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Abstract

Recent years have witnessed the success of large-scale
image classification systems that are able to identify ob-
jects among thousands of possible labels. However, it is
yet unclear how general classifiers such as ones trained on
ImageNet can be optimally adapted to specific tasks, each
of which only covers a semantically related subset of all
the objects in the world. It is inefficient and suboptimal
to retrain classifiers whenever a new task is given, and is
inapplicable when tasks are not given explicitly, but implic-
itly specified as a set of image queries. In this paper we
propose a novel probabilistic model that jointly identifies
the underlying task and performs prediction with a linear-
time probabilistic inference algorithm, given a set of query
images from a latent task. We present efficient ways to esti-
mate parameters for the model, and an open-source toolbox
to train classifiers distributedly at a large scale. Empirical
results based on the ImageNet data showed significant per-
formance increase over several baseline algorithms.

1. Introduction
Recent years have witnessed a growing interest in ob-

ject classification tasks involving specific sets of object cat-

egories, such as fine-grained object classification [6, 12] and

home object recognition in visual robotics. Existing meth-

ods in the literature generally describe algorithms that are

trained and tested on exactly the same task, i.e. we assume

the training data and testing data share the same set of ob-

ject labels. A dog breed classifier is trained and tested on

dogs and a cat breed classifier done on cats, without the use

of out-of-task images.

However, two observations may render this “one (multi-

class) classifier per task” approach suboptimal. First, it’s

known that using images of related tasks is often beneficial

to build a better model for the general visual world [18],

which serves as a better regularization for the specific task

as well. Second, object categories in the real world are often

organized in, or at least well modeled by, a nested taxonom-

ical hierarchy (e.g. Figure 1), with classification tasks corre-
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Figure 1: Top: Visualization of specific object classification

tasks of interest in daily life, which are often subtrees in a

large scale object taxonomy, e.g. the ImageNet hierarchy.

Bottom: Adapting the ImageNet classifier allows us to per-

form accurate prediction (bold), while the original classifier

prediction (in parentheses) suffers from a higher confusion.

sponding to intermediate subtrees in this hierarchy, and re-

cent efforts on the ImageNet challenge [2, 16, 21, 13] have

leveraged the use of large-scale data to learn such informa-

tion. While it is reasonable to train separate classifiers for

specific tasks, this quickly becomes infeasible as there are

a huge number of possible tasks - any subtree in the hierar-

chy may be a latent task requiring one to distinguish object

categories under the subtree.

Thus, it would be beneficial to have a system which

learns a large number of object categories in the world, and

which is able to quickly adapt to specific incoming classi-

fication tasks (subsets of all the object categories) once de-

ployed. We are particularly interested in the scenario where

tasks are not explicitly given, but implicitly specified with

a set of query images, or a stream of query images in an

online fashion. This has practical importance: for example,

one may want to have a single mobile app that adapts to
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plant recognition on a field trip after a few image queries,

and that shifts to grocery recognitions when one stops by the

grocery store. This is a new challenge beyond simple clas-

sification - one needs to discover the latent task using the

context given by the queries, a problem that has not been

tackled in previous classification problems.

To this end, we propose a novel probabilistic framework

that generatively models a latent classification task and test

time image queries, built on top of the success of classical,

large-scale one-vs-all classifiers. The framework allows ef-

ficient inference to be carried out to both identify the latent

task from query images and adapt the classifier for the spe-

cific task. We instantiate an experimental testbed with the

benchmark ImageNet large scale visual recognition chal-

lenge (ILSVRC) data using a series of latent fine-grained

tasks sampled from the taxonomy, and show promising per-

formance over conventional classification methods.

The contribution of this paper is two-fold. We show that

with a large-scale image source where object labels are or-

ganized in a taxonomical structure, it is almost always ben-

eficial to learn the classifier on the whole dataset even for

tasks involving only subtrees of the overall taxonomy. More

importantly, we examine a novel task adaptation paradigm

that is beyond recognizing individual images, and propose

an algorithm to easily adapt a general classifier to unknown

latent tasks during testing time, yielding a significant per-

formance boost.

