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Abstract

We propose a framework for 2D shape analysis using
positive definite kernels defined on Kendall’s shape mani-
fold. Different representations of 2D shapes are known to
generate different nonlinear spaces. Due to the nonlinear-
ity of these spaces, most existing shape classification algo-
rithms resort to nearest neighbor methods and to learning
distances on shape spaces. Here, we propose to map shapes
on Kendall’s shape manifold to a high dimensional Hilbert
space where Euclidean geometry applies. To this end, we
introduce a kernel on this manifold that permits such a map-
ping, and prove its positive definiteness. This kernel lets
us extend kernel-based algorithms developed for Euclidean
spaces, such as SVM, MKL and kernel PCA, to the shape
manifold. We demonstrate the benefits of our approach over
the state-of-the-art methods on shape classification, cluster-
ing and retrieval.

1. Introduction
The ability of humans to utilize shape as a prominent cue

to identify objects has resulted in the popularity of shape

analysis in a wide variety of computer vision applications

including object recognition [1], image segmentation [4],

activity recognition [24], biomedical image analysis [5] and

human-computer interaction [8].

In computer vision, the term shape refers to the geomet-

ric information of an object that is invariant to translation,

scale and rotation [5]. Since the works of Kendall [10]

and Bookstein [3], significant progress has been made in

the area of shape analysis. While a number of methods

have been proposed to encode shapes as mathematical ob-

jects [28], Kendall’s shape manifold remains the most pop-

ular and widely used shape representation.

In Kendall’s framework, a 2D shape represented by m
landmarks can be treated as a point in the complex pro-

jective space CPm−2 [10]. Although an appropriate met-

ric on this space can be obtained in closed form via Pro-

crustes analysis, the space itself, known as the shape man-
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ifold, is a Riemannian manifold with nontrivial geome-

try. Due to the nonlinear geometry of the shape manifold,

popular shape recognition and retrieval methods are lim-

ited to either employing simple techniques such as nearest-

neighbors [1, 13], or modeling the manifold-valued data

with a complex Bingham distribution [5], which may not

reflect the true sample distribution.

A common approach to cope with the nonlinearity of

a manifold consists in approximating the manifold-valued

data with its projection to a tangent space at a particular

point on the manifold (e.g., the mean of the data). For the

shape manifold, this projection can be achieved while si-

multaneously preserving rotation invariance [5]. However,

while the resulting space is indeed Euclidean, such a tan-

gent space approximation can significantly distort the origi-

nal manifold-valued data, especially in regions far from the

point around which the tangent space was computed.

In Euclidean spaces, the success of many computer vi-

sion algorithms arises from their use of kernel methods [21].

It would therefore seem natural and attractive to extend this

approach to manifold-valued data and embed the manifold

in a high dimensional Reproducing Kernel Hilbert Space

(RKHS), where Euclidean geometry applies. Such a map-

ping however, requires a kernel function, which, according

to Mercer’s theorem, must be positive definite. One could

think of replacing the Euclidean distance in the popular

Gaussian radial basis function with the metric on the mani-

fold to obtain a kernel function. However, a kernel function

derived in this manner is not positive definite in general.

In this paper, we introduce the Procrustes Gaussian ker-
nel, a provably positive definite kernel on the shape mani-

fold. Being positive definite, this kernel function allows us

to embed the shape manifold in a high dimensional Hilbert

space. To the best of our knowledge, this represents the

first embedding of the shape manifold in a Hilbert space,

thus letting us generalize the use of kernel methods to the

shape manifold. The advantage of such an embedding is

twofold: First, it enables the use of well established recog-

nition methods that require linear geometry on the nonlinear

shape manifold. Second, as evidenced by kernel methods

on R
n, embedding a lower dimensional space in a higher di-

mensional one helps identifying complex patterns in a given

data distribution.

More specifically, we make use of the full Procrustes dis-

2013 IEEE International Conference on Computer Vision

1550-5499/13 $31.00 © 2013 Crown Copyright

DOI 10.1109/ICCV.2013.158

1249



tance [10, 5] as the distance measure on the shape manifold,

and show that it gives rise to a positive definite Gaussian

kernel. We exploit this kernel in four different algorithms;

support vector machines (SVM), multiple kernel learning

(MKL), kernel principal component analysis and kernel k-

means. To demonstrate the benefits of the Hilbert space em-

bedding of shapes obtained with our kernel, we tackle the

tasks of shape classification, clustering and retrieval. Our

experimental evaluation shows that our manifold-based ker-

nel methods outperform tangent space approaches and other

shape analysis baselines on these tasks.

