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Abstract

In this paper, we formulate saliency detection via ab-
sorbing Markov chain on an image graph model. We joint-
ly consider the appearance divergence and spatial distri-
bution of salient objects and the background. The virtual
boundary nodes are chosen as the absorbing nodes in a
Markov chain and the absorbed time from each transient
node to boundary absorbing nodes is computed. The ab-
sorbed time of transient node measures its global similar-
ity with all absorbing nodes, and thus salient objects can
be consistently separated from the background when the
absorbed time is used as a metric. Since the time from
transient node to absorbing nodes relies on the weights on
the path and their spatial distance, the background region
on the center of image may be salient. We further exploit
the equilibrium distribution in an ergodic Markov chain to
reduce the absorbed time in the long-range smooth back-
ground regions. Extensive experiments on four benchmark
datasets demonstrate robustness and efficiency of the pro-
posed method against the state-of-the-art methods.

1. Introduction

Saliency detection in computer vision aims to find the
most informative and interesting region in a scene. It has
been effectively applied to numerous computer vision tasks
such as content based image retrieval [32] , image segmen-
tation [30], object recognition [24] and image adaptation
[21]. Existing methods are developed with bottom-up visu-
al cues [19, 10, 26, 34] or top-down models [4, 36].

All bottom-up saliency methods rely on some prior
knowledge about salient objects and backgrounds, such
as contrast, compactness, etc. Different saliency method-
s characterize the prior knowledge from different perspec-
tives. Itti et al. [16] extract center-surround contrast at mul-
tiple spatial scales to find the prominent region. Bruce et al.
[6] exploit Shannons self-information measure in local con-
text to compute saliency. However, the local contrast does
not consider the global influence and only stands out at ob-
ject boundaries. Region contrast based methods [8, 17] first
segment the image and then compute the global contrast of

those segments as saliency, which can usually highlight the
entire object. Fourier spectrum analysis has also been used
to detect visual saliency [15, 13]. Recently, Perazzi et al.
[25] unify the contrast and saliency computation into a s-
ingle high-dimensional Gaussian filtering framework. Wei
et al. [33] exploit background priors and geodesic distance
for saliency detection. Yang et al. [35] cast saliency detec-
tion into a graph-based ranking problem, which performs
label propagation on a sparsely connected graph to char-
acterize the overall differences between salient object and
background.

In this work, we reconsider the properties of Markov ran-
dom walks and their relationship with saliency detection.
Existing random walk based methods consistently use the
equilibrium distribution in an ergodic Markov chain [9, 14]
or its extensions, e.g. the site entropy rate [31] and the
hitting time [11], to compute saliency, and have achieved
success in their own aspects. However, these models stil-
l have some certain limitations. Typically, saliency mea-
sure using the hitting time often highlights some particu-
lar small regions in objects or backgrounds. In addition,
equilibrium distribution based saliency models only high-
light the boundaries of salient object while object interior
still has low saliency value. To address these issues, we in-
vestigate the properties of absorbing Markov chains in this
work. Given an image graph as Markov chain and some
absorbing nodes, we compute the expected time to absorp-
tion (i.e. the absorbed time) for each transient node. The
nodes which have similar appearance (i.e. large transition
probabilities) and small spatial distance to absorbing nodes
can be absorbed faster. As salient objects seldom occupy all
four image boundaries [33, 5] and the background regions
often have appearance connectivity with image boundaries,
when we use the boundary nodes as absorbing nodes, the
random walk starting in background nodes can easily reach
the absorbing nodes. While object regions often have great
contrast to the image background, it is difficult for a ran-
dom walk from object nodes to reach these absorbing nodes
(represented by boundary nodes). Hence, the absorbed time
starting from object nodes is longer than that from back-
ground nodes. In addition, in a long run, the absorbed time
with similar starting nodes is roughly the same. Inspired
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Figure 1. The time property of absorbing Markov chain and ergod-
ic Markov chain. From left to right: input image with superpixels
as nodes; the minimum hitting time of each node to all boundary
nodes in ergodic Markov chain; the absorbed time of each node
into all boundary nodes in absorbing Markov chain. Each kind of
time is normalized as a saliency map respectively.

by these observations, we formulate saliency detection as a
random walk problem in the absorbing Markov chain.