Finally, our pipeline will be made open-source, includ-

ing a toolbox for distributed classifier learning with quasi-

Newton stochastic algorithms [5], which allows one to train

large-scale classifiers (such as ILSVRC) without the need

of huge clusters or sophisticated infrastructure support.

2. Related Work
The problem of task adaptation is analogous to, but es-

sentially distinctive from domain adaptation [19, 14]. While

domain adaptation aims to model the perceptual difference

of the training and testing images from the same labels, task

adaptation focuses on modeling the conceptual difference:

different label spaces during training and testing. Addition-

ally, as one is often able to use large amounts of data during

training, we assume that the testing tasks involve subsets of

labels encountered during training time.

Predicting the intermediate concept in a hierarchy with

a set of examples has been discussed in psychology [26,

1, 23]. These methods often make a simplified assumption

that labels (leaf nodes in the hierarchy) are given for the

input images. We believe our paper is the first to connect

such psychological study with computer vision research by

directly taking perceptual inputs, allowing one to perform

generalization with images of unknown category.

There are several algorithms in image classification that

use label hierarchy or structured regularizations to learn bet-
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Figure 2: Left: the generative model for the latent task and

corresponding query images. Right: the prior probabilities

of the latent tasks from psychological study, along the path

leading to the synsets oriental poppy and can opener re-

spectively, with darker color indicating higher probability.

ter classifiers [20, 10, 8], or to leverage the accuracy and

information gain from classifiers [4]. These methods still

assume an identical label space for training and testing. The

ultimate goal thus remains to be better accuracy on classi-

fying individual images, not to adapt to different tasks dur-

ing testing time by utilizing contextual information. Better

classifiers presented in these papers could, of course, be in-

corporated in our model to improve the end-to-end perfor-

mance of task adaptation.

Finally, it is known that context information, such as

scene context and co-occurring context within a image,

could be adopted for better detection [25] or scene under-

standing [15]. In this paper we utilize a novel type of con-

text - task context - that is implied by a semantically related

group of images.

3. A Generative Model for Task Adaptation

Formally, we define a classification task to be a subset

of all the possible object labels that are semantically related

(such as all breeds of dogs in ImageNet). During testing

time, a number of query images are randomly sampled from

the labels belonging to a task, and the learning algorithm

needs to give predictions on these images. In this section

we propose a probabilistic framework that models the gen-

eration of latent tasks and the test time query images.

As stated in the previous section, we are interested in the

scenario when the task is latent, i.e. only implicitly specified

by the query images. We introduce two key components for

modeling the generative process of query images: a latent

task space that defines possible tasks and their probability,

and a procedure to sample query images given a specific

latent task. Specifically, we propose the graphical model

in Figure 2 which generates a set of N query images when

given T possible tasks and K object categories:

1. Sample a latent task h from the task priors P (h) with

hyperparameter α;
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2. For the N query images:

(a) Sample an object category yi from the condi-

tional probability P (yi|h;βh);
(b) Sample a query image from category yi with

P (xi|yi;θyi
).

We will elaborate each component in the subsections below.

3.1. Latent Task Space

Determining the tasks and their prior is a high-level prob-

lem that essentially asks “what scenarios do people en-

counter in daily life, and how often do they appear”. To

this end, we take advantage of the existing research in cog-

nitive science to construct the latent task space and the prior

distribution.

For the structure of the latent task space, we adopt the

WordNet hierarchy [7], which models the semantic rela-

tions in a psychologically justified tree structure [17]. The

use of WordNet in cognitive science has shown promising

results in identifying latent concepts (semantically related

sets from the universe of objects) for human concept learn-

ing [1, 24]. In our work, we follow the existing classifi-

cation protocols [2] by considering the set of leaf nodes in

the tree as the object labels that we need to classify images

into. Every intermediate node then serves as a possible task,

which requires the computer to identify object labels, i.e.

leaf nodes under the subtree rooted at the node, e.g. “what

animal this is”, or “what breed of dog this is”.

In this paper we are mainly interested in modeling the

frequency of various tasks in a general, large-scale setting1.