2. Related Work
Shape analysis has been widely studied in computer vi-

sion [28]. Over the years, different shape representations

have been proposed, such as landmarks [10], level sets [4],

distance transformed contours [26] and others [28]. Most

of these representations yield nonlinear shape spaces where

Euclidean geometry does not apply. In this paper, we study

the popular and successful shape manifold introduced by

Kendall, where a shape is represented by a finite number of

landmarks.

The lack of Euclidean structure of the shape manifold

has made it impossible to utilize well known algorithms,

such as SVM, to perform shape recognition while account-

ing for the manifold structure. Therefore, existing ap-

proaches have instead focused on nearest neighbor classi-

fication [13, 1] and on designing better distance measures

for such classifiers [1]. Alternatively, recognition has been

performed by attempting to model the probability distribu-

tion of shape data on the complex unit sphere with a com-

plex Bingham distribution [5, 8], or rotation invariant dis-

tributions [8]. Unfortunately, such distributions are often

too restrictive to accurately model the true data distribu-

tion. Furthermore, our experience with Euclidean spaces

strongly suggests that better classifiers can be obtained by

exploiting kernel methods.

The term kernel is used somewhat loosely in the litera-

ture of shape analysis without special attention to positive

definiteness. The use of a non-positive definite Chamfer

kernel was proposed in [26, 29] in the context of shape de-

tection. In [8], a rotation invariant kernel was introduced

and shown to be effective for shape recognition. The notion

of invariant kernel functions was also studied in a more gen-

eral context in [7] and [25]. As acknowledged in most of the

above-mentioned works, none of these kernels are known to

be positive definite. A number of positive definite kernels,

derived from learnt distances, were proposed in [6]. Our

work differs from theirs since we use the standard full Pro-

crustes distance. Kernels have been also used for density

estimation and modeling implicit surfaces in [4] and [15],

respectively. These works, however, do not use kernels to

embed shapes in a Hilbert space. Recently, we introduced

positive definite kernels on a different manifold [9].

According to Mercer’s theorem, only positive definite

kernels define valid RKHSs. Positive definiteness of ker-

nels is also required for convexity of many popular learning

algorithms such as SVM [18] and MKL [23]. While at-

tempts have been made to exploit non-positive definite ker-

nels [27, 17], many of them have the drawback of altering

the eigenvalues of the kernel matrix to artificially make it

positive definite [27].

In this paper, we introduce a provably positive definite

kernel for the shape manifold. This allows us to exploit

existing powerful kernel methods for shape analysis.

3. The Shape Manifold
In Kendall’s formalism, a 2D shape is initially repre-

sented as an m-dimensional complex vector, where m is

the number of landmarks that denote the shape. The real

and imaginary parts of each element of the vector encode

the x and y coordinates of a landmark, respectively. Trans-

lation and scale invariances are achieved by subtracting the

mean from the vector and scaling it to have unit norm. The

vector z obtained in this manner is dubbed pre-shape as it

is not invariant to rotation yet. Pre-shapes lie on the com-

plex unit sphere CSm−1. To remove rotation, all rotated

versions of z are identified and the final shape is obtained

as the resulting equivalence class of pre-shapes, denoted by

[z]. Since rotations correspond to multiplication by com-

plex numbers of unit magnitude, the shape manifold is in-

fact the complex projective space CPm−2. The geometry of

the shape manifold is non-trivial, as a shape is represented

by an equivalence class of complex vectors. This has partic-

ularly hindered the development of algorithms on the shape

manifold.

It is nonetheless possible to determine the distance be-

tween two shapes. In particular, the most popular distance

on the shape manifold is the full Procrustes distance. Given

two pre-shapes z1 and z2, the full Procrustes distance be-

tween the corresponding shapes is given by [10, 5]

dFP ([z1], [z2]) =
(
1− |〈z1, z2〉|2

) 1
2

, (1)

where 〈., .〉 and |.| denote the usual inner product in C
m and

the absolute value of a complex number, respectively.

Under the full Procrustes distance, the Karcher mean [μ]
of a given set of pre-shapes z1, z2, . . . , zn corresponds to

the dominant eigenvector of the matrix

S =

n∑
i=1

ziz
∗
i . (2)

The projection of each zi to the tangent space at [μ] is given

by [5]

vi = zi〈μ, zi〉 − μ|〈μ, zi〉|2. (3)
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4. A Hilbert Space Embedding of Shapes

In this section, we discuss the advantages of embedding

the shape manifold in a high-dimensional Hilbert space, and

introduce a positive definite kernel on the shape manifold

that makes such an embedding possible.

