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Abstract

In this work we propose a system for automatic classi-
fication of Drosophila embryos into developmental stages.
While the system is designed to solve an actual problem in
biological research, we believe that the principle underly-
ing it is interesting not only for biologists, but also for re-
searchers in computer vision.

The main idea is to combine two orthogonal sources of
information: one is a classifier trained on strongly invari-
ant features, which makes it applicable to images of very
different conditions, but also leads to rather noisy predic-
tions. The other is a label propagation step based on a more
powerful similarity measure that however is only consistent
within specific subsets of the data at a time.

In our biological setup, the information sources are the
shape and the staining patterns of embryo images. We show
experimentally that while neither of the methods can be
used by itself to achieve satisfactory results, their combina-
tion achieves prediction quality comparable to human per-
formance.

1. Introduction
In biological research, high-throughput screening has be-

come a common technique for producing microscopic data.

Thanks to the automation of microscopes and robotic sam-

ple feeders, large volumes of image data can be produced

almost completely automatically. As a consequence, image

annotation has become the main bottleneck in biological

image processing. Classification tasks, such as distinguish-

ing between different developmental stages, and regression

tasks, such as estimating an organism’s pose in an image,

are still done almost exclusively by manual inspection and

annotation.

In this work we tackle the following problem: given an

image containing many embryos of the fruit fly Drosophila
melanogaster, identify for each embryo which out of six

developmental stage groups it is in, see Figure 1.

Stage interval 13-14

Stage interval 15-16

Stage interval 7-8
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Stage interval 4-6

Stage interval 9-10

Stage interval 11-12

Figure 1. Examples of embryo images of three differently geneti-

cally modified Drosophila lines (left, middle, right). The modifi-

cations cause different appearances, which change as the embryos

develop (top-to-bottom). The pattern is often indicative of stage

inside the line, even though it can vary due to different pose of

the embryo (stages 7–8 and 11–12 of Line 1). Across different

lines the pattern for the same stage usually differs significantly

(compare embryos of stage 15–16). Images of stage 4–6 show no

activity; in other stages empty space means no activity pattern.

In the rest of this section, we provide the biological back-

ground and motivation for this task. We then explain the

technical contribution in Section 2, our experimental evalu-

ation in Section 3 and we end with a discussion in Section 4.
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Biological motivation. Our motivation comes from a

large-scale biological study aimed at deciphering the func-

tion of non-coding regions in the genome. For this, many

small genomic DNA fragments are tested for their gene reg-

ulatory function [9]. Each of the fragments to be tested

is integrated in the Drosophila genome together with a re-

porter gene. Subsequently, the resulting embryo is allowed

to develop up to a duration of 24 hours. If the fragment

has a regulatory function and becomes active during devel-

opment, the reporter gene is co-activated, and can be visu-

alized by in-situ hybridization [13] giving rise to a visible

pattern inside the otherwise transparent embryo. This pat-

tern is characteristic for the function of the DNA fragment.

It typically corresponds to a well-defined anatomical struc-

ture, such as the developing brain, or muscle tissue, and it is

visible only during a specific time interval in the organism’s

development, see Figure 1.

Since all of the processes described above are error-

prone, many measurements are required before a complete

picture of the function of the DNA fragment can be formed.

Therefore, hundreds of genetically identical embryos are

created at the same time, mounted on a microscopic slide

and imaged simultaneously using a large whole-slide micro-

scopic setup (for a sample image, see the supplemental ma-

terial). An advantage of this process is that embryos of all

developmental stages occur within a single image, making

it unnecessary to repeat the time-consuming and costly step

of embryo preparation and image acquisition multiple times

for different stages. A disadvantage is that in order to inter-

pret the patterns and identify the function of the respective

DNA fragment, the hundreds of embryos need to be sep-

arated into their respective developmental stages before a

further analysis can be performed. This is necessary for ev-

ery of the thousands of DNA fragments to be tested, result-

ing in the need to classify several million embryo images.

Doing so manually would require a trained experts many

years. However, the task cannot simply be outsourced to

a crowdsourcing platform, such as Mechanical Turk, since

the differences between stages are subtle [3], and therefore

a certain amount of experience and background knowledge

is required to achieve the necessary high accuracy. Conse-

quently, a computer vision system that can automatically or

semi-automatically provide stage annotation for the embryo

images is a crucial element for the success of the project.

