
Efficient 3D Scene Labeling Using Fields of Trees

Olaf Kähler
Dept. of Engineering Science

University of Oxford
olaf@robots.ox.ac.uk

Ian Reid
School of Computer Science

University of Adelaide
ian.reid@adelaide.edu.au

Abstract

We address the problem of 3D scene labeling in a struc-
tured learning framework. Unlike previous work which uses
structured Support Vector Machines, we employ the recently
described Decision Tree Field and Regression Tree Field
frameworks, which learn the unary and binary terms of a
Conditional Random Field from training data. We show
this has significant advantages in terms of inference speed,
while maintaining similar accuracy. We also demonstrate
empirically the importance for overall labeling accuracy of
features that make use of prior knowledge about the coarse
scene layout such as the location of the ground plane. We
show how this coarse layout can be estimated by our frame-
work automatically, and that this information can be used
to bootstrap improved accuracy in the detailed labeling.

1. Introduction
Interacting with the world requires both an understand-

ing of the 3D geometry of a scene and of its semantic mean-

ing. Remarkable achievements have been made in both of

these directions, with systems like PTAM [8], DTAM [9]

and KinectFusion [10] able to provide 3D information in

real time. Learning and inference models such as Support

Vector Machines and Random Forests [3] have been used

in combination with Conditional Random Fields [2, 11] to

infer semantic labels in a range of problems. However only

recently has work focused on the combination of 3D data

and semantic labeling. For a successful integration of the

two parts, the 3D representation has to be rich enough to

provide an actual benefit for the task of scene labeling, and

the scene labeling system has to be fast enough to allow

interaction with the inferred labels.

We contribute in four different ways to the combined

treatment of reconstruction and interpretation of scenes.

First, we present a framework to employ Decision Tree

Fields [11] and Regression Tree Fields [6] for the 3D scene

labeling task, where the dependency structure is dynami-

cally determined from the scene instead using grid struc-

tures as in the original works. Second, we show that both

of these classifiers are very competitive or even outperform

state-of-the-art methods with the additional benefit of sig-

nificantly faster inference steps. Third, we compare the two

classifiers in the context of scene labeling. And finally we

use an adaptation of the framework to estimate the coarse

scene layout and ground plane, which are a prerequisite for

high level features commonly used for 3D scene labeling.

1.1. Related Work

With the introduction of the Kinect sensor a significant

number of works has been published on semantic labeling

of RGB images with additional depth information [15, 13].

While these works achieve impressive results, they focus on

semantic segmentation of single images merely using depth

as an additional information source. They do not consider

mechanisms for consistent labels in sequences of images

from cameras progressively exploring an environment.

A similar segmentation task was investigated in [12],

where multiple segmentations are computed independently

for each image in a sequence. However, a significant im-

provement of the performance is observed by enforcing

temporal consistency, which the authors achieve with a

Markov Random Field that links segments in different im-

ages if they occupy the same location in 3D space.

The closest work to ours is presented in [2]. The authors

first integrate the 3D information from multiple images into

a single 3D point cloud and then oversegment and label this

point cloud using full 3D geometry information. The down-

side of their SVM-based approach is the processing time,

which is far from real-time for their full scale classification

model and an accelerated, approximate solution only comes

at the expense of reduced labeling performance.

We pose the problem instead within the framework of

the recently introduced Decision Tree Fields [11] and Re-

gression Tree Fields [6]. We show that this enables us to

discover consistent scene labels for a full 3D model at in-

teractive rates while still maintaining the high precision and

recall of the current state-of-the-art methods.

Like many scene labeling systems, the performance of

2013 IEEE International Conference on Computer Vision

1550-5499/13 $31.00 © 2013 IEEE

DOI 10.1109/ICCV.2013.380

3057

2013 IEEE International Conference on Computer Vision

1550-5499/13 $31.00 © 2013 IEEE

DOI 10.1109/ICCV.2013.380

3064

yi

yi

yi

yi yi

yi

yi

yi

yi yi

yi

yi

yi

Figure 1. Outline of the pipeline for semantic labeling. Starting with a dense 3D reconstruction we compute an oversegmentation and

construct a CRF before we finally arrive at the inferred labels for the scene.

our framework crucially relies on knowledge of the coarse

scene layout comprising of a ground plane and the walls,

which allows us to exploit rich geometric constraints that

place other objects within the context of the overall scene.