4.1. Embedding a Manifold in a Hilbert Space

Embedding lower dimensional data in a higher dimen-

sional RKHS is commonly and successfully employed with

data that lies in R
n. The theoretical concepts of such em-

beddings can directly be extended to manifolds. In short,

points on a manifold M are mapped to elements in a high

(possibly infinite) dimensional Hilbert spaceH, the Cauchy

completion of the space spanned by real-valued functions

on M. A kernel function k : (M×M) → R is used to

define the inner product on H, thus making it a Reproduc-

ing Kernel Hilbert Space (RKHS). The technical difficulty

in utilizing Hilbert space embeddings with manifold-valued

data arises from the fact that, according to Mercer’s theo-

rem, the kernel function must be positive definite to define

a valid RKHS. While many positive definite kernel func-

tions are known for Rn, generalizing them to manifolds is

not straightforward.

Identifying such positive definite kernel functions on

manifolds would, however, be greatly beneficial. Not only

would it let us transform a nonlinear manifold into a linear

Hilbert space, and thus allow us to exploit algorithms de-

signed for linear spaces with manifold-valued data, but also

yield a richer high dimensional representation of the orig-

inal data distribution, making tasks such as classification

easier.

4.2. A Positive Definite Kernel on the Shape Mani-
fold

In this section, we introduce a kernel function on the

shape manifold and prove its positive definiteness. Our ker-

nel is inspired by the Gaussian radial basis function (RBF)

that has proven very effective in Euclidean spaces.

More specifically, we replace the Euclidean distance

in the Gaussian RBF with the full Procrustes dis-

tance on the shape manifold. This yields the kernel

kP ([zi], [zj ]) := exp(−d2FP ([zi], [zj ])/2σ
2), that we name

Procrustes Gaussian kernel. While this may seem straight-

forward, our main contribution comes from the proof that

this kernel is positive definite. Note that this is not true in

general when replacing the Euclidean distance with any dis-

tance measure on shapes, as acknowledged in [26, 7, 29].

Let SPm denote the (2m− 4) dimensional manifold of

2D shapes defined by m landmarks [5]. We now present our

main theorem which defines a real-valued positive definite

kernel on SPm.

Theorem 4.1. The Procrustes Gaussian kernel
kP : (SPm × SPm) → R : kP ([z1], [z2]) :=
exp(−d2FP ([z1], [z2])/2σ

2), where dFP is the full
Procrustes distance between two shapes [z1] and [z2], is a
positive definite kernel for all σ ∈ R.

Proof. The proof of Theorem 4.1 relies on a number of def-

initions, theorems and lemmas, which we state below.

We start with the definition of positive and negative

definite kernels. Although common kernels used in com-

puter vision and machine learning are real-valued, the term

positive definite kernels covers the more general case of

complex-valued kernels. We first present this more general

definition [2] which will be useful for our derivation.

Definition 4.2. Let X be a nonempty set. A kernel f : (X ×
X )→ C is called positive definite if

n∑
i,j=1

cicjf(xi, xj) ≥ 0

for all n ∈ N, {x1, . . . , xn} ⊆ X and {c1, . . . , cn} ⊆ C.
The kernel f is called negative definite if it is hermitian and

n∑
i,j=1

cicjf(xi, xj) ≤ 0

for all n ≥ 2, {x1, . . . , xn} ⊆ X and {c1, . . . , cn} ⊆ C

with
∑n

i=1 ci = 0.

The following lemma lets us establish the relationship

between complex and real valued positive definite kernels.

Lemma 4.3. LetX be a nonempty set. A real-valued kernel
f : (X ×X )→ R is positive (resp. negative) definite if f is
symmetric and

∑n
i,j=1 cicjf(xi, xj) ≥ 0 (resp. ≤ 0) for

all n ∈ N, {x1, . . . , xn} ⊆ X and {c1, . . . , cn} ⊆ R (resp.∑n
i=1 ci = 0 in addition).

Proof. See Result 3.1.6 in [2].

The first step of the proof of Therorem 4.1 exploits the

following theorem due to Schoenberg [19].

Theorem 4.4. LetX be a nonempty set and f : (X ×X )→
C be a kernel. The kernel exp(−t f(x1, x2)) is positive def-
inite for all t > 0 if and only if f is negative definite.

Proof. See Theorem 3.2.2 in [2].