The absorbed time is not always effective especially
when there are long-range smooth background regions near
the image center. We further explore the effect of the equi-
librium probability in saliency detection, and exploit it to
regulate the absorbed time, thereby suppressing the salien-
cy of this kind of regions.

2. Related Work

Previous works that simulate saliency detection in ran-
dom walk model include [9, 14, 11, 31]. Costa et al. [9]
identify the saliency region based on the frequency of visits
to each node at the equilibrium of the random walk. Harel
et al. [14] extend the above method by defining a dissimi-
lar measure to model the transition probability between two
nodes. In [31], Wang et al. introduce the entropy rate and
incorporate the equilibrium distribution to measure the av-
erage information transmitted from a node to the others at
one step, which is used to predict visual attention. A ma-
jor problem using the equilibrium distribution is that this
approach often only highlights the texture and boundary re-
gions rather than the entire object, as the equilibrium prob-
ability in the cluttered region is larger than in homogeneous
region when using the dissimilarity of two nodes to rep-
resent their transition probability. Furthermore, the main
objectives in [9, 14, 31] are to predict human fixations on
natural images as opposed to identifying salient regions that
correspond to objects, as illustrated in this paper.

The approach most related to ours is Gopalakrishnan et
al. [11], which exploits the hitting time on the fully con-
nected graph and the sparsely connected graph to find the
most salient seed, based on which some background seed-
s are determined again. They then use the difference of the
hitting times to the two kinds of seeds to compute the salien-
cy for each node. While they alleviate the problem of using
the equilibrium distribution to measure saliency, the iden-
tification of the salient seed is difficult, especially for the

scenes with complex salient objects. More importantly, the
hitting time based saliency measure prefers to highlight the
global rare regions and does not suppress the backgrounds
very well, thereby decreasing the overall saliency of object-
s (See Figure 1). This can be explained as follows. The
hitting time is the expected time taken to reach a node if
the Markov chain is started in another node. The ergodic
Markov chain doesn’t have a mechanism that can synthet-
ically consider the relationships between a node and mul-
tiple specific nodes (e.g. seed nodes). In [11], to describe
the relevance of a node to background seeds, they use the
minimum hitting time to take all the background seeds into
account. The minimum time itself is sensitive to some noise
regions in the image.

Different from the above methods, we consider the ab-
sorbing Markov random walk, which includes two kinds of
nodes (i.e. absorbing nodes and transient nodes), to mea-
sure saliency. For an absorbing chain started in a transien-
t node, the probability of absorption in an absorbing node
indicates the relationship between the two nodes, and the
absorption time therefore implicates the selective relation-
ships between this transient node and all the absorbing n-
odes. Since the boundary nodes usually contain the global
characteristics of the image background, by using them as
absorbing nodes, the absorbed time of each transient node
can reflect its overall similarity with the background, which
helps to distinguish salient nodes from background nodes.
Moreover, as the absorbed time is the expected time to all
the absorbing nodes, it covers the effect of all the bound-
ary nodes, which can alleviate the influence of particular re-
gions and encourage the similar nodes in a local context to
have the similar saliency, thereby overcoming the defects of
using the equilibrium distribution [9, 14, 11, 31]. Different
from [9, 14] which directly use the equilibrium distribution
to simulate human attention, we exploit it to weigh the ab-
sorbed time, thereby suppressing the saliency of long-range
background regions with homogeneous appearance.

3. Principle of Markov Chain

Given a set of states 𝑆 = {𝑠1, 𝑠2, . . . , 𝑠𝑚}, a Markov
chain can be completely specified by the 𝑚 ×𝑚 transition
matrix P, in which 𝑝𝑖𝑗 is the probability of moving from
state 𝑠𝑖 to state 𝑠𝑗 . This probability does not depend up-
on which state the chain is in before the current state. The
chain starts in some state and move from one state to anoth-
er successively.

3.1. Absorbing Markov Chain

The state 𝑠𝑖 is absorbing when 𝑝𝑖𝑖 = 1, which means
𝑝𝑖𝑗 = 0 for all 𝑖 ∕= 𝑗. A Markov chain is absorbing if it has
at least one absorbing state. It is possible to go from every
transient state to some absorbing state, not necessarily in
one step. Considering an absorbing chain with 𝑟 absorbing
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states and 𝑡 transient states, renumber the states so that the
transient states come first, then the transition matrix P has
the following canonical form,

P→
(

Q R
0 I

)
, (1)

where the first 𝑡 states are transient and the last 𝑟 states are
absorbing. Q ∈ [0, 1]𝑡×𝑡 contains the transition probabili-
ties between any pair of transient states, while R ∈ [0, 1]𝑡×𝑟

contains the probabilities of moving from any transient state
to any absorbing state. 0 is the 𝑟× 𝑡 zero matrix and I is the
𝑟 × 𝑟 identity matrix.

For an absorbing chain, we can derive its fundamental
matrix N = (I − Q)−1, where 𝑛𝑖𝑗 can be interestingly
interpreted as the expected number of times that the chain
spends in the transient state 𝑗 given that the chain starts in
the transient state 𝑖 , and the sum

∑
𝑗 𝑛𝑖𝑗 reveals the expect-

ed number of times before absorption (into any absorbing
state). Thus, we can compute the absorbed time for each
transient state, that is,

y = N× c, (2)

where c is a 𝑡 dimensional column vector all of whose ele-
ments are 1.

3.2. Ergodic Markov Chain

An ergodic Markov chain is one in which it is possi-
ble to go from every state to every state, not necessarily
in one step. An ergodic chain with any starting state always
reaches equilibrium after a certain time, and the equilibri-
um state is characterized by the equilibrium distribution 𝜋,
which satisfies the equation

𝜋P = 𝜋, (3)

where P is the ergodic transition matrix. 𝜋 is a strictly
positive probability vector, where 𝜋𝑖 describes the expected
probability of the chain staying in state 𝑠𝑖 in equilibrium.
When the chain starts in state 𝑠𝑖, the mean recurrent time ℎ𝑖
(i.e., the expected number of times to return to state 𝑠𝑖) can
be derived from the equilibrium distribution 𝜋. That is,

ℎ𝑖 =
1

𝜋𝑖
, (4)

where 𝑖 indexes all the states in the ergodic Markov chain.
The more states there are similar to state 𝑠𝑖 nearby, the less
ℎ𝑖 is. The derivation details and proofs can be found in [12].

3.3. Saliency Measure

Given an input image represented as a Markov chain
and some background absorbing states, the saliency of each
transient state is defined as the expected number of times

Figure 2. Illustration of the absorbing nodes. The superpixels out-
side the yellow bounding box are the duplicated boundary super-
pixels, which are used as the absorbing nodes.

before being absorbed into all absorbing nodes by Eq 2. In
this work, the transition matrix is constructed on a sparse-
ly connected graph, where each node corresponds to a s-
tate. Because we compute the full resolution saliency map,
some virtual nodes are added to the graph as absorbing s-
tates, which is detailed in the next section.

In the conventional absorbing Markov chain problems,
the absorbing nodes are manually labelled with the ground-
truth. However, as absorbing nodes for saliency detection
are selected by the proposed algorithm, some of them may
be incorrect. They have insignificant effects on the final
results, which are explained in the following sections.

4. Graph Construction

We construct a single layer graph 𝐺(𝑉,𝐸) with super-
pixels [3] as nodes 𝑉 and the links between pairs of nodes
as edges 𝐸. Because the salient objects seldom occupy all
image borders [33], we duplicate the boundary superpixels
around the image borders as the virtual background absorb-
ing nodes, as shown in Figure 2. On this graph, each node
(transient or absorbing) is connected to the transient nodes
which neighbour it or share common boundaries with its
neighbouring nodes. That means that any pair of absorb-
ing nodes are unconnected. In addition, we enforce that all
the transient nodes around the image borders (i.e., bound-
ary nodes) are fully connected with each other, which can
reduce the geodesic distance between similar superpixels.
The weights of the edges encode nodal affinity such that n-
odes connected by an edge with high weight are considered
to be strongly connected and edges with low weights repre-
sent nearly disconnected nodes. In this work, the weight𝑤𝑖𝑗

of the edge 𝑒𝑖𝑗 between adjacent nodes 𝑖 and 𝑗 is defined as

𝑤𝑖𝑗 = 𝑒−
∥𝑥𝑖−𝑥𝑗∥

𝜎2 , (5)

where 𝑥𝑖 and 𝑥𝑗 are the mean of two nodes in the CIE LAB
color space, and 𝜎 is a constant that controls the strength of
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the weight. We first renumber the nodes so that the first 𝑡
nodes are transient nodes and the last 𝑟 nodes are absorbing
nodes, then define the affinity matrix A which represents
the reverence of nodes as

𝑎𝑖𝑗 =

⎧⎨
⎩

𝑤𝑖𝑗 𝑗 ∈ 𝑁(𝑖), 1 ≤ 𝑖 ≤ 𝑡
1 if 𝑖 = 𝑗
0 otherwise

(6)

where 𝑁(𝑖) denotes the nodes connected to node 𝑖. The
degree matrix that records the sum of the weights connected
to each node is written as

D = diag(
∑

𝑗𝑎𝑖𝑗). (7)

Finally, the transition matrix P on the sparsely connected
graph is given as

P = D−1 ×A, (8)

which is actually the raw normalized A. As the nodes are
locally connected, P is a sparse matrix with a small number
of nonzero elements.

The sparsely connected graph restricts the random walk
to only move within a local region in each step, hence the
expected time spent to move from transient node 𝑣𝑡 to ab-
sorbing node 𝑣𝑎 is determined by two major factors. One
is the spatial distance between the two nodes. Their dis-
tance is larger, and the expected time is longer. The other is
the transition probabilities of the nodes along the different
paths from 𝑣𝑡 to 𝑣𝑎. Large probabilities are able to shorten
the expected time to absorption. Given starting node 𝑣𝑡, the
shorter the time is, the larger the probability of absorption
in node 𝑣𝑎 is in a long run.

5. Saliency Detection

Given the transition matrix P by Eq. 8, we can easily
extract the matrix Q by Eq. 1, based on which the funda-
mental matrix N is computed. Then, we obtain the saliency
map S by normalizing the absorbed time y computed by
Eq. 2 to the range between 0 and 1, that is

S(𝑖) = y(𝑖) 𝑖 = 1, 2, . . . , 𝑡, (9)

where 𝑖 indexes the transient nodes on graph, and y denotes
the normalized absorbed time vector.

Most saliency maps generated by the normalized ab-
sorbed time y are effective, but some background nodes
near the image center may not be adequately suppressed
when they are in long-range homogeneous region, as shown
in Figure 3. That can be explained as follows. Most n-
odes in this kind of background regions have large transi-
tion probabilities, which means that the random walk may
transfer many times among these nodes before reaching the

Figure 3. Examples showing the benefits of the update process-
ing. From left to right, input images, results without and with the
update processing.

absorbing nodes. The sparse connectivity of the graph re-
sults that the background nodes near the image center have
longer absorbed time than the similar nodes near the im-
age boundaries. Consequently, the background regions n-
ear the image center possibly present comparative saliency
with salient objects, thereby decreasing the contrast of ob-
jects and backgrounds in the resulted saliency maps. To
alleviate this problem, we update the saliency map by using
a weighted absorbed time yw, which can be denoted as:

yw = N× u, (10)

where u is the weighting column vector. In this work, we
use the normalized recurrent time of an ergodic Markov
chain, of which the transition matrix is the row normalized
Q, as the weight u.

The equilibrium distribution 𝜋 for the ergodic Markov
chain can be computed from the affinity matrix A as

𝜋𝑖 =

∑
𝑗 𝑎𝑖𝑗∑
𝑖𝑗 𝑎𝑖𝑗

, (11)

where 𝑖, 𝑗 index all the transient nodes. Since we define the
edge weight 𝑤𝑖𝑗 as the similarity between two nodes, the
nodes within the homogeneous region have large weighted
sum

∑
𝑗 𝑎𝑖𝑗 . This means the recurrent time in this kind of

region is small as shown in Figure 3. For this reason, we use
the average recurrent time ℎ𝑗 of each node 𝑗 to weight the
corresponding element 𝑛𝑖𝑗 (i.e., the expected time spending
in node 𝑗 before absorption given starting node 𝑖 ) in each
row of the fundamental matrix N. Precisely, given the e-
quilibrium distribution 𝜋, ℎ𝑗 is computed by Eq. 4 and the
weighting vector u is computed as:

𝑢𝑗 =
ℎ𝑗∑
𝑘 ℎ𝑘

, (12)

where 𝑗 and 𝑘 index all the transient nodes on graph.
By the update processing, the saliency of the long-range

homogeneous regions near the image center can be sup-
pressed as Figure 3 illustrates. However, if the kind of re-
gion belongs to salient object, its saliency will be also in-
correctly suppressed. Therefore, we define a principle to
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Figure 4. Examples in which the salient objects appear at the image
boundaries. From top to down: input images, our saliency maps.

decide which maps need to be further updated. We find that
object regions have great global contrast to background re-
gions in good saliency maps, while it is not the case in the
defective maps as the examples in Figure 3, which consis-
tently contain a number of regions with mid-level saliency.
Hence, given a saliency map, we first calculate its gray his-
togram g with ten bins, and then define a metric 𝑠𝑐𝑜𝑟𝑒 to
characterize this kind of tendency as follows:

𝑠𝑐𝑜𝑟𝑒 =

10∑
𝑏=1

𝑔(𝑏)×min(𝑏, (11− 𝑏)), (13)

where 𝑏 indexes all the bins. The larger 𝑠𝑐𝑜𝑟𝑒 means that
there are longer-range regions with mid-level saliency in the
saliency map.

It should be noted that the absorbing nodes may in-
clude object nodes when the salient objects touch the im-
age boundaries, as shown in Figure 4. These imprecise
background absorbing nodes may result that the object re-
gions close to the boundary are suppressed. However, the
absorbed time considers the effect of all boundary nodes
and depends on two factors: the edge weights on the path
and the spatial distance, so the parts of object which are far
from or different from the boundary absorbing nodes can be
highlighted correctly. The main procedure of the proposed
method is summarized in Algorithm 1.

Algorithm 1 Saliency detection based on Markov random walk

Input: An image and required parameters.
1. Construct a graph 𝐺 with superpixels as nodes, and use bound-
ary nodes as absorbing nodes;
2. Compute the affinity matrix A by Eq. 6 and the transition ma-
trix P by Eq. 8;
3. Extract the matrix Q from P by Eq. 1, and compute the funda-
mental matrix N = (I−Q)−1 and the map S by Eq. 9;
4. Compute the 𝑠𝑐𝑜𝑟𝑒 by Eq. 13, if 𝑠𝑐𝑜𝑟𝑒 < 𝛾 , output S and
return;
5. Compute the recurrent time h by Eq. 11 and 4, and the weight
u by Eq. 12, then compute the saliency map S by Eq. 10 and 9;
Output: the full resolution saliency map.

6. Experimental Results

We evaluate the proposed method on four benchmark
datasets. The first one is the MSRA dataset [18] which con-
tains 5,000 images with the ground truth marked by bound-
ing boxes. The second one is the ASD dataset, a subset of
the MSRA dataset, which contains 1,000 images with accu-
rate human-labelled ground truth provided by [2]. The third
one is the SED dataset [28], which contains: the single ob-
ject sub-dataset SED1 and two objects sub-dataset SED2.
Each sub-dataset contains 100 images and have accurate
human-labelled ground truth. The fourth one is the most
challenging SOD dataset which contains 300 images from
the Berkeley segmentation dataset [22]. This dataset is first
used for salient object segmentation evaluation [23], where
seven subjects are asked to label the foreground salient ob-
ject masks. For each object mask of each subject, a consis-
tency score is computed based on the labels of the other six
subjects. We select and combine the object masks whose
consistency scores are higher than 0.7 as the final ground
truth as done in [33]. We compare our method with fifteen
state-of-the-art saliency detection algorithms: the IT [16],
MZ [20], LC [37], GB [14], SR [15], AC [1], FT [2], S-
ER [31], CA [27], RC [8], CB [17], SVO [7], SF [25], L-
R [29] and GS [33] methods.

Experimental Setup: We set the number of superpixel n-
odes 𝑁 = 250 in all the experiments. There are two param-
eters in the proposed algorithm: the edge weight 𝜎 in Eq. 5
to controls the strength of weight between a pair of nodes
and the threshold 𝛾 of 𝑠𝑐𝑜𝑟𝑒 in Eq. 13 to indicate the quality
of the saliency map. These two parameters are empirically
chosen, 𝜎2 = 0.1 and 𝛾 = 2 for all the test images in the
experiments.

Evaluation Metrics: We evaluate all methods by precision,
recall and F-measure. The precision is defined as the ratio
of salient pixels correctly assigned to all the pixels of ex-
tracted regions. The recall is defined as the ratio of detected
salient pixels to the ground-truth number. The F-measure
is the overall performance measurement computed by the
weighted harmonic of precision and recall:

𝐹𝛽 =
(1 + 𝛽2)𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝛽2𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
. (14)

We set 𝛽2 = 0.3 to stress precision more than recall, the
same to [2, 8, 25]. Similar as previous works, two eval-
uation criteria are used in our experiments. First, we bi-
segment the saliency map using every threshold in the range
[0 : 0.05 : 1], and compute precision and recall at each val-
ue of the threshold to plot the precision-recall curve. Sec-
ond, we compute the precision, recall and F-measure with
an adaptive threshold proposed in [2], which is defined as
twice the mean saliency of the image.
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Figure 5. Evaluation results on the ASD dataset. Left, middle: precision and recall rates for all algorithms. Right: precision, recall, and
F-measure for adaptive thresholds. Our approach consistently outperforms all other methods.
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Figure 6. Evaluation results on the SED dataset. Left two: the results for different methods on the SED1 dataset. Right two: the results for
different methods on the SED2 dataset.

ASD: We evaluate the performance of the proposed method
against fifteen state-of-the-art methods. The results are
shown in Figure 5. The two evaluation criteria consistently
show the proposed method outperforms all the other meth-
ods, where the CB [17], SVO [7], RC [8] and CA [27] are
top-performance methods for saliency detection in a recen-
t benchmark study [5]. Some visual comparison examples
are shown in Figure 9 and more results can be found in the
supplementary material. We note that the proposed method
more uniformly highlights the salient regions while ade-
quately suppresses the backgrounds than the other methods.

MSRA: On the MSRA dataset, we compare the proposed
method with eleven state-of-the-art methods which are L-
R [29], CB [17], SVO [7], RC [8], CA [27], SER [31],
FT [2], GB [14], SR [15], LC [37] and IT [16]. This dataset
contains the ground truth of salient region marked as bound-
ing boxes by nine subjects. We accumulate the nine ground
truth, and then choose the pixels with consistency score
higher than 0.5 as salient region and fit a bounding box in
the salient region. The bounding box is the final ground
truth. Similar as previous works, we first fit a rectangle to
the binary saliency map and then use the bounding box to
compute precision, recall and F-measure. Figure 7 shows
that the proposed method performs better than the other
methods on this large dataset. The SVO method has larg-
er precision value, since it tends to detect the most salient
regions at the expense of low recall. While the CA [27],
IT [16], FT [2], SR [15] and LC [37] methods also show the
same imbalance. Their recalls for adaptive thresholds are
quite high and close to 1. That is because the background is

suppressed badly, the cut saliency map contains almost the
entire image with low precision.

SED: On this single object and two object dataset, we com-
pare the proposed method with eleven state-of-the-art meth-
ods which are LR [29], CB [17], SVO [7], RC [8], CA [27],
SER [31], FT [2], GB [14], SR [15], LC [37] and IT [16].
As shown in Figure 6, the proposed method performs best
on the SED1 dataset, while performs poorly compared with
the RC and CB methods at the recall values from 0.7 to 1 on
the SED2 dataset. That is because our method usually high-
lights one of two objects while the other has low saliency
values due to the appearance diversity of two objects.

SOD: On this most challenging dataset, we evaluate the per-
formance of the post-process step against the map obtained
directly form absorbed time ( noted ’Before’ ) and twelve
state-of-the-art methods as shown in Figure 7. We can see
that the post-process step improves the precision and recall
significantly over the solely saliency measure by absorbed
time. The two evaluation criteria show the proposed method
performs equally well or slightly better than the GS [33]
method. Some visual examples are given in Figure 9. Due
to scrambled backgrounds and heterogeneous foregrounds
most images have, and the lack of top-down prior knowl-
edge, the overall performance of the existing bottom-up
saliency detection methods is low on this dataset.

Failure Case: Our approach exploits the boundary prior to
determine the absorbing nodes, therefore the small salient
object touching image boundaries may be incorrectly sup-
pressed. According to the computation of the absorbed
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Figure 7. Evaluation results on the MSRA and SOD dataset. Left two: the results for different methods on the MSRA dataset. Right two:
the results for different methods on the SOD dataset.

Figure 8. Failure examples

time, a node with sharp contrast to its surroundings often
has abnormally large absorbed time, which results that most
parts of object even the whole object are suppressed. In ad-
dition, the object with similar appearance to the background
is very difficult to be detected, which is a known problem in
object detection. Figure 8 shows the typical failure cases.

Execution Time: Generally, better results can be achieved
at the expense of execution time. We compare the
execution time of different methods. The average exe-
cution time of state-of-the-art methods are summarized
in Table 1 on an Intel i7 3.40GHz CPU with 32G-
B RAM. Our Matlab implementation is available at
http://ice.dlut.edu.cn/lu/publications.html,
or http://faculty.ucmerced.edu/mhyang/pubs.html.

7. Conclusion

In this paper, we propose a bottom-up saliency detec-
tion algorithm by using the time property in an absorbing
Markov chain. Based on the boundary prior, we set the
virtual boundary nodes as absorbing nodes. The saliency
of each node is computed as its absorbed time to absorb-
ing nodes. Furthermore, we exploit the equilibrium dis-
tribution in ergodic Markov chain to weigh the absorbed
time, thereby suppressing the saliency in long-range back-
ground regions. Experimental results show that the pro-
posed method outperforms fifteen state-of-the-art methods
on the four public datasets and is computationally efficient.
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