In the experimental section we empirically quantify the ben-

efit of prior knowledge of these coarse features. However

previous closely related works either pre-calibrate [2] and

feed the information to the algorithm as prior knowledge,

or it is estimated in a separate ad-hoc step [15]. A sepa-

rate stream of work has explicitly considered inferring the

coarse scene layout, usually by restricting it to some sim-

ple form such as a cuboid [16] or an indoor Manhattan

world [5]. In contrast we show that the very same method

we use for scene labeling can also be adapted to label the

floor and walls in indoor environments, which then allows

to bootstrap a fine grained labeling of the scene.

1.2. Method Overview

The main steps of our proposed system are illustrated in

Figure 1. Starting from given depth images, we compute a

dense, volumetric representation of the scene using our own

implementation of the KinectFusion algorithm [10] that in

addition takes the RGB information into account in aligning

the RGB-D images. We then compute an oversegmentation

of this dense representation and instantiate a graph over the

segments as explained in Section 2. For each of the seg-

ments and for each neighborhood relation between the seg-

ments we then extract a feature vector which we will detail

in Section 3. Finally we compute labels for the segments us-

ing adaptations of Decision Tree Fields [11] and Regression

Tree Fields [6]. Section 4 will go into the details and revise

the learning and inference steps. An experimental evalua-

tion of our approach follows in Section 5 and we discuss it

in some concluding remarks in Section 6.

2. Oversegmentation

Given the 3D input volumes from KinectFusion we first

want to reduce the complexity from the millions of points

on the 3D surface to a few thousand, and we want to pre-

group points that are likely to be part of the same object. We

assume that the boundaries between objects are represented

by discontinuities in appearance, depth or surface orienta-

tion. We achieve the desired pre-grouping by computing an

oversegmentation.

Inspired by the very successful SLIC superpixels [1] for

2D images, we develop a method for the oversegmentation

of a 3D volume. We start by distributing seeds points Ci in

a regular grid over the volume. Each of the seeds is defined

by a centroid pCi
, a color cCi and a normal nCi . Next a

label lx is assigned to each surface point x by finding the

seed Ci in a neighborhood d, that minimizes the distance

D(x, Ci) = wp‖x−pCi
‖+wc‖cx−cCi

‖+wn acosn
T
xnCi

,

where wp, wc and wn weight the individual contributions of

distances in space, color and normal. Once each point has a

label, the centroids pCi
, mean colors cCi

and average nor-

mals nCi
of each seed Ci are recomputed from the points x

that have been assigned the label lx = Ci. These two steps

are iterated until convergence to a stable oversegmentation

of the scene. As this approach does not enforce connectiv-

ity of the segments a post-processing step is applied after

the iterations finish [1], in which individual stray points or

small connected parts of the scene are merged with their

most closely matching neighboring segment.

Given the oversegmentation we define a graph G =
(V, E) over the segments. Each segment i is used as a node

vi ∈ V and for each pair of segments i, j with the distance

between their centroids satisfying ‖pCi
− pCj

‖ < dcontext
we add an edge ei,j ∈ E , where dcontext is chosen such that

it covers about 20% of the overall extent of the scene.

3. Feature Extraction
For each node vi we extract a feature vector describing

the segment appearance and its shape characteristics. Sim-

ilarly, we extract a feature vector for each pair of segments

that have an edge ei,j linking them, which will describe the

contextual relation of the two segments. These descriptors

primarily rely on the color and geometry information accu-

mulated in the 3D reconstruction process and on the origi-

nal input images that were used in this process. If no prior

knowledge on the coarse layout of the scene is given, dis-

tances and the overall scale can only be measured in terms

of voxels and the arrangement of segments within the scene

context is unknown. An upgrade to metric distances and an

30583065

Average HSV values 3

Histogram of HSV values (6/2/2 bins) 10

HOG descriptor for projection 31

Eigenvalues of the Scatter Matrix 3

Linearity and Planarity (λ1 − λ2, λ2 − λ3) 2

Histogram of angles of the normals (8 bins) 8

Plane fit errors (mean, median and maximum) 3

Spin Image (4× 4 bins) 16

Angle with ground plane 1

Height above ground plane 1

Footprint area 1

Total 79
Absolute difference of average HSV values 3

Absolute difference of HOG descriptors 31

Angle between mean normals 1

Distance between centroids 1

Convexity 2

Coplanarity (mean, median and max distances) 6

Connectivity 1

Vertical and horizontal displacement 2

Footprint overlap 1

Total 48
Table 1. List and dimensionality of the used features. The upper

set of features is used for the unary terms and the lower one for

the binary relations. The three subgroups are extracted from color,

shape and global scene information, respectively.

additional set of very powerful features, such as the height

above the ground plane, can be extracted once this prior

knowledge is given. The list of the features we use in our

current setup is given in Table 1. While most of them are

self-explanatory and have been used before [2, 15] more de-

tails on some of them are given in the following.

As a typical appearance based feature we compute a

HOG descriptor [4] for each segment. We follow the ap-

proach in [2] and go through the original input image se-

quence to find the image where the camera is looking most

closely to orthogonal onto the segment. We then project

the centroid of the segment into this image and compute

a standard HOG descriptor for the respective cell, normal-

ized using the L2-norm over four different neighborhoods

of 2 × 2 cells each. We use 9 bins for a histogram of un-

signed gradient orientations, 18 bins for signed orientations

and 4 general texturedness features, which are simply the

sums of all normalized histogram entries.

We also have 3D geometry information and can hence

compute features describing the shape of the segments.

Apart from the three sorted Eigenvalues (λ1, λ2, λ3) of the

Scatter Matrix we also use λ1 − λ2 as a measure for the

linearity of a segment and λ2−λ3 as a measure for the pla-

narity [2]. A measure of the flatness, that to our knowledge

has not been used before, is given by a histogram of angles

between the average normal of a segment and the surface

Average HSV

Histogram HSV

HOG

Scatter Matrix

Linearity/Planarity

Histogram Angles

Plane Fit

Spin Image

Angle with Ground

Height above Ground

Footprint Area

Difference HSV

Difference HOG

Angle

Distance

Convexity

Coplanarity

Connectivity

V-Displacement

H-Displacement

Footprint Overlap

Figure 2. Histogram of how often the features are typically used

for splitting decision trees in the labeling phase. The left and right

plots cover the unary and binary features, respectively. This gives

a rough estimate of the relevance of features, but it does not take

the depth within the trees into account where the features are used.

normals at individual points. Finally we compute the mean,

median and maximum plane fit errors as in [15] and spin

images [7], that have not been used in either of [2, 15].

To describe the relation between two segments, a first ob-

vious feature is the angle between the surface normals and

the distance between the two centroids. Given the centroids

and surface normals we can also check whether the centroid

of one segment is in front of the other segment and vice

versa, which provides an indication of convexity as used

in [2]. We also compute the mean, median and maximum

distances of the points of one segment from a plane fit to

the other segment, which gives a measure of coplanarity of

the two [15], and we check whether two segments are con-

nected as neighbors in the oversegmentation.

A final set of descriptors is based on higher level knowl-

edge of a ground plane. In our experiments in Section 5.3

these features significantly improve the performance of the

overall system. While in [2] this global contextual infor-

mation was given a priori, we show in Section 5.4 that it

can be estimated automatically from the data using the very

same system that we propose for fine grained scene label-

ing. Once given, this knowledge allows us to compute the

verticality of a segment, i.e. the angle of the surface normal

with the ground plane, the height above ground and the hor-

izontal and vertical displacements between two segments,

all of which have also been used in [2]. We also compute

a projection of each segment onto the ground plane and use

the area of this footprint and the percentage of overlap of

two footprints as additional features [15].

Figure 2 gives an assessment of the relevance of individ-

ual features. Appearance based features like HOG dominate

particularly for the unary terms. The histogram of normal

angles and spin images appear to be the most important de-

scriptors of shape, and convexity and coplanarity are highly

relevant to describe the relation of segments. A detailed

30593066

w w

Figure 3. Illustration of the forest structure in Decision Tree Fields

(left), where tables of costs are selected according to the input

data, and Regression Tree Fields (right), where multi-dimensional

quadratic cost functions or Gaussian likelihoods are selected.

evaluation of the features incorporating knowledge of the

scene layout follows in Section 5.3, but it is already appar-

ent that they contribute significantly.

4. Semantic Labeling

We model the relation between the collection of feature

vectors x extracted for the nodes and edges and the label

vector y for the scene as a Conditional Random Field. In

our current setup we only consider unary terms EN and bi-

nary terms EE , leading to the overall relation:

P (y|x,w) =
exp(−E(y,x,w))∫
exp(−E(y,x,w))dy

(1)

E(y,x,w) =
∑
i∈V

EN (yi,x,w) +
∑

i,j∈N
EE(yi,yj ,x,w)

(2)

with a parameter vector w. Given that we have multiple

classes and the labels for individual nodes in the graph are

related to each other, this is a classical problem for struc-

tured learning and inference techniques. We address it us-

ing the two closely related Decision Tree Fields (DTFs) [11]

and Regression Tree Fields (RTFs) [6].

For both the DTF and RTF formulations the energies EN

and EE are determined using structures akin to Random

Forests [3]. As illustrated in Figure 3, the input data x is

passed down a set of trees and eventually selects a single

leaf from each tree. The leaves then determine the energies

required to assign the individual labels yi to nodes vi or

pairs of labels yi and yj to nodes vi and vj . The definition

of these energies are slightly different for DTFs and RTFs.

For DTFs the labels are discrete yi ∈ [1, . . . ,K], where

K is the number of distinct classes, and the parameter vec-

tor w stores tables of energy values for each leaf. The label

yi selects a single entry from the table selected by the input

data x, and this entry represents the energy for assigning

the label. As there are multiple trees in the forest and hence

multiple leaves, the overall energies EE and EN are defined

as the sums over the energies in the individual leaves:

EDTF
N (yi,x,w) =

∑
q∈L(i,x)

wq,yi
(3)

EDTF
E (yi, yj ,x,w) =

∑
q∈L(i,j,x)

wq,yi,yj
, (4)

where the functions L(i,x) and L(i, j,x) return the set

of leaves reached in the respective forests and wq,yi and

wq,yi,yj
are the individual energy values.

For RTFs the labels are vectors yi ∈ R
K . Each en-

try of yi encodes the confidence that the node vi should

be labeled as the corresponding class. For the unary terms

the parameter vector w stores a symmetric, positive defi-

nite matrix Θu,q ∈ S
K and a vector θu,q ∈ R

K for each

leaf q, and the energy required to assign a label yi to node

vi is determined by the quadratic energy function defined

by Θu,q and θu,q . For the binary terms, the quadratic en-

ergy functions stored in the leaves are 2K dimensional and

defined by Θb,q ∈ S
2K and θb,q ∈ R

2K . They deter-

mine the energy required for the concatenated label vector

yi,j = (yT
i ,y

T
j)

T . The overall energy terms for the ensem-

ble of trees in the forest are again sums over the individual

contributions, resulting in:

ERTF
N (yi,x,w) =

∑
q∈L(i,x)

(
1

2
yT
i Θu,qy − ϑT

u,qyi

)
(5)

ERTF
E (yi,yj ,x,w) =

∑
q∈L(i,j,x)

(
1

2
yT
i,jΘb,qyi,j − ϑT

b,qyi,j

)

(6)

These quadratic energy functions can also be interpreted as

Gaussians with covariance matrices Σ·,q = Θ−1
·,q and mean

vectors μ·,q = Θ−1
·,q θ·,q . In that sense the leaves in the

unary regression forests store K-dimensional Gaussian dis-

tributions over the label vectors yi, and the binary forests

store 2K-dimensional distributions over the concatenations

of yi and yj . Accordingly the combined energy E from

equation (2) is a K|V|-dimensional Gaussian.

4.1. Learning

In the learning phase the features x with corresponding

labels y are given as training examples, and we have to find

the model parameters w. As in [11] we determine the tree

structures in a first step and then optimize the parameters w
in a separate, second step. A two step approach is necessary

as the parameters w are continuous whereas the tree struc-

tures form a large, combinatorial space, and a simultaneous

optimization of both is intractable.

In the first stage the tree structures are determined us-

ing standard methods [3]. We pick a random subset of the

training data to train each tree in the forest, the binary deci-

sion rules at the internal nodes select a random element of

30603067

the feature vector and split it at a random value. Decision

rules are selected to maximize the information gain and tree

splitting is stopped, once a certain depth is reached or the

entropy of the remaining labels is below a threshold.

In the second stage of learning we ideally want to

maximize the likelihood from equation (1) w.r.t. w. For

DTFs this involves evaluating the normalization factor∫
exp(−E(y,x,w))dy and for RTFs the overall energy

function is of dimension K|V|, both of which are compu-

tationally too demanding. Instead a pseudolikelihood ap-

proximation of the true likelihood is used [11, 6]:

P (y|x,w) ≈
∏
i∈V

P (yi|yV\{i},x,w) (7)

Taking the negative log-likelihood we arrive at a non-linear

optimization problem. For DTFs this problem is uncon-

strained and can be solved using the standard L-BFGS

method. For RTFs an additional constraint has to be met

which enforces that the Θu,q and Θb,q remain positive def-

inite matrices. As proposed in [6] we further impose that

the eigenvalues of Θu,q and Θb,q are constrained to the

range [emin, emax] with e.g. emin = 10−4 and emax = 104

to ensure well conditioned matrices throughout. This con-

strained optimization problem is solved using a projected

L-BFGS method based on [14]. In both cases it typically

takes about 100-200 iterations to find the minimum.

4.2. DTF Inference

In the inference problem we want to find a label vector

y for given inputs x and w. For DTFs this is a discrete

optimization problem and in our current implementation we

solve it using simulated annealing with a Gibbs sampler as

proposed in [11]. We define the unnormalized temperized

distribution Pτ (y|x,w) as:

Pτ (y|x,w) =
∏
i∈V

exp(−1

τ
EN (yi,x,w))

∏
i,j∈N

exp(−1

τ
EE(yi, yj ,x,w)). (8)

Starting from a random initialization y(0) and a high tem-

perature coefficient of e.g. τ (0) = 20 we repeatedly sample

a new label vector y(t+1) from the above distribution Pτ

conditioned on the previous y(t) and reduce the temperature

coefficient by a fixed factor. After typically 100 to 400 iter-

ations we arrive at a final temperature of e.g. τ (T) = 0.01
and an approximation y(T) of the maximum likelihood es-

timator of the labels for the given scene.

4.3. RTF Inference

For RTFs an efficient, exact inference method is pre-

sented in [6]. Given that all the individual contributions to

the likelihood from Equation (1) are Gaussian, the overall

likelihood is Gaussian as well and the negative log likeli-

hood takes the form

− lnP (y|x,w) =
1

2
yT Θ̃y − ϑ̃

T
y + lnZ. (9)

For the inference problem we can ignore the normalization

constant Z and only have to find the mean of the corre-

sponding Gaussian, i.e. ŷ = Θ̃
−1

ϑ̃. Due to the large num-

ber of dimensions an iterative method is required to solve

this linear equation system. Starting from an arbitrary label

vector y(0) = 0 we find ŷ using linear Conjugate Gradients

for typically around 10-20 iterations until convergence.

5. Experimental Evaluation
We experimentally evaluate our method primarily using

the Cornell-RGBD-Dataset [2]. Additional results on the

NYU Depth dataset [15] are presented as supplementary

material. Both of these contain image sequences recorded

with a Kinect and pose multi-class labeling problems. The

Cornell-RGBD-Dataset provides 24 office scenes with 17

classes of objects including tables, monitors and printers,

and excerpts of this dataset are shown in Figures 1 and 4.

Along with the dataset, the authors also provide a set of ex-

tracted feature vectors optimized for this task.

In Section 5.1 we show that both Decision Tree Fields

and Regression Tree Fields have a very competitive perfor-

mance compared to state-of-the-art classifiers at much faster

inference times. We then evaluate the effects of varying the

number of trees in Section 5.2 showing that a forest with

more trees increases the performance of DTFs and RTFs at

the expense of higher computational effort. In a third exper-

iment in Section 5.3 we evaluate the performance gained

by using global knowledge of a ground plane, and finally

we investigate the performance of the presented methods at

finding such a ground plane in Section 5.4.

5.1. Compared to State-of-the-Art

In [2] a labeling method based on structured Support

Vector Machines is presented. This method comes with two

different inference algorithms, a slow but accurate one and

a much faster, but less accurate one. The authors evaluated

their approach by computing macro- and micro-averaged

precision and recall scores on the accompanying Cornell-

RGBD-Dataset. Note that the micro-averaged precision and

recall are identical if a label has to be assigned to each of the

segments, but the fast and approximate inference method is

allowed to reject segments hence leading to different values

for micro-averaged precision and recall.