This theorem lets us conclude that the positive defi-

niteness of the Gaussian RBF kernel generated by a dis-

tance function follows from the negative definiteness of the

squared distance function. Note that, in itself, this is an

important result since it states the sufficient and necessary

conditions to perform kernel methods on any manifold with

the Gaussian kernel defined on it.

1251



θ

dFP

dPP

ρ
z1 z2

Metric Name Formula
Invariances Pos. Def.

Rot. Trans. Scale Kernel

Full-Procrustes, dFP

(
1− |〈z1, z2〉|2

) 1
2 Yes Yes Yes Yes

Partial-Procrustes, dPP (1− |〈z1, z2〉|) 1
2 Yes Yes Partial No

Arc length, ρ arccos(|〈z1, z2〉|) Yes Yes Partial No

Euclidean, dE (2− 2Re(〈z1, z2〉)) 1
2 No Yes Partial Yes

Table 1: Different metrics on the shape manifold. (Left) Two pre-shapes z1 and z2 aligned in such a way that the distance between

them is minimized over all possible rotations. (Right) Properties of the metrics. Note that the Euclidean distances dE is not a proper metric

on the shape manifold, it is only included here for comparison purposes.

A consequence of the previous result is that we now only

need to prove that the squared full Procrustes distance func-

tion on SPm is negative definite.

Lemma 4.5. The kernel f : (SPm × SPm) → R :

f([z1], [z2]) := d2FP ([z1], [z2]) = 1 − |〈z1, z2〉|2 is neg-
ative definite.

Proof. It is well-known that the kernel g1 : Cm×Cm → C :
g1(z1, z2) = 〈z1, z2〉 = z∗2z1 is positive definite. It directly

follows that g2(z1, z2) = 〈z2, z1〉 = 〈z1, z2〉 is also posi-

tive definite. Since the product of two positive definite ker-

nels is again positive definite (see Theorem 3.1.12 in [2]),

g := g1g2 is also a positive definite kernel. Now, because

g(z1, z2) = |〈z1, z2〉|2 is positive definite, it is easy to see

that f([z1], [z2]) = 1 − g(z1, z2) is negative definite from

the condition that
∑n

i=1 ci = 0 and the fact that the negative

of a positive definite kernel is negative definite [2].

Combining Lemma 4.5 and Theorem 4.4 completes the

proof of Theorem 4.1.

Apart from the full Procrustes distance, a number of

other distances have also been defined on the shape man-

ifold. However, it can be shown using counterexamples that

none of these yield positive definite Gaussian kernels of all

values of σ. This result is summarized in Table 1 along with

a graphical representation of different distances. In particu-

lar, we note that the rotation invariant kernel proposed in [8]

uses the partial Procrustes distance and hence is not positive

definite. This can be shown, for example, by considering

z1 = [−0.387− 0.441i,+0.501− 0.163i,−0.114 + 0.604i],

z2 = [−0.725− 0.200i,+0.634 + 0.143i,+0.091 + 0.057i],

z3 = [−0.108− 0.373i,−0.120− 0.411i,+0.228 + 0.784i],

z4 = [+0.433 + 0.154i,−0.125− 0.654i,−0.308 + 0.500i].

The rotation invariant kernel matrix computed from

these pre-shapes and σ = 2 has negative eigenvalues. This

proves that the rotation invariant kernel is not a valid Mercer

kernel.

5. Kernel Methods on the Shape Manifold
The proposed Procrustes Gaussian kernel allows us to

exploit algorithms designed for Rn on the shape manifold

while accounting for the true geometry of the manifold. In

this section, we briefly review the four algorithms that we

use in our experiments. Note that, thanks to our kernel, any

kernel-based algorithms can now be applied to data on the

shape manifold. In the following, we use kP (., .) and HP

to denote the Procrustes Gaussian kernel on SPm and the

RKHS generated by it.

5.1. Kernel Support Vector Machines on SPm

We first discuss the use of kernel SVM for binary classi-

fication on a manifold. Let {([zi], yi)}n1 be the set of train-

ing examples, with [zi] ∈ SPm and yi ∈ {−1, 1}. Learn-

ing a kernel SVM consists in optimizing the parameters of

a hyperplane in HP so as to separate the positive and neg-

ative examples with maximum margin. At inference, this

hyperplane is used to determine the class of a test point

[z′] ∈ SPm mapped to HP , which only requires evaluat-

ing the kernel at the support vectors and can thus be done

efficiently.