Related work. With the advancement of computer vi-

sion techniques for biological applications, also the task of

analyzing Drosophila embryo images has received a cer-

tain amount of attention. One line of research focusses

on the unsupervised extraction of expression patterns and

appearance-based clustering. This includes the popular

BEST [8] and SPEX2 methods [14]. These techniques can

identify groups of similar patterns from which one can, e.g.,

infer prospective gene interaction networks [15]. However,

they do not provide stage annotation, as we require.

Early techniques relied on generative probabilistic mod-

els, in particular Gaussian mixture models [12, 19]. More

recently, other learning techniques such as SVM [18],

multi-instance learning [11] and bag-of-visual-word repre-

sentations [7], or random walks [2] have been explored.

However, these approaches are also not directly applica-

ble to our situation: first, they are focussed on images in

a specific format, as it is present in the popular Berke-

ley Drosophila Genome project (BDGP) database [16, 17].

This database consists of manually selected embryos with

a clearly visible pattern and per-embryo pose annotation.

Neither of these properties can be ensured in a large-scale

automatic screening. Second, and more fundamentally, the

existing classification methods based their decision on the

visual patterns in the embryo. Since these patterns change

fundamentally between the different tested DNA fragments,

applying the above techniques would require a separate

training step for each slide. In particular, this includes cre-

ating a separate training set per slide, thereby defeating the

purpose of having an automatic system to start with.

Our approach and contribution. In this work, we intro-

duce a system for automatic staging of Drosophila embryos

that leverages the information in expression patterns with-

out requiring training data specific to any of these patterns.

The main idea is to combine two orthogonal sources of in-

formation. A base classifier for staging is trained using only

the contour (shape) of the embryo. This requires only mod-

est amounts of training data, since the embryo contour is

not affected by the genetic modifications and therefore the

same classifier can be applied to all embryo images in all

slides at test time. Within each slide, the resulting predic-

tions are improved and robustified using label propagation,

with a similarity graph that is obtained from the similarity

between expression patterns (appearance). This is possi-

ble because these patterns are consistent within each slide,

i.e., the patterns are different between stages yet identical

within a stage. It is only between different slides that they

can change arbitrarily as embryos in different slides have

different mutations.

Note that for both, the classifier training and the label

propagation, we rely on existing techniques. Our contribu-

tion lies not in a new objective or algorithm but in the obser-

vation that in our situation shape and appearance are truly

orthogonal sources of information, and in proposing a way

for combining them such that the weak classification signal

of the former is strengthened by the only locally consistent

similarity measure of the latter.

We believe, however, that this insight will be of interest

not only to researchers working on the specific biological

task at hand, but that it has application also in other com-
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Figure 2. Scheme of the method. A base classifier uses a general

source of information (embryo shape) and therefore it is trained

only once, whereas the label propagation works always with a set

of embryos sharing the same genotype and can take advantage of

the genotype-specific features (embryo appearance).

puter vision applications where at test time an additional

degree of homogeneity is available compared to the training

time. Examples could be writer-specific handwriting recog-

nition or object recognition in personal photo collections.

2. Automatic stage annotation
Our system for automatic annotation of embryo devel-

opmental stages has three main components: 1) a shape-

based classifier that assigns a probability estimate for be-

ing in each of the stage classes to each individual embryo

image, 2) an appearance-based similarity measure between

embryo images, which we use to form a weighted neigh-

borhood graph between embryos within a slide, and 3) a la-

bel propagation step that combines evidence of the multiple

predictions within the slide, thereby improving the overall

classification accuracy (for a scheme see Figure 2). In this

section, we will describe each of the individual components

in more detail.

2.1. Shape-based stage classification

One way to distinguish between different developmen-

tal stages is based on the embryos’ shape [3], in particular

their contour (Figure 3). Compared to the appearance of

the embryo, the contour shape is not affected by the genetic

modifications we induce. Therefore, using a shape feature

we can build a classifier that is trained just once off-line

and then applied to every later embryo image, regardless of

which DNA fragment had been inserted into the genome.

On a global scale, the embryo contour is always close

to elliptical. We make use of this fact by automatically ex-

tracting individual embryos from the slide image and rotat-

ing them such that their main axis is aligned horizontally.

On finer scales, embryos of different stages differ in short

characteristic regions that occur in different locations and

at different times during the development. To capture these

in a feature vector, we first represent the embryo outline by

a chaincode [5], such that any short substring of the code

4-6 7-8 9-10

11-12 13-14 15-16

Figure 3. Examples of contours of embryos of different stages.