Prior research on psychology and Bayesian generalization

[22, 23] have shown that people favor basic-level concepts,

which could be well modeled by a Erlang prior with respect

to the size |h| of each latent task, defined as the number of

leaf nodes in the subtree rooted at the task:

P (h) = αh ∝ (|h|/σ2) exp(−|h|/σ), (1)

which favors medium-sized tasks corresponding to basic

level concepts.

Figure 2 shows two such examples along the paths to the

ImageNet synsets can opener and oriental poppy. It could

be observed that basic level tasks have higher probability

than overly general tasks such as “entity”, which means that

our bias is for the computer to assist us in more specific

tasks, e.g. classifying flowers on a field trip or tools in a

Robotics scenario; this is more desired than vaguely asking

“what entity is this”.

3.2. Generating Query Images

Given a task, we assume that the query images we en-

counter are then randomly sampled from the object classes

1We note that in specific settings, the task prior probabilities for each

latent task could also be learned via human behavioral study that evaluates

the popularity of various tasks.

that belong to the given task. For each query image, we

first sample the object class label from the set of possible

labels that belong to the task. The conditional probabil-

ity P (yi|h) follows from assuming strong sampling [23]:

labels are generated uniformly at random using the corre-

sponding parameter βh as follows:

P (yi|h) = βhyi
=

{
1/|h|, if task h contains label yi
0, otherwise,

(2)

where |h| is the size of the task - the number of leaf node

classes in the task. The size principle plays a critical role in

inferring the latent task, as larger tasks will generate lower

probabilities for each individual object class. Thus, when

we observe a Dalmatian, a corgi and a Shih-Tzu, the latent

task “dog” is more probable than task “animal” since the

former yields higher conditional probability for the detailed

dog breeds.

To generate an actual image xi from a given class la-

bel yi, it is relatively difficult to fully model the conditional

probability P (xi|yi) to the pixel level of the images. Thus,

we use a mixed approach by having a classifier trained on

all the leaf node objects, and obtain the classifier prediction

f(xi) = argmax j θ�j xi, (3)

where we simplify the notation by using xi as both the im-

age and the feature extracted from it, and assuming that a

linear classifier with parameter {θj}Kj=1 is used. The con-

ditional probability is then defined as

P (xi|yi) = Cyif(xi), (4)

where C is the confusion matrix of the classifier, and Cij is

the probability that an image of object class i is classified as

class j.

With the probabilistic model given as Figure 2, given a

set of testing images X = {x1,x2, · · · ,xN}, our goal is to

jointly identify the hidden task h and the hidden labels Y =
{y1, y2, · · · , yN} that maximizes the posterior probability

(ĥ, Ŷ) = argmax
h,Y

P (h,Y|X ). (5)

We will discuss in the next section how the various param-

eters, especially the parameters θ for the classifiers and the

confusion matrix C, can be estimated from training data,

and how to carry out efficient inference to find the solution

to Eqn. 5.

4. Efficient Learning and Inference
The probabilistic model involves multiple parameters to

be estimated and nested hidden variables during the infer-

ence phase. In this section, we present a novel approach

to estimate the confusion matrix for the classifier, and a

linear-time inference algorithm that jointly identifies the la-

tent task and predictions for individual images.
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4.1. Confusion Matrix Estimation with One-step
Unlearning

Given a classifier, evaluating its behavior (including ac-

curacy and confusion matrix) is often tackled with two ap-

proaches: using cross-validation or using a held-out valida-

tion dataset. In our case, we note that both methods have

significant shortcomings. Cross-validation requires retrain-

ing the classifiers multiple rounds, which may lead to high

re-training costs. A held-out validation dataset usually esti-

mates the accuracy well, but not for the confusion matrix C
due to insufficient number of validation images. For exam-

ple, the ILSVRC challenge has only 50K validation images

versus 1 million confusion matrix entries, leading to a large

number of incorrect zero entries in the estimated confusion

matrix (see supplementary material).

Instead of these methods, we propose to approximate

its leave-one-out (LOO) error on the training data with a

simple gradient descent step to “unlearn” each image to

estimate its LOO prediction, similar to the early unlearn-

ing ideas [9] proposed for neural networks. We will fo-

cus on the use of multinomial logistic regression, which

minimizes L(θ) = λ‖θ‖22 −
∑M

i=1 ti logui, where ti
is a 0-1 indicator vector where only the yi-th element

is 1, and ui is the softmax of the linear outputs uij =

exp(θ�j xi)/
∑K

j′=1 exp(θ
�
j′xi), with xi being the feature

for the i-th training image.

Specifically, given the trained classifier parameters θ, it

is safe to assume that the gradient g(θ) = 0. Thus, the

gradient for the logistic regression loss when removing a

training image xi could be computed simply as g\xi
(θ) =

(ui − ti)x
�
i . Given the Hessian matrix H at θ, one can

perform one-step quasi-Newton least-square update as2

θ\xi
= θ − ρ′H+g\xi

. (6)

Note that we put an additional step size ρ′ instead of ρ′ = 1
as would be the case for exact least squares. We set ρ′ to the

value that yields the same LOO approximation accuracy as

the validation accuracy. We use the new parameter θ\xi
to

perform prediction on xi as if xi has been left out during

training, and accumulate the approximated LOO results to

obtain the confusion matrix. We then applied Kneser-Ney

[11] smoothing on the confusion matrix for a smoothed es-

timation.

4.2. Linear Time MAP Inference

A conventional way to do probabilistic inference with

nested latent variables is to use variational inference or

2In practice we used the accumulated matrix H obtained from Adagrad

[5] as a good approximation of the Hessian matrix. See supplementary

material for details. We tested the Adagrad H matrix and the exact Hessian

computed at Θ, and found the former to actually perform better, possibly

due to its overall robustness.

Gibbs sampling to find a lower bound of the posterior prob-

ability. This, however, may involve multiple iterations over

the hidden variables and may be slow. We show that when

the latent task space is organized in a DAG structure, the

exact MAP solution (Eqn. (5)) could be found with an effi-

cient dynamic programming algorithm that has complexity

linear to the number of possible tasks.

We first note that the logarithm of posterior probability

in Eqn. 5 could be expanded as

logP (h,Y|X ) ∝ logαh+
∑N

i=1
log(βhyi

Cyif(xi)). (7)

Notice that the size constraint defining the latent task space

gives us βhyi = 1
|h|I(yi ∈ h), the equation above could

further be written as

logαh −N log |h|+
∑n

i=1
(logCyif(xi) + log I(yi∈h)),

where one can observe that h and Y decouples except for

the I(yi ∈ h) term. As the latent tasks are organized as a

tree-based hierarchy, we can define auxiliary functions

qi(h) = max
Y

[
logCyif(xi) + log I(yi ∈ h)

]
, (8)

which could be computed recursively as

qi(h) = max{h′∈child(h)} qi(h′), (9)

where child(h) is the set of children of h in the tree. Finally,

the latent task could be estimated as

ĥ = argmax
h

[
log(αh)−N log |h|+γ

∑N

i=1
qi(h)

]
, (10)

and the corresponding ŷis could be identified by taking the

argmax of the corresponding qi(h).
We note that we added a hyperparameter γ in the equa-

tion above. In practice, simply finding the MAP solution

(using γ = 1) often involves a task that is smaller than the

ground truth, as there are two ways to explain the predicted

labels: assuming correct prediction and a task of larger size,

or assuming wrong prediction and a task of smaller size.

The latter is preferred by the size principle, especially for

classes with low classification accuracy. We found it bene-

ficial to explicitly add a weight term that favors the classifier

outputs using γ > 1 learned on validation data.

In general, our dynamic programming method runs in

O(TNb) time where T is the number of tasks, N is the num-

ber of query images, and b is the branching factor of the tree

(usually a small constant factor). This complexity is linear

to the number of testing images and to the number of la-

tent tasks, and is usually negligible compared to the basic

classification algorithm, which runs O(KND) time where

K is the number of classes and D is the feature dimension

(usually very large).
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Finally, one may prefer an online algorithm that could

take new images as a stream, performing classification se-

quentially while discovering the latent task on the fly. We

note that our method could be easily adapted to this end.

Specifically, qi(h) serves as the sufficient statistics for the

task discovery, and we only need to keep record of the ac-

cumulated auxiliary function values seen so far as

q:n(h) =
∑n−1

i=1
qi(h) (11)

for the n-th image for each task candidate h. This allows us

to perform online classification with O(M) memory with-

out storing the full history of images.

5. Distributed Implementation Details

Recent image classification tasks often involve large

amounts of images, making the training of classifiers in-

creasingly difficult. To address this issue, we have devel-

oped a distributed, stochastic optimization toolbox to train

large-scale image classifiers. In particular, we used the

minibatch approach to perform stochastic gradient descent

updates, and utilized the Adagrad [5] algorithm to achieve

quasi-Newton performance by accumulating the statistics of

the per-iteration gradient estimations, a mechanism shown

to work particularly well with vision tasks [3].

We further took advantage of parallel computing by dis-

tributing the data as well as the gradient computation over

multiple machines. As datasets are often too large to fit into

the memory of even a medium-sized cluster, we only keep

the minibatch in memory at each iteration, with a back-

ground process pre-fetching the next minibatch from disk

during the computation of the current one, which enables

us to perform efficient optimization with arbitrarily large

datasets.

For the image features, we followed the pipeline in [16]

to obtain over-complete features for the images. Specifi-

cally, we extracted dense local SIFT features, and used Lo-

cal Coordinate Coding (LCC) to perform encoding with a

dictionary of size 16K. The encoded features were then max

pooled over 10 spatial bins: the whole image and the 3× 3
regular grid. This yielded 160K feature dimensions per im-

age, and a total of about 1.5TB for the training data in dou-

ble precision format. The overall performance is 41.33%

top-1 accuracy and a 61.91% top-5 accuracy on the vali-

dation data, and 41.28% and 61.69% respectively on the

testing data. For the computation time, training with our

toolbox took only about 24 hours with 10 commodity com-

puters connected on a LAN. Our toolkit is implemented in

Python and will be publicly available3, and we refer to the

supplementary materials for more technical details.

3http://www.eecs.berkeley.edu/˜jiayq/

6. Experiments
We conduct our experiment on the ILSVRC 2010 dataset

[2], where both validation and test data are available. For all

the experiments, we learn the parameters of the model on

the training and validation data, and report the performance

on the test images.

We note that more comprehensive features and better

classification pipelines may lead to better 1-vs-all accuracy

on ImageNet, but it is not the main goal of the paper, as we

focus on the adaptation on top of the base classifiers. Re-

cent efforts on learning better classifiers, such as the ones

presented in [21, 13] could be seamlessly incorporated into

our learning framework for general performance increases.

6.1. Estimating the Confusion Matrix

As stated in Section 4, an good estimation of the confu-

sion matrix C is crucial for the probabilistic inference. We

evaluate the quality of different estimations using the test

data: for each testing pair (y, ŷ), where ŷ is the classifier

output, its probability is given by the confusion matrix en-

try Cyŷ . The perplexity measure [11] then evaluates how

“surprising” the confusion matrix sees the testing data re-

sults (a smaller value indicates a better fit):

perp = Power
(
2,

(∑Nte

i=1
log2 Cyiŷi

)
/Nte

)
,

where Nte is the number of testing images. Overall, we ob-

tained a perplexity of 46.27 using our unlearning algorithm,

while the validation data gave a value of 68.36 and the train-

ing data (without unlearning) gave 94.69, both worse than

our unlearning algorithm. We refer to the supplementary

material for a more complete analysis of the performance

of different methods.

6.2. Adapting Classifiers with Known Tasks

An important question to ask is, even if we are allowed

to retrain task-specific classifiers, do we want to do the re-

training? We first analyze the benefits of retraining versus

our adaptation method. To this end, we specify 5 subtrees

from the ILSVRC hierarchy: building, dogs, feline
(the superset of cats), home appliance, and vehicle,

the subcategories of which are often of interest. Figure 1

visualizes the corresponding subtrees for dog, feline and

vehicles respectively. We explicitly trained classifiers on

these three subtrees only, and compared the retrained accu-

racy against our adapted classifier with the given task. We

also test the naive baseline that uses the raw 1000 class pre-

dictions, and the forced choice baseline (FC) which simply

selects the class under the task that has the largest output

from the original classifiers. Table 1 summarizes the per-

formance of the algorithms.