This procedure is equivalent to a standard kernel SVM

formulation with a kernel matrix generated from the pro-

posed manifold-aware kernel function. Therefore, any ex-

isting SVM software package can be employed for training

and classification. Importantly, the convergence of standard

SVM optimization algorithms remains guaranteed since kP
is positive definite. As will be shown in our experiments,

utilizing kernel SVM on the manifold yields more accurate

results than existing approaches that make use of nearest-

neighbor methods, kernel SVM in the tangent space, and

other more sophisticated methods [8].

5.2. Multiple Kernel Learning on SPm

Multiple Kernel Learning (MKL) attempts to leverage

the strengths of multiple representations of the data (e.g.,

image features) by combining the kernels computed from

these representations. In particular, we consider the use of

1252



Classification Method
Nearest

Mean

Nearest

Neighbor

Complex

Bingham

Complex

Normal
RIK

Tangent

Ker. SVM

Manifold

Ker. SVM

ETH-80 79.02 82.10 86.95 87.50 92.29 87.29 93.75
COIL-100 72.19 94.76 91.75 95.47 95.82 94.44 97.00

Table 2: Object recognition on ETH-80 and COIL-100. Average recognition accuracies of our method compared to the state-of-the-art.

Note that, on both datasets, our approach outperforms the top-performing methods presented in [8].

MKL in the context of SVM [23]. More specifically, let

{(xi, yi)}n1 be the set of training examples, where xi be-

longs to some set X (e.g., xi is an image) and yi ∈ {−1, 1}.
Furthermore, let {gj}N1 , with gj : X → SPm(j), be a

set of functions that generate different valid shapes from

a given x. Given the kernel kP , each function gj can be

used to compute a kernel matrix K(j) such that K
(j)
pq =

kP (gj(xp), gj(xq)). These kernels are then combined to

obtain a composite kernel as K∗ =
∑

j λjK
(j), with each

λj ≥ 0. The weights λjs are learnt using a min-max op-

timization procedure such that the resulting kernel SVM

yields the best classification performance [23]. Conver-

gence of MKL is guaranteed since all the kernels generated

with kP are positive definite.

With data on the shape manifold, MKL provides us with

a powerful tool to combine different shape representations.

In particular, we generate multiple shape descriptors by

varying the number of landmarks that encode a shape. The

number of landmarks may affect classification accuracy:

Low numbers yield representations that are robust to intr-

aclass variations, but may not be discriminative enough to

separate some classes. On the other hand, high numbers

will better allow to differentiate classes, but may be more

sensitive to the variations within classes.

5.3. Kernel PCA on SPm

In Euclidean spaces, kernel PCA [20] has proven effec-

tive at reducing the dimensionality of the data while ac-

counting for its nonlinearities. With our kernel, this natu-

rally extends to the shape manifold. More specifically, a set

of shapes {[zi]}ni=1, with [zi] ∈ SPm, is mapped to the

RKHSHP . The projection to a d-dimensional space is then

obtained by computing the eigenvectors of the covariance

matrix of the data onHP , which can be calculated with kP .

After projection, the data can be thought of as a Euclidean

representation of the original manifold-valued shapes. This

representation, however, was obtained by accounting for the

geometry of the manifold via our kernel.

For shape retrieval from large datasets, such a Euclidean

representation is highly beneficial. It allows us to perform

nearest-neighbor search with the Euclidean distance in a

low-dimensional Euclidean space instead of having to ex-

ploit nonlinear shape distances. As a result, shape retrieval

can be made efficient using algorithms such as k-d trees,

which cannot be utilized with nonlinear shape distances.

5.4. Kernel k-means on SPm

Finally, we also study the use of kernel k-means on

the shape manifold for clustering applications. Kernel k-

means consists in performing k-means clustering in a high-

dimensional Hilbert space [21, 20]. More specifically, given

a predefined number of clusters inHP , kernel k-means pro-

ceeds by iteratively assigning each shape [zi] ∈ SPm of a

given set {[zi]}ni=1 to its closest cluster center in HP , and

re-computing the cluster centers as the mean of their as-

signed vectors in HP . The resulting clusters act as classes

and thus allow for unsupervised shape recognition.

6. Experiments
We now present our experimental evaluation of the

manifold-based kernel methods discussed in Section 5 on

several different problems and datasets. In each experiment,

we obtained the specified number of landmarks along the

shape contours by uniform arc-length sampling.

6.1. Object Recognition

We start by tackling the problem of object recognition.