Contours of some of the stages (4–6, 9–10) are very smooth,

whereas for other stages there are easily recognizable markers re-

flecting the changes of embryo morphology, like the appearing

segments for stages 11–12, and 13–14. Some of these markers

are best visible only in some orientations (side view in the case of

stage 7–8).

corresponds to a short boundary segment. We then follow a

bag-of-visual-words approach [4], as has proven successful

for many other visual categorization tasks.

From a training set of embryo contours we first perform

term frequency/ inverse document frequency (tfidf) weight-

ing of the exacted substrings, with developmental stages

taking the role of different documents. This way, we ensure

that frequent but non-informative segments are suppressed,

and segments from all stages are treated with roughly equal

importance. From the highest ranked substrings, s1, . . . , sn
we create a dictionary of representative chaincodes using

kernel vector quantization (KVQ) [10]. This requires solv-

ing a linear program

w∗ =argmin
w∈[0,1]n

n∑

i=1

wi sb.t.

n∑

i=1

aijwj ≥ 1, (1)

where aij = 1, if the Hamming distance between substrings

si and sj is smaller than a chosen threshold, and aij = 0
otherwise. The codebook consists of all substrings that have

positive weights w∗
i > 0. We choose this way to arrive at a

representative subset over, e.g., k-means clustering, because

1) k-means would requires a vector representation, whereas

KVQ only requires a similarity measure (here Hamming

distance) between the objects to be clustered, and 2) the

only free parameter of KVQ is the threshold for defining

the aij , which corresponds to the maximal radius we allow

a cluster to have. This is more easily interpretable than hav-

ing to specify the number of codebook entries in advance.

To obtain shape features of different scale, we repeat the

above procedure also on scaled-down versions of the train-

ing images.

To represent an embryo image, we extract contour seg-

ments on all scales, assigning each segment the cluster ID

of its nearest codebook entry, as measured by Hamming

distance. The cluster IDs are then combined into one bag-

of-visual-words histogram per scale and the resulting his-
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tograms of all scales are concatenated into a single feature

vector.

Using this representation, we train a linear support vector

machine (SVM) with Platt scaling to get a classifier with

probabilistic outputs.

2.2. Breeding the training data

Collecting and annotating training data is the most time-

and work-consuming stage of many visual recognition

problems.

Interestingly, the situation is different for us. Since the

shape-based classifier relies on features that are not affected

by the tested genetic modification, we need only a single

training set to get a classifier that can be applied to all future

embryo images. Also, the training examples do not even

have to come from genetically modified organisms. We can

take any normal (wild-type) Drosophila line and take im-

ages of its embryos to form a training set. Most importantly,

we can make use of the fact that the target classes we want

to predict are developmental stages, which themselves are

defined by certain intervals of how many hours the embryo

has been developing. In combination, this is allows us to

selectively create training examples of each stage instead of

following the usual approach of collecting a large corpus of

unlabeled examples to be annotated manually. All we have

to do is to precisely time the interval between when the eggs

start developing, and when the embryos are prepared for

imaging. This is not a trivial task, but doable using existing

biological techniques.

Note that this trick of breeding a training set works most

efficiently for the genetically unmodified Drosophila, which

can be bred in large quantities and create a large amount of

healthy embryos per generation. We cannot use the same

trick to get stage specific embryo images for the genetically

modified organisms, since this would require many repeti-

tions of breeding, staining and imaging for each stage of

each DNA segment to be tested.

In addition to the training data obtained by breeding we

also create a smaller amount of annotated images of geneti-

cally modified embryos with consistent pattern in the tradi-

tional, manual way. These serve as a validation and as a test

set for the experimental evaluation we present in Section 3.

2.3. Pattern similarity

A good similarity graph is a key element for the label

propagation method we want to apply. Its most important

component is the similarity measure chosen. Typical mea-

sures of pattern similarity divide the embryo area into a grid

or a triangulation of cells and compare the average intensi-

ties within each cell, for example by the sum of squared

differences (SSD) [6]. Alternatively, it has been proposed

to extract and compare SIFT descriptors on a rectangular

grid [14]. Such two-dimensional similarities work well in

1.

2. 3. 4.

5. 6. 7.

Figure 4. A stage 15–16 embryo and its 7 closest neighbors ac-

cording to our measure of similarity of expression patterns. The

similarity is invariant to rotation around the embryo’s main axis

and to in-plane rotation as well leading to all relevant embryos

that should share the same stage classification being close to each

other.

situations when embryo images are registered, but they are

very sensitive to out-of-plane rotation, which can drastically

change the appearance between embryos of the same stage,

see Figure 4. We therefore adopt a similarity measure that

explicitly enforces the invariance properties we know are

necessary: for achieving rotational invariance along the em-

bryo’s main axis, we project the two-dimensional intensity

values to the main axis of the elliptic shape by summing (the

non-stained parts of the embryo are transparent, so there is

no problem of occlusion). We achieve invariance to contrast

variations by using the normalized cross-correlation score
as similarity measure between such projected intensity pro-

files. Finally, we get a similarity between two embryo im-

ages that is also invariant to in-plane rotation by comparing

the images always in two ways, once directly as described

above, and once after flipping one of the images along the

vertical axis, keeping the larger of the two similarity values.

Note that for a generic classification system, this sim-

ilarity might not be strong enough: it is possible that the

projection and the normalization remove not just geometric

distortion but also relevant pattern information. In our situa-

tion, however, we found this not to be a major problem. The

reason is likely that we only measure the similarity between

embryo images within the same slide, where typically only

few and characteristically different patterns occur.

2.4. Label propagation

At test time, given a slide with n embryo images, we

form a symmetric k-NN graph of n nodes. Each edge

(i, j) is assigned a weight wij = exp(γs(xi, xj)), where

s(xi, xj) is the similarity score between the images xi and

xj , and γ is a bandwidth parameter which is found by model

selection.

Since ordinary label propagation handles only binary

classification, we use a one-vs-rest approach, solving one
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label propagation step for each of the six stage groups we

are interested in. In each case, each node i is assigned a

label preference score yli, which is the output of the shape-

based classifier for this stage on the corresponding embryo

image. The idea of label propagation is that the decisions of

images, for which the classifier is confident (yli close to 1),

will influence the decisions of their neighbors to also pre-

fer this label. As a consequence, the label confidence for

images where the classifier was uncertain is increased, and

even labeling errors can be corrected.

Formally, the label propagation step itself consists of

solving a quadratic optimization problem.

min
(f l

1,...,f
l
n)∈Rn

∑

i∈L

(f l
i − yli)

2 +
λ

2

∑

i,j∈X

wij(f
l
i − f l

j)
2 (2)

where the first term is a loss term, and the second term is

a (Laplacian) regularizer [1]. A closed form expression for

the solution solution f l
1, . . . , f

l
n exists, see [20]. The result

are real-valued confidences f l
i for each label l and image

i. We can use these to rank embryo images by their label

confidence, for example in an interactive labeling tool, or

make a hard assignment to the label of maximum response:

l∗i = argmax
l

f l
i

thereby achieving a fully automatic setup.

3. Experiments
We performed experiments on synthetic data and on

Drosophila embryo gene expression images.1 In both ex-

periments, we use a linear SVM as our base classifier. In

order to find optimal cost parameter of the model, we use

cross-validation and search for it on a grid with exponential

spacing. We pick the values for two hyper-parameters of la-

bel propagation (bandwidth, and regularization weight) on

the validation set in an analogous way.

3.1. Illustrative toy example

We first show the power of label propagation with two

orthogonal sources of information in the following synthetic

toy example.

We generate data by sampling from a mixture of Gaus-

sian with three components in R
2 (Figure 5, left). We train

the base classifier using the first dimension only. Because

the Gaussians overlap strongly in this representation, a large

fraction of the data is misclassified (Figure 5, middle).

The second dimension, we use to compute similarities

between samples and form the respective neighborhood

graph. Running label propagation many of the previously

misclassified examples are now assigned to the correct class

1Both data and code is available from http://cvml.ist.ac.at/drosophila/

Figure 5. Synthetic test data (left) and corresponding results from

the base classifier (middle) and label propagation (right).

(Figure 5, right). The reason is that samples tend to have

more neighbors of their own class than of other classes.

Since correctly classified examples typically have a higher

confidence score, these samples’ scores are pushed towards

their correct classes. Note that here we think of the sec-

ond dimension as similarity — only the relative distances

matter, ie. directly applying approaches such as PCA is not

possible. This is also why some outliers remain mislabeled

in Figure 5.

3.2. Drosophila embryos stage annotation

Next, we describe the actual Drosophila stage annota-

tion system. We describe how to obtain the data, and we

evaluate the performance of stage annotation by per-embryo

shape-based classification and show how it improves by la-

bel propagation.

3.2.1 Training data collection

We perform stage-specific collections of embryos as de-

scribed in Section 2.2 for a Drosophila line serving as the

background genotype for the study and therefore show-

ing no expression patterns. We exclude abnormal em-

bryos (blurred, overlapping, broken, incorrect stage) yield-

ing a total of 6810 embryos along with their contours from

47 slides. We explicitly balance this dataset resulting in

1014 embryos per stage group.

3.2.2 Validation and test data collection

We collected expert annotations for 193 slides from the de-

scribed biological study (embryos show various expression

patterns). Two annotators were given a set of automatically

preselected embryos for each of the slides separately. At

least a hundred embryos were selected with emphasis on

non-blurred, non-overlapping embryos showing any active

pattern. If there were not sufficiently many such automat-

ically selected embryos the set was completed by random

sampling. The annotators were free in which embryos to

label, with the instruction to try to annotate at least one em-

bryo of each stage that shows any active pattern.
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The first expert annotated 49 slides with 102 embryos an-

notated on average, the second expert annotated 150 slides

with 27 embryos per slide, in total we obtained 9006 anno-

tated embryos. As there are usually more embryos of later

stages and the activity is more frequent in later stages as

well, the dataset is significantly unbalanced in favor of later

stages. The stage groups 4–6, 7–8, 9–10, 11–12, 13–14,

and 15–16 are represented by 205, 176, 802, 1957, 2678,

and 3188 embryos.

We randomly select 20 slides as a validation set for tun-

ing the parameters of label propagation. The remaining

173 serve as test set. These were not used during any part

of the method development, but serve only to estimate the

generalization performance of the system on future data.

The test set contains 6 slides which were annotated inde-

pendently by both experts. Each of these slides is included

in the test set just once. We use these duplicates to get a

rough estimate of the human error rate on the task.

3.2.3 Embryo stage annotation

We choose the parameters of the shape features based on

prior experience on a smaller dataset. We use chain codes

of length 8, we consider chain codes with Hamming dis-

tance 2 or less to be adjacent and we take 5000 chain codes

having highest term frequency-inverse document frequency

for the purpose of building the dictionaries. We use three

scales of the contour, extracted from images at resolution

800 × 400px and smaller subsampled by factors of 2 and

4, and finally we take the square root of the feature entries,

corresponding to a Hellinger kernel feature map.

To evaluate the quality of the SVM classifier, we perform

five different runs based on different subsets of the training

data and apply the resulting classifiers to the test set. We

measure the quality of prediction by the slide accuracies,

i.e. the average number of correct predictions per slide, av-

eraged over all slides of the test set. The results are shown in

Table 1. Furthermore, Figure 6 (left) depicts the confusion

matrix for one of the runs.

Most of the classification errors are caused by mistaking

two neighboring stage groups. We can see that the accu-

racy for some of the stages is reasonably good, especially

4–6 which has very smooth contour, 13–14 where there are

many deep ridges between the segments, and 15–16 where

the segment boundaries get slightly softer. On the other

hand, the stage 9–10 is very hard to predict resulting in less

than 40% accuracy. This is due to the contours often lack-

ing characteristic features that would help to distinguish this

stage group.

Next, we obtained the labels from a classifier on the val-

idation set, and use it to identify optimal parameters (band-

width, regularization weight) of the label propagation. With

these parameters fixed we run label propagation on the test

run
slide accuracy slide accuracy

classifier propagation

A 0.721 0.814
B 0.719 0.818
C 0.721 0.814
D 0.724 0.815
E 0.698 0.809

Table 1. Comparison of classifier and label propagation on the test

set measured by average slide accuracy. Label propagation consis-

tently brings improvement of about 10%.

classifier: 11-12
propagation: 13-14

9-10: 0.41
7-8: 0.12

11-12: 0.41

11-12: 0.02 

15-16: 0.10
13-14: 0.88

7-8: 0.50
4-6: 0.08

9-10: 0.39

13-14: 0.97
11-12: 0.02

15-16: 0.01

Figure 7. A late stage 14 embryo incorrectly predicted by a clas-

sifier as 11–12 gets the right label upon label propagation thanks

to some of its nearest neighbors being confidently and correctly

predicted (top right, top left). Part of the marginal from classifier

output corresponding to the three most probable stages are shown.

Contours of embryos marked for easier interpretation.

set. For all of the runs the slide accuracy improves the re-

sults by about 10%, see Table 1 and Figure 6 (right).

In Figure 7, we show one particular example where the

contour of an embryo does not reflect well the correct stage

and the embryo is labelled incorrectly by the SVM classi-

fier. This error is corrected by label propagation since there

are enough embryos which are confidently predicted to be

of the correct stage and which have very similar pattern.

The improvement of label propagation as measured by

average slide accuracy is largely due to later stages (11–

12, 13–14, 15–16) which contribute to this improvement the

most, see Figure 6 (right).

However for some applications, other accuracy measures

might be more suitable. We report sample accuracy, i.e.

the fraction of embryos correctly classified across all slides,

and label accuracy, i.e. the fraction of correctly classified

embryos within each stage, averaged over all stages. Also

using these measures label propagation improves over SVM

classification, see Table 2. Overall, slide accuracy and sam-

ple accuracy have higher values compared to label accuracy

because the majority of the embryos belongs to the more

improved later stages.
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Figure 6. A confusion matrix for run A on the test set after SVM prediction only (left), and after label propagation (right). The numbers

indicate embryo counts, the colors encode per-class fractions.

run
sample accuracy label accuracy

classif. propag. classif. propag.

A 0.707 0.824 0.679 0.692
B 0.709 0.828 0.683 0.695
C 0.709 0.825 0.686 0.700
D 0.711 0.823 0.679 0.694
E 0.687 0.820 0.681 0.706

human 0.83 0.62

Table 2. Sample and average label accuracies of classifier and la-

bel propagation on the test set. In all cases, label propagation im-

proves over shape-based SVM classification, and it is well compa-

rable to human annotators.

3.2.4 Discussion

Overall, label propagation improves over the classification

in all sample, label, and slide accuracies. From the two con-

fusion matrices (Figure 6), we can see, however, that there

are two labels which are challenging for our system. First,

stage group 9–10 is difficult to classify based on contour

and leads to common mistakes, label propagation then cor-

rects these mistakes only sporadically. This happens most

probably because there are not enough correct predictions

of this stage. Second, stage group 7–8 is the only label

for which label propagation leads to a decrease in accuracy.

This stage group is unique in the sense that it lasts only

35 minutes (compared to 90–260 minutes for the other five

stage groups) which results in very few embryos collected

and mounted on one particular slide. Stage group 7–8 is

also the point when the embryo undergoes highly dynamic

changes (final gastrulation and rapid germ band elongation

[3]) which result in diverse expression patterns. For this

stage one cannot expect a significant improvement from the

label propagation. If a 7–8 embryo is labeled incorrectly by

the SVM classifier, its decision will likely not be corrected,

because none of the other embryos of this stage have a sim-

ilar enough pattern to play a role during propagation.

4. Conclusion
We proposed a system for Drosophila embryo stage clas-

sification that combines a classifier and graph-based label

propagation. The classifier is rather weak but can be learned

from general shape features, whereas the graph captures

specific appearance of each of the stages for one particu-

lar genotype and enables us to correct for the errors of the

classifier. This setup minimizes the need for the training

data and still gives a system with performance comparable

to human annotators.

One important advantage of the presented system is that

it can also be easily used in a semi-automatic way, which

many biologists prefer over fully automatic systems. First,

the label propagation outputs real-valued scores that can

be used for ranking instead of a hard decision. Second,

it is possible to include input from the user in the form

of hard labels without any significant changes to the algo-

rithm. Only the label propagation has to be rerun, which

takes minimal computation effort. A further advantage of

the semi-automatic scenario is that the user can change the

parameters of label propagation on the fly, thereby avoiding

the need for model selection on a validation set.

The main limitation of the proposed system is that its

performance depends strongly on the quality of the neigh-

borhood graph, i.e. on the similarity measure. Also, rare

classes can get suppressed by frequent ones in the label

propagation step as we saw with the early developmental

stages which are very short.
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In future work, we plan to improve the classification ac-

curacy specifically for the rare and difficult stages. Apart

from better imaging techniques, possible directions for this

include the development of better shape and appearance fea-

tures, as well as non-linear classifiers. Note that since our

method is modular, we can analyze and improve each of

those aspects in isolation to find the combination with an

overall best performance.

We plan to use the system to automatically prefilter the

millions of individual embryo images and identify a small

set of embryo images per stage, from which a human picks

the visually most suitable one for biological interpretation.
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