It is worth pointing out that retraining the classifiers for

the specific tasks does not help improve the classification
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Task Naive Retraining FC Ours

building 55.48 78.67 81.48 82.19
dog 35.37 39.94 42.95 43.76

feline 47.13 61.07 62.67 63.54
home app 50.78 67.30 69.26 70.52
vehicle 55.62 61.43 63.41 63.28

Table 1: Classification accuracy on given tasks (subtrees) of

the whole ILSVRC data. See subsection 6.2 for details.

Method
query size=5 query size=100

s(h, ĥ) Accuracy s(h, ĥ) Accuracy

Naive 1.54 42.75 1.50 42.68

Proto 8.14 43.16 60.39 50.28

Hist 22.21 44.84 96.61 59.87

Hedging 39.12 44.81 50.34 51.83

Ours 84.43 65.89 99.37 70.70
Oracle 100.0 70.36 100.0 70.88

Table 2: The average task overlap score and the average

accuracy for the algorithms, under query sizes 5 and 100

respectively. All numbers are in percentage. The last row

provides the oracle performance in which the ground truth

task is given.
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Figure 3: Classification accuracy (left) and the task overlap

score (right) with different query set sizes for our method

and the baselines.

accuracy, although retraining requires additional nontriv-

ial computation cost. On contrary, it is always helpful to

use out-of-task data to train a larger classifier and then take

the subset with forced choice. One possible explanation is

that this gives us more information about the general im-

age statistics (similar to a better regularization term). Our

method further benefits from the statistics from all the clas-

sifiers (for in-task and out-of-task classes) in the proposed

probabilistic framework to achieve the best adapted accu-

racy in most cases (only slightly worse than the FC baseline

on vehicle).

6.3. Joint Task Discovery and Classification

We next analyze the performance when we have the clas-

sifier trained on the whole ILSVRC data, and adapt it to an

unknown task that is defined by a set of query images. The

forced choice option is not available in this case as we do

not know the latent task beforehand, and one has to use the

semantic relationships between the query images to infer

the latent task.

To sample the latent tasks, we used the Erlang prior de-

fined in Section 3 from the ImageNet Tree excluding leaf

nodes (as leaf nodes would contain only 1 label). We then

randomly sampled N query images from the subtree of the

sampled task. All query images were randomly selected

from the test images of ILSVRC and had not been seen by

the classifier training. We varied the value N to assess the

quality of task discovery under different set sizes. For each

query image size N , we created 10,000 independent tasks

and reported the average performance here.

To evaluate the goodness of the inferred latent task and

the accuracy, we compute the overlap between the ground

truth task h and the predicted task ĥ as

s(h, ĥ) = |h ∩ ĥ|/|h ∪ ĥ| × 100%, (12)

where ∩ and ∪ are the intersection and union operations on

sets, and | · | denotes the size of a set. For each task, we

then compute the accuracy with the predicted labels Ŷ in

the standard classification evaluation way. We then report

the averaged overlap score and averaged per-task prediction

accuracy.

To the best of our knowledge there is no published clas-

sification algorithm that is able to identify the latent task,

i.e. the intermediate node in the taxonomy hierarchy, given

a set of query images. Thus, we compare our algorithm

against the following baselines that are natural extensions

from conventional classification methods:

• Naive approach: simply taking the class with the highest

prediction score from all the ILSVRC classes.

• Prototype approach: we use the conditional probability

p(y|h) as a vector for each task h, and use the task that

yields the smallest average distance to each query image

(using the classifier outputs) as the predicted latent task.

Classification is then performed under this predicted task.

• Histogram approach: similar to the prototype approach,

but instead of computing pairwise distances to individual

query images, we select the task h that yields the smallest

χ2 distance between p(y|h) and the histogram of predic-

tions averaged over all queries.

• Hedging approach: we extend the hedging idea [4] to

handle sets of query images. Specifically, we find the

intermediate node that maximizes the information gain

while maintaining an overall accuracy above a threshold

ε over the set of query images. The corresponding task

is then chosen as the predicted latent task. We tune the

threshold ε on the validation data so that the averaged

per-task accuracy is maximized.

We also test an oracle model, in which we explicitly tell the

classifier the latent task and perform classification on the
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Task:

kitchen
app

Predicted task:

entity

artifact

artifact

consumer goods

kitchen app

Label ice maker espresso maker primus stove Dutch oven ice maker

Ours electric range espresso maker primus stove Dutch oven ice maker

Baseline bookcase web site carpenter’s kit snail scanner

Task:

toiletry
Predicted task:

entity

entity

entity

instrumentality

toiletry

Label lipstick face powder nail polish lotion hair spray

Ours lipstick face powder nail polish lotion hair spray

Baseline toothbrush dune bath towel vending machine military uniform

Task:

woodwind
Predicted task:

entity

artifact

artifact

device

reed instrument

Label bassoon flute sax oboe sax

Ours bassoon bassoon sax oboe sax

Baseline harp prison sax fountain pen turban

Task:

game
Predicted task:

entity

living thing

entity

chordate

game

Label ptarmigan partridge pheasant black grouse quail

Ours ptarmigan partridge pheasant black grouse black grouse

Baseline giant panda orchid Komodo dragon Border collie Newfoundland

Figure 4: Exemplar classification results where incorrect labels are predicted by the base classifiers, but are corrected by our

method that benefits from identifying the latent task. Each row shows 5 images from a latent task, and on the right we give

the predicted task by different algorithms, ordered and colored as naive, proto, hist, hedge, and adapt. The ground truth label,

our prediction and the original classifier’s output are provided for each image.

subset of labels with the task ground truth. This serves as

an upper bound of all methods above, and helps us under-

stand how well different algorithms perform. Regarding the

classifier outputs, we used the soft output from the logistic

regression for our method, and choose between the soft out-

put and 0-1 hard output for the baseline methods, reporting

the better performance of the two here.

Table 2 summarizes the performance of the methods

above with a small query set size (5 images) and a rela-

tively large size (100 image). Further, Figure 3 shows the

performance when we vary the size from 1 to 500. It could

be observed that when we have a reasonable amount of test-

ing queries, identifying the latent task leads to a significant

performance gain than the baseline method that does classi-

fication against all possible labels, with an increase of near

30% percent. Even with a small query size (such as 5), the

performance gain is already noticably high, indicating the

ability of the algorithm to perform task adaptation with very

few images from the latent task.

6.4. Online Evaluation

Our final evaluation tests the performance of the pro-

posed method in an online fashion - when images of an

unknown task come as a streaming sequence. Intuitively,

our algorithm obtains better information about the unknown

task as new images arrive, which would in turn increase the

classification accuracy. We test such conjecture by evaluat-

ing the averaged accuracy of the n-th image, over multiple

independent test query sequences that are generated in the

same way as described in the previous subsection.

Figure 5 shows the average accuracy of the n-th query

image, as well as the overlap between the identified task so

far and the ground truth task. With the joint probabilistic in-

ference, we obtain a significant performance increase after

only a few images. This has particular practical interest, as

one may want the computer to quickly adapt to a new task
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Figure 5: Classification accuracy (left) and task overlap

score (right) of our online algorithm against baselines. See

subsection 6.4 for details.

/ environment with only a small number of queries. It is

worth pointing out that with heuristic task estimation meth-

ods (see the baselines in Figure 5 left), one may incorrectly

assert the latent task, which then hurts classification perfor-

mance for the first few query images.

7. Conclusion
We addressed a novel challenge when the classification

problem involves latent tasks corresponding to semantically

related subsets of all the objects in the world. We proposed

a novel framework that is able to adapt to latent tasks to

achieve a significant performance gain given a relatively

small set of query images. We hope our efficient learning

algorithms and the distributed toolbox that we will release

will significantly contribute to the research of computer vi-

sion with large-scale data.
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