To this end, we make use of ETH-80, COIL-100, MPEG-7

and Swedish leaves datasets, and employ the SVM algo-

rithm of Section 5.1 to recognize objects using their shapes.

6.1.1 ETH-80

The ETH-80 dataset [12] consists of 8 object classes (apple,

car, cow, cup, dog, horse, pear, tomato), 10 different objects

per class (e.g., 10 cars), and 41 images per object depicting

different viewing angles and rotations. Following [8], we

extracted 100 landmarks per object. We follow the standard

one-vs-one kernel SVM classification procedure. The opti-

mum value of the kernel bandwidth σ was determined to be

0.8 by cross-validation with 1 one-vs-one classifier and was

kept fixed for the other classifiers.

To compare our method with existing shape-based clas-

sification approaches, we replicated the leave-one-object-

out setup of [8]: All 41 images from one object are treated

as test images, and the images from the remaining 9 ob-

jects of the same class and all the other classes are used to

learn classifiers. This process is repeated 80 times, once

for each object, and the average accuracy is reported. In

Table 2, we compare the results of our approach with the

state-of-the-art results reported in [8]. Additionally, we also

report results for 1NN and nearest mean classification with
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Method
Proc.

1-NN

Inner

Dist. [1]

Trans.

Dist. [1]

Tangent

Ker.

SVM

Manifold

Ker.

SVM

Accuracy 91.57 94.70 95.70 93.57 96.57

Table 3: Object recognition on MPEG-7. Recognition accu-

racies of different methods. Note that our approach outperforms

the methods in [1] and tangent space kernel SVM with the usual

Gaussian RBF kernel.

the Procrustes distance, as well as for tangent space SVM,

for which we used the usual Euclidean Gaussian RBF ker-

nel which is known to be positive definite. Note that our

method achieves a higher accuracy than all the baselines.

6.1.2 COIL-100

We performed a similar experiment on the COIL-100

dataset [16] which contains 100 different objects and 72 im-

ages per object. We used 100 landmarks to represent each

object, one-vs-all classifiers and the 9-fold cross-validation

approach of [8]. Using validation on training data, σ was

determined to be 0.7 for all classifiers. In Table 2, we com-

pare the classification accuracy of our method with the other

state-of-the-art results reported in [8], and the baselines de-

scribed in Section 6.1.1. As before, our kernel SVM on the

shape manifold method attains the highest accuracy.

6.1.3 MPEG-7

We next evaluated our shape classifier on the MPEG-7 CE-

Shape-1 dataset [11]. This dataset consists of 70 classes

with 20 images per class. Since most existing algorithms

for shape classification rely on nearest neighbor methods,

results on this dataset are usually reported with the bull’s

eye score [13]. However, the bull’s eye score does not ap-

ply to trained classifiers, since it assumes that all the data

is available at once, instead of having train/test partitions.

We therefore report results using the usual classification ac-

curacy and compare our method with other state-of-the-art

methods reporting accuracy with the same measure. Fol-

lowing [1], we used 10 images per class to train the classi-

fiers and the remaining 10 for evaluation. Each shape was

represented with 200 landmarks. A one-vs-all classification

procedure was employed with kernel SVM. The σ parame-

ter, which was kept fixed for all classifiers, was set to 0.16
by cross-validation. In Table 3, we compare the results ob-

tained with our shape manifold kernel SVM to Procrustes

1-NN classification, kernel SVM on the tangent space, and

the results reported in [1]. Note that the method in [1] works

in a transductive setting, and therefore has access to all the

data (i.e., training and test examples) to learn a distance

measure. While we make use of fewer examples to learn

our classifier, our kernel allows us to achieve better accu-

racy.

Figure 1: Swedish leaves dataset. Sample images from different

leaf classes.

Method Accuracy

Inner Dist. [1] 91.20

Transduct. Dist. [1] 93.80

TS Ker. SVM 89.47

TS MKL 92.00

Manifold Ker. SVM 91.47

Manifold MKL 94.40

Table 4: Leaf identification. Recognition accuracies on the

Swedish leaves dataset.

6.1.4 Swedish Leaves

We now demonstrate the benefits of our kernel on the prob-

lem of leaf identification. To this end, we employed the

Swedish leaves dataset [22], which contains 15 different

classes with 75 images per class, 25 of which we use for

training. Samples from the dataset are shown in Fig. 1.

Note that some classes look very similar to each other, e.g.,

columns 1 & 3.

Due to the intra-class variations and inter-class similari-

ties of this dataset, the number of landmark points used to

represent the shapes affects the accuracy of the classