of eigenvalues of each Hessian Hi in {xi}:

s =
m∑

r,s,δ=1

n∑
i=m+1

[
|Hi|P

]
rs
grδ∂δdx

s, (9)

where |A|P is a positive definite version of a matrix A. The

last step makes s depending on the choice of the normal

frame {Yi}ni=m+1 which we fix by exploiting the distribu-

tion of the data on M (see Sec. 4: estimating the normal
coordinate paragraph).3

In informal terms, s receives a vector Zp ∈ TpM and

magnifies or reduces in x each of its components {Zi} de-

pending on how the corresponding coordinate directions

{ ∂
∂xi } are curved in {ym+1, . . . , yn}. In particular, when

M̃ = R
n and we construct a geodesic c : (−ε, ε) → M of

a unit vector Zp (i.e., ‖Zp‖ = 1, c(0) = p, and ċ(p) = Zp),

‖sZp‖ corresponds to the curvature of c(0) where c is inter-

preted as a one-dimensional submanifold of Rn.

2We do not use the sign of the curvature. Accordingly, the correspond-

ing diffusivity depends only on the curvature direction and magnitude.

This operation is geometric, see [20].
3Another way of constructing the orthonormal frame

{Ym+1, . . . , Yn} ⊂ N (M) is to choose each normal vector Yi

incrementally by maximizing the squared norm of Yi-component∥∥∥∑m
r,s=1

[(
∂2yi

∂xr∂xs

)
dxrdxs

] ∥∥∥2
T∗
p (M)⊗T∗

p (M)
with the orthogonal-

ity condition (i.e. g̃(Yi, Yj) = 0 for j < i and i, j ∈ m+ 1, . . . , n),

where T ∗p (M) is the cotangent space of M at p. This choice makes the

resulting shape operator s entirely geometric but it is computationally

more demanding than our method.

Figure 3. Examples of applying the diffusivity operator Dp to vec-

tors in Tp(M): Evaluation point p is at the origin of each vector

arrow. A two-dimensional surface manifold M embedded in R
3

is generated by bending a plane along a fixed direction. The tan-

gent space Tp(M) is shown as a transparent plane. (Left) When

the black input vector is orthogonal to the bending direction along

which M has no curvature, the resulting red output vector is identi-

cal to the input; (Right) If the input is parallel to the bending direc-

tion along which M is maximally curved, the output is maximally

shrunken. In particular, when the curvature is infinite, the output

vector is zero. (Middle) In general, the input vector is shrunk de-

pending on how M is curved along the direction of input.

This operation is exactly opposite to what we would like

to perform: it expands the vector into the direction of high

curvature. Finally, our vector-valued diffusivity operator

Dp is constructed as an (pseudo-) inverse of s:

Dp = (Sp + I)−1, (10)

where Sp is a matrix representation of s at p in x. From

Eq. 9 and with the positive definiteness of g, then Dp is a

positive definite operator. When the curvature is zero in any

direction (i.e., Sp = 0), the diffusivity is maximum (Dp =
I). Otherwise, the input Zp is shrunken down depending on

the curvature of M along the direction of Zp. For instance,

at a point p lying on the surface generated by bending a

plane in R
3 along a specific direction (Fig. 3), ‖Dp(Zp)‖ is

the maximum and the minimum when Zp is orthogonal to

and parallel with the direction of bending, respectively, and

is smaller than ‖Zp‖, otherwise. Based on this observation,

we construct a scalar-valued diffusivity operator dp as:

dp(Zp) =
‖Dp(Zp)‖
‖Zp‖

. (11)

Even though dp is scalar-valued and so the correspond-

ing vector-valued diffusivity operator Dd
p (Dd

p(Zp) :=
dp(Zp)Zp) does not change the direction of the input vec-

tor Zp, it still leads to anisotropic diffusion since the corre-

sponding output depends on the direction of Zp.

In general, one could construct Dp and dp as any nonlin-

ear function of Sp. Depending on this non-linearity, the in-

put vector Zp can even be elongated resulting in, e.g., edge-

sharpening diffusion in the case of images [19].

4. Regularization on a point cloud in R
n

In many practical applications, the manifold M is not

directly observed but is indirectly observed as a sampled
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point cloudX = {Xi}li=1 ⊂M ⊂ R
n, and accordingly, M

is isometrically embedded in M̃ = R
n. As the manifold is

no longer analytically observed, we denote a point in the

point cloud as X instead of p ∈M . This section presents a

practical regularization scheme for this case.

Estimating the normal coordinates. To facilitate the

evaluation of sXα
at point Xα ∈ X , we introduce Rieman-

nian normal coordinates for M and M̃ at Xα. For notation

convenience, X denotes a point in M and the corresponding

embedded point i(X) in R
n. In R

n, every orthonormal ba-

sis {Y1, . . . , Yn} leads to normal coordinates {y1, . . . , yn}
based on the identification ∂

∂yi = Yi for i = 1, . . . , n. For

M , similarly to [13], we approximate the normal coordi-

nates based on the distribution of the data in neighborhood

structure: First, the tangent space TXαM is estimated by

performing principal component analysis (PCA) on k near-

est neighbors Nk(Xα) of Xα. The m leading eigenvec-

tors {ur}mr=1 span Nk(Xα). Then, the normal coordinates

{xr}mr=1 of a point Xj centered at Xα are given as:

xr(Xj) = 〈ur, Xj −Xα〉 . (12)

In practice, we may not know the dimensionality m of M .

In this case, we regard it as a hyper-parameter to be tuned

for subsequent applications.

Since {ur}nr=1 constitutes an orthonormal basis in R
n,

the corresponding normal coordinates {yr}nr=1 are given as:

yr(Xj) = 〈ur, Xj −Xα〉 (13)

which corresponds to fixing the open parameters (adapted

orthonormal frames {Yr}nr=m+1) by {ur}nr=m+1 in con-

structing s (Eq. 9).

Estimating the Hessian. In normal coordinates (x), the

metric g becomes Euclidean. Accordingly, the calculation

of the shape operator (Equation 9) boils down to the estima-

tion of the classical Hessian.

Similarly to [13], this can be estimated

by fitting a second-order polynomial q(x) to

{yi(Xj)}kj=1, Xj ∈ Nk(Xα):

q(i)(x) =

m∑
r

m∑
s=r

A(i)
rs xrxs, (14)

where the zeroth-order and the first-order terms are fixed

at 0.4 In the limit, as the neighborhood size tends to zero,

q(i)(x) becomes the second-order Taylor expansion of yi

around Xα. In particular,

A(i)
rs =

1

2

∂2yi

∂xr∂xs

∣∣∣
Xα

. (15)

4By construction, { ∂
∂xj }mj=1 are tangent to M at Xα. As such, the

variation of {yi}ni=m+1 with respect to {xj}mj=1 is zero up to first order.

We use standard linear least squares to fit the polynomial:

q(i)(xj) = argmin
w∈RP

k∑
j=1

(
yi(Xj)− (φ(Xj)w)j

)2
, (16)

where P = m(m + 1)/2 and the basis function φ ex-

tracts the monomials of the normal coordinates centered

at Xα: φ(Xj) = [x1x1, x1x2, . . . , xmxm] for Xj ∈
Nk(Xα). With Φ = [φ(X1), . . . , φ(Xk)]

�, and fα =
[f(X1), . . . , f(Xk)]

�, the solution is obtained as:

w = Φ+fα, (17)

where Φ+ denotes the pseudo-inverse of Φ.

Convergence properties. In general, from the analysis of

Hein et al. [10], given the exact tangent space TXα
M , the

approximation of normal coordinate values based on PCA

yields an error of O(ε2) where ε2 is the radius of Nk(Xi).
Further, the Hessian corresponding to the fitted local poly-

nomial may deviate from the true Hessian.

In the supplementary material, we prove that, for a sub-

manifold M with a bounded second fundamental form and

for a reasonably general assumption on the underlying prob-

ability distribution P on M ⊂ R
n (see [1] for details), the

estimated second fundamental form and the shape operator

converge point-wise to the true second fundamental form

and the shape operator as the number of data points tends

to infinity, while the diameter of the neighborhood Nk(Xα)
tends to zero. We also demonstrate this with a toy example.

Re-weighted graph Laplacian. The constructed approx-

imation of Dp (using Equs. 9, 10, and 15) can be straightfor-

wardly applied for anisotropic diffusion and regularization

by replacing D in Equation 3 with Dp at each p. The cor-

responding Laplace-Beltrami operator (ΔD) can either be

explicitly constructed (e.g., for regularization) or indirectly

evaluated (e.g., for diffusion). In either case, we must be

able to construct a vector DpZ for an input vector Z.

However, in many practical applications, no gradient

vector is explicitly constructed. For instance, the graph

Laplacian L of X ⊂ R
n as an approximation of the

Laplace-Beltrami operator on M is constructed based only

on pairwise similarity evaluations in R
n:

L = G−W, (18)

where [W ]αβ = w(‖Xα − Xβ‖), w : Rn → R is a de-

creasing function, and G is a diagonal matrix containing

the column sums of W .

In this case, the scalar-valued operator dp (11) can be

used instead: In graph Laplacian-based regularization, one

minimizes f�Lf where f = [f(X1), . . . , f(Xl)]
�. This

corresponds to penalizing the pair-wise deviations of the
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evaluations of f . The amount of penalization [W ]αβ for a

pair (f(Xα), f(Xβ)) is proportional to the length of a vec-
tor Xβ −Xα ∈ R

n = TXα
(Rn). As in the construction of

normal coordinates in M , when Xβ ∈ Nk(Xα), Xβ −Xα
5

can be regarded as an approximation of a vector lying in

TXα(M) after a suitable projection onto TXα(M) (which

will be denoted as Zβ). Now we can apply the scalar-valued

operator dXα
to Zβ . This may result in scaling Zβ but

does not change its direction. However, instead of explic-

itly constructing dXα
(Zβ), we scale [W ]αβ depending on

‖dXα
(Zβ)‖ since [W ]αβ completely determines the graph

Laplacian regularization process.

Finally, the re-weighted Laplacian Lr is constructed

based on a re-weighted function w′ defined as:

w′(‖Xα −Xβ‖) = w(‖Xα −Xβ‖) · φ(dXα
(Xβ −Xα)),

(19)

where φ(X) = X2 and for w we use a standard Gaus-

sian function after the projection with a scale parameter σ2

(w(‖Xα −Xβ‖) = exp(−‖Zβ‖2/σ2)). As before (see the

end of the previous section), one could plug in any nonlinear

function to φ(X) and control the diffusivity accordingly.

In summary, in the original graph Laplacian-based reg-

ularization, the deviation (f(Xα) − f(Xβ))
2 is penalized

only based on the length of the vector Xβ −Xα, while our

algorithm additionally takes into account the extrinsic cur-

vature of M along the direction of Xβ −Xα. The resulting

new graph Laplacian will henceforth be referred to as a re-
weighted graph Laplacian. The new graph Laplacian can

be subsequently normalized as desired.

5. Experiments
Our estimation of the second fundamental form can be

used either directly on an analytically presented manifold

(e.g., using Eq. 3) or for constructing a re-weighted graph

Laplacian that can be applied to any point cloud. In this

section, we focus on the second case and compare the per-

formance of our re-weighted graph Laplacian (r-Lap; Lr)

with classical graph Laplacian (Lap; L). We consider two

application scenarios in which the graph Laplacian has been

particularly successful: semi-supervised learning and spec-

tral clustering. For all experiments, following conventions,

the graph Laplacians are normalized.

Throughout the experiments, the main computational

bottleneck shared by r-Lap and Lap was the computation

of the k-NN graph structure. Given that, the run-time spent

constructing r-Lap is, on average, around twice as long as

that of Lap. With the k-NN structure, building r-Lap for the

MNIST dataset of size 70,000 took around 3 minutes on a

3GHz machine (see ‘Spectral clustering’ paragraph later).6

5More precisely, it is the corresponding push forward with respect to

i−1: i−1∗ (Xβ −Xα).
6The code is available on the authors’ website.

Figure 4. Examples of C-PASCAL dataset. Each image is focused

on an object of interest and is obtained by cropping the annotated

bounding box from PASCAL VOC challenge 2008 training im-

age [8]. This enables direct comparison of classification perfor-

mances of Lap and r-Lap without any external object detection.

Semi-supervised learning. We adopted four standard

datasets (USPS, COIL2, BCI, and Text) for semi-supervised

learning [4] and the cropped PASCAL (C-PASCAL) dataset

used by Ebert et al. [8]. While similar to Lap in that r-

Lap can be used for general multi-class classification prob-

lems, instead we focus on binary classification problems.

This facilitates direct comparison of the regularization per-

formances of r-Lap and Lap and disregards the effect of

any multi-class combination methods. The C-PASCAL data

set is constructed from the PASCAL VOC challenge 2008

training set [9] by cropping the sub-windows using bound-

ing box annotations [8] (Fig. 4). It contains 6,175 images of

objects from 20 classes. From these classes, we randomly

choose 5 pairs of classes to construct 5 binary classifica-

tion problems. We used the histogram of oriented gradient

(HOG) features as provided by Ebert et al. [8]. We refer to

Chapelle et al. [4] for the details of the remaining datasets.

For all experiments except for C-PASCAL, we randomly

chose 100 labels for each class, with the remaining data

points used as unlabeled examples. For C-PASCAL, we

used 50 labels such that a sufficient number of unlabeled

points were available for each class. For sets of labeled data

points {(Xi, Yi)}l
′
i=1 and unlabeled data points {Xi}li=l′+1,

the final assignments of the labels were obtained by solving:

argmin
f∈Rn

1

l′

l′∑
i=1

(Yi − f(Xi))
2 + λf�Bf , (20)

where and B = L or B = Lr. For each problem, the exper-

iment was repeated 10 times with different sets of labeled

examples and the results were averaged. There are three pa-

rameters to be tuned for Lap in this setting which include

the parameter (σ2) for the weight function w, the number

(k) of nearest neighbors, and the regularization parameter

(λ). For r-Lap, the dimensionality of the manifold (m) is an

additional hyper-parameter. These hyper-parameters were

optimized by 10-fold cross-validation (CV) where in each

run, a subset of labeled points were left-out while all un-

labeled data points are kept. For all experiments, we tune

the hyper-parameters of Lap first. Then, the parameters of
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Algorithm USPS COIL2 BCI Text
C-PASCAL

1 2 3 4 5

Lap 6.72 0.47 37.19 22.3 9.80 14.12 11.59 11.37 6.27
r-Lap 5.78 0.41 35.67 20.8 8.90 11.79 11.52 10.39 6.57

Improvement (%) 14.00 12.77 4.09 6.73 9.18 16.50 0.60 8.62 -4.79

Lap (GT) 5.92 0 32.60 20.9 6.98 10.17 10.45 10.90 5.94

r-Lap (GT) 4.94 0 25.94 19.9 6.58 9.97 9.96 8.99 5.52
Improvement (%) 15.55 0 20.43 4.79 5.73 1.97 4.69 17.52 7.07

Table 1. Classification performance (error rate) of graph Laplacian (Lap) and re-weighted graph Laplacian (r-Lap). The results obtained

with ground-truth parameters are indicated with (GT). The best results are marked with bold face. The performance improvement of r-Lap

from Lap is calculated as the reduction of error rate in %.

r-Lap were chosen by restricting the search space of σ2,

k, and λ only at the vicinity of the optimal values for the

case of Lap. This resulted in the total number of parameter

evaluations for r-Lap being only slightly larger than twice

that of Lap. We also report the performance of both al-

gorithms when the ground-truth (GT) hyper-parameters are

provided. This keeps the test error minimal during hyper-

parameter search. This can also be used to evaluate the

utility of each algorithm for interactive settings: The user

tries different parameter combinations and chooses the best.

If the error rate surface with respect to hyper-parameter is

smooth, then the user could decide the next search point

based on the information gathered thus far. Our prelimi-

nary experiments showed that, except for the parameter m
(see next paragraph), the error rate surface with respect to

hyper-parameter is smooth. Accordingly, the active sam-

pling strategy can indeed be exercised (Table 1).

For all but one dataset, the error rate of r-Lap was lower

than that of Lap when the parameters were automatically

chosen based on CV. This clearly demonstrates the supe-

riority of r-Lap over Lap in semi-supervised learning and

supports our claim that exploiting external curvature is use-

ful. When the ground truth hyper-parameters were adopted,

the performance difference between r-Lap and Lap is even

more pronounced (except for the case of COIL2 in which

both algorithms resulted in zero error). This reveals both

the strengths and limitations of our algorithm. Potentially,

r-Lap can lead to significant improvements over Lap when

the parameters are tuned properly (e.g., through user inter-

action). However, the added parameter over Lap can lead to

overfitting when the parameters are optimized with cross-

valuation with a limited number of labeled points (as ob-

served in worse performance for r-Lap on C-PASCAL 5).

Automatic tuning of hyper-parameters is still an open prob-

lem in semi-supervised learning and clustering in which no

or only limited number of labeled examples are provided.

Spectral clustering. We used two standard datasets for

spectral clustering, USPS and MNIST, which consist of

9,298 and 70,000 digit images respectively. Following the

experimental convention adopted by Bühler et al. [3], the

hyper-parameter k was fixed at 10 while σ2 was adaptively

determined for each point Xi such that σi becomes half of

the mean distance from Xi to its k-NNs.

Quantitative evaluation is performed by measuring the

error rate: the number of disagreements with ground truth

labels for each pattern with the label of the corresponding

cluster, normalized by the number of total data points. The

label of a cluster is assigned as the mode of the ground truth

labels of the patterns that belong to that cluster. For r-Lap,

we performed experiments with different values of m. Ta-

ble 2 shows the results. When m = 10, r-Lap boils down to

Lap. For some values of m, r-Lap resulted in even higher er-

ror rates than Lap while when m = 10, the performance of

r-Lap and Lap are identical as expected. However when m
is properly chosen, r-Lap can produce significant improve-

ments over Lap. Overall, the results imply that r-Lap can

provide a reasonable trade-off between the performance and

the effort for choosing an additional parameter.

6. Discussion and Conclusion

In graph Laplacian applications, data is often given as a

point cloud in a vector space (e.g., Euclidean). However, in

some applications, each data point is never explicitly rep-

resented but its pair-wise similarity or dissimilarity is pro-

vided instead. Our algorithm cannot be directly applied in

this case since the estimation of the second fundamental

form II exploits the explicit representation of a point in the

cloud. Fortunately, this does not require that the represen-

tation of each point should be global, i.e., a locally consis-

tent representation of each point within a small neighbor-

hood is sufficient. Here, we could apply any local distance-

based embedding technique such as multi-dimensional scal-

ing. Once coordinates are assigned to a point Xα and its

neighbors Nk(Xα), II can be straightforwardly calculated.

We regard manifold dimensionality as a hyper-parameter

which is tuned either based on cross-validation or explicitly
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Algorithm Lap r-Lap

m Error rate Improvement (%)

USPS 0.22

2 0.23 -4.54

3 0.28 -27.27

4 0.15 31.82

5 0.21 4.54

6 0.24 -9.09

7 0.22 0.00

8 0.22 0.00

9 0.22 0.00

10 0.22 0.00

MNIST 0.31

2 0.19 38.71

3 0.21 32.26

4 0.32 -3.23

5 0.25 19.35

6 0.32 -3.23

7 0.31 0.00

8 0.31 0.00

9 0.31 0.00

10 0.31 0.00

Table 2. Clustering performance of graph Laplacian (Lap) and re-

weighted graph Laplacian (r-Lap) with varying dimensionality m.

by the user. Automatic estimation of the dimensionality of

a data manifold is an area of active research [16, 12]. In the

future, we will investigate combining our algorithm with

automatic dimensionality estimation algorithms to make

equal the number of hyper-parameters to Lap and r-Lap.

Conclusion. In this paper, we conjectured that curvature

information could be exploited to improve regularization on

manifolds. We experimentally verified this by developing a

curvature-aware anisotropic regularization algorithm on a

manifold, and applying it to semi-supervised learning and

clustering. As the main building block of our algorithm,

we presented a procedure that estimates the second funda-

mental form and proved its consistency (see supplementary

material). This procedure can be applied to general Rie-

mannian submanifolds and accordingly, it could be used in

any application that exploits curvatures of manifolds.
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