We evaluate the DTF and RTF classifiers using 5-fold

cross validation on the feature vectors coming along with

the dataset and a comparison is given in Table 2. As a

baseline we also include a Random Forest classifier (RF) on

30613068

Fine grained labeling Estimating scene layout

RGB Data True labels Predicted labels True labels Predicted labels

Figure 4. Samples of the scene labeling task in the Cornell-RGBD-Dataset. The left column shows the RGB data, the next two columns

show the ground truth and prediction results for fine grained scene labeling and the right two columns show the same for coarse scene

layout estimation.

Macro P Macro R Micro P Micro R Training Inference

w/o ground plane

RF 41.04 34.80 44.33 <1sec <10msec

DTF 70.02 46.11 60.07 10-20sec 50-300msec

RTF 65.80 49.65 62.58 1.5-2h 50-300msec

w/ ground plane

RF 64.86 55.53 70.00 <1sec <10msec

DTF 85.43 67.63 81.48 10-20sec 50-300msec

RTF 85.16 69.65 81.43 3h 50-300msec

SVM [2] 80.52 72.64 84.06 20-30min

SVM approx. [2] 82.95 38.14 87.41 56.82 50msec
Table 2. Experimental evaluation of macro- and micro-averaged precision and recall as well as typical timings for different classification

methods using the feature vectors extracted in [2].

the unaries, but as expected it performs significantly worse

than any of the methods exploiting contextual information.

Both the DTF and RTF methods achieve almost identical

macro averaged precision scores (85.43 and 85.16), which

ranks slightly above the best SVM-based method (82.95).

At recall RTFs slightly outperform DTFs (69.65 vs. 67.63),

but they are again outperformed by the slow but accurate

SVM-based method (72.64). However, the inference algo-

rithms for the DTF and RTF methods are orders of magni-

tudes faster and comparable to the approximate, fast method

based on SVMs, which only achieves a very low recall score

(38.14). In summary both DTFs and RTFs achieve roughly

the same performance as the slow but accurate SVM-based

inference method in the same time as the fast but approxi-

mate SVM-based method. These approaches are therefore

highly relevant for scene labeling, particularly if predicted

labels are required at interactive rates.

We also evaluate our overall pipeline of oversegmenta-

tion, feature extraction and labeling. Note that the Cornell-

RGBD-Dataset only comes with annotated 3D point clouds

and the ground truth labels for these point clouds were origi-

nally created by annotating the oversegmentations from [2].

For our experiments we therefore try to find suitable ground

truth labels by reprojecting the ground truth point cloud and

our oversegmentation into the original camera images and

we reject segments, where the label is not clear.

The results achieved with our proposed pipeline are

shown in Table 3, and in this case the RTFs appear to per-

form better than DTFs both in labeling performance and

inference time. Furthermore, the overall performance is

slightly lower compared to the features extracted in [2] and

evaluated in Table 2. As mentioned, the ground truth for

this dataset was obtained by annotating the specific overseg-

mentations from [2] and differences in the segment bound-

aries will invariably degrade the performance. The over-

segmentation of [2] also results in less complex CRFs with

about 50-100 nodes per scene, whereas ours have about

1000-3000 segments of much smaller and much more reg-

ular size. This difference explains the differences in run

time, but on the other hand the samples in Figures 1 and 4

show that the CRF structure strongly encourages contextual

consistency for the many small segments.

5.2. Number of Trees

In Section 4 we presented formulations of DTFs and

RTFs using multiple trees per term. With more trees, an

increased accuracy can be expected at the cost of higher

computational complexity. We investigate this effect using

30623069

Macro P Macro R Micro P/R Training Inference

w/o ground plane

RF 42.84 14.25 49.29 3-5sec 50-100msec

DTF 64.44 17.93 53.13 5-10min 50-120sec

RTF 63.11 31.37 66.12 8h-10h 10-45sec

w/ ground plane

RF 50.03 29.06 69.83 3-5sec 50-100msec

DTF 69.29 41.47 78.14 5-10min 50-120sec

RTF 69.16 43.83 78.86 8-10h 10-45sec
Table 3. Experimental evaluation of macro- and micro-averaged precision and recall as well as typical timings for DTFs and RTFs using

the pipeline and feature vectors as explained in this work.

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0 5 10 15 20 25 30

M
ac

ro
-P

re
ci

si
on

Number of Trees

DTF
RTF

Figure 5. Effect of number of trees on classification performance.

the features shipped with the Cornell-RGBD-Dataset, and

the resulting macro-averaged precision scores are shown in

Figure 5. As expected the performance increases with the

number of trees in both the DTF and RTF formulations and

saturates at about 15 trees. Similar, but slightly less pro-

nounced increases are also observed for macro-recall and

the micro-averaged values, but are omitted for clarity.

In this experiment we use the same number of trees for

the unary and binary terms. We have also investigated vary-

ing the numbers of trees independently and found that the

number of binary trees impacts the results more signifi-

cantly than the number of unary trees. We attribute this

to the greater diversity in the binary terms, where pairs of

labels have to be predicted instead of a single label per seg-

ment. In the remaining experiments, we therefore typically

use 10 unary trees and 15 binary trees, which appears to

saturate the performance for most of our tasks.

5.3. Knowledge of Scene Layout

Prior context information such as knowledge of a ground

plane and the absolute scale of a scene are important hints

for the labeling task, and they are thus heavily used in the

feature set we presented in Section 3. To assess their impor-

tance we re-run our scene labeling methods without using

these features and compare the impact. The resulting pre-

cision and recall scores are shown in the rows entitled w/o
ground plane in Tables 2 and 3. The significant drop in

precision and recall scores underlines the relevance of such

global knowledge for scene labeling and we next aim to find

this knowledge automatically.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

G
ro

un
d

pl
an

e
es

tim
at

io
n

er
ro

r
[d

eg
re

e]

Percentage of experiments

DTF
RTF

Figure 6. Errors in the estimation of the ground plane normal.

Macro P Macro R Micro P/R Training Inference

DTF 73.94 44.10 59.27 10-20min 30-100sec

RTF 74.65 61.16 68.93 30-40min 5-20sec
Table 4. Experimental evaluation of precision and recall for esti-

mating the coarse scene layout using DTFs and RTFs.

5.4. Estimating Scene Layout

For finding the scene layout we try to infer one of the

labels {floor, wall, tableTop, clutter} for each of the seg-

ments in the scene, and achieve this using the very same

scene labeling approach as before. We reduce the set of la-

bels to the given four classes and re-run the training and in-

ference steps. Sample results of this labeling task are shown

on the right hand side of Figure 4. To evaluate the perfor-

mance we again compute the precision and recall values as

a first evaluation criterion. As a second criterion we com-

pute robust plane fits to the segments labeled as floor by

our system and in the ground-truth data and compute the

angle between the two recovered normals.

In Table 4 we present the labeling precision and recall

thus achieved with our system. While this metric gives a

first impression of the performance, a much more relevant

criterion is the final estimation of the ground plane, and

a quantile-plot of the angular errors is given in Figure 6.

From both evaluations it appears that RTFs perform better

in this task than DTFs and the proposed method estimates

the ground plane to within 20◦ in 80% of the cases.

For an overall system it is straight forward to apply a

two stage approach. First, the coarse prediction is used to

estimate the ground plane, and second, this ground plane

is used in the computation of a fine grained scene labeling.

30633070

While this can be expected to fail in a few cases, it elimi-

nates the need for prior knowledge about the camera setup.

It is also worth looking at the discrepancy in learning

times for DTFs and RTFs as shown in Table 4 and com-

pare it to Tables 2 and 3. The extra computational effort

for RTFs is mostly due to the constraints on the eigenvalues

of the matrices Θu,q and Θb,q in the leaves of the Regres-

sion Trees. In the case of 17 classes as in Tables 2 and 3

there is a much larger overhead compared to DTFs than for

the 4 class problem in Table 4, which is obviously due to

the larger eigenvalue decompositions. This of course inher-

ently limits the number of classes the method can deal, but

we have not experimented with pushing this boundary.

6. Conclusions
We have introduced a structured learning approach to 3D

scene labeling that takes advantage of the recently described

Decision Tree Field [11] and Regression Tree Field [6] clas-

sifiers. We show that both DTFs and RTFs achieve an al-

most identical, if not superior, prediction accuracy to state-

of-the-art SVM-based methods, but allow for much more

efficient inference steps. The input to our method are volu-

metric representations of the 3D scene, which can be com-

puted in real time using KinectFusion [10]. In our current

implementation the oversegmentation typically takes 2-3s

and the feature extraction 5-10s. The combination with the

efficient classifiers allows the system to provide annotated

3D scenes at interactive rates and renders the methods very

attractive for scene labeling.

There are a number of practical measures that could im-

prove the system. Our oversegmentation step from Sec-

tion 2 computes a dense set of small segments. While this

leads to a fine grained segmentation of object boundaries

and while the CRF formulation does an excellent job at

grouping the small segments into semantically consistent

units, their sheer number poses a high computational bur-

den on the CRF. It would be interesting to improve upon this

by e.g. pre-grouping similar segments or even using hierar-

chical approaches. Also we currently impose an empirical

threshold on the context range in an attempt to manage the

complexity of the CRF. Although this works well in prac-

tice, and certainly is much more flexible than traditional 4-

or 8-connected MRF/CRF models, long range interactions

such as the relationship between the bounding walls of a

room may not be captured. Again, a hierarchical approach

with long-range contextual relations between objects and

short range relations between individual parts of the objects

might be beneficial. Finally our current system relies on a

Kinect sensor and the KinectFusion system, but volumetric

3D scene representations can recently also be acquired with

standard RGB cameras and DTAM [9]. While we expect

the 3D shape information to be less reliable in this case, it

would be interesting to compare the performance.

Acknowledgments We gratefully acknowldge the sup-

port of the UK Engineering and Phyiscal Sciences Research

Council (grant EP/H050795), and the Australian Research

Council (grant DP130104413), and Laureate Fellowship

FL130100102 to IDR).

References
[1] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and

S. Süsstrunk. Slic superpixels compared to state-of-the-art

superpixel methods. PAMI, 34(11):2274–2282, 2012.

[2] A. Anand, H. S. Koppula, T. Joachims, and A. Saxena.

Contextually guided semantic labeling and search for three-

dimensional point clouds. International Journal of Robotics
Research, 32(1):19–34, 2013.

[3] L. Breiman. Random forests. Machine Learning, 45(1):5–

32, 2001.

[4] N. Dalal and B. Triggs. Histograms of oriented gradients for

human detection. In CVPR, volume 1, pages 886–893, 2005.

[5] A. Flint, D. Murray, and I. Reid. Manhattan scene under-

standing using monocular, stereo, and 3d features. In ICCV,

pages 2228–2235, 2011.

[6] J. Jancsary, S. Nowozin, and C. Rother. Regression tree

fields an efficient, non-parametric approach to image label-

ing problems. In CVPR, pages 2376–2383, 2012.

[7] A. Johnson and M. Hebert. Using spin images for efficient

object recognition in cluttered 3d scenes. PAMI, 21(5):433–

449, 1999.

[8] G. Klein and D. Murray. Parallel tracking and mapping on a

camera phone. In ISMAR, pages 83–86, 2009.

[9] R. Newcombe, S. Lovegrove, and A. Davison. Dtam: Dense

tracking and mapping in real-time. In ICCV, pages 2320–

2327, 2011.

[10] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux,

D. Kim, A. J. Davison, P. Kohli, J. Shotton, S. Hodges, and

A. Fitzgibbon. Kinectfusion: Real-time dense surface map-

ping and tracking. In ISMAR, pages 127–136, 2011.

[11] S. Nowozin, C. Rother, S. Bagon, T. Sharp, B. Yao, and

P. Kohli. Decision tree fields. In ICCV, pages 1668–1675,

2011.

[12] I. Posner, M. Cummins, and P. Newman. A generative frame-

work for fast urban labeling using spatial and temporal con-

text. Autonomous Robots, 26(2):153–170, 2009.

[13] X. Ren, L. Bo, and D. Fox. Rgb-(d) scene labeling: Features

and algorithms. In CVPR, pages 2759–2766, 2012.

[14] M. Schmidt, E. Van Den Berg, M. Friedlander, and K. Mur-

phy. Optimizing costly functions with simple constraints: A

limited-memory projected quasi-newton algorithm. In Con-
ference on Artificial Intelligence and Statistics, pages 456–

463, 2009.

[15] N. Silberman and R. Fergus. Indoor scene segmentation us-

ing a structured light sensor. In ICCV Workshops, pages 601–

608, 2011.

[16] H. Wang, S. Gould, and D. Koller. Discriminative learning

with latent variables for cluttered indoor scene understand-

ing. In ECCV, pages 435–449, 2010.

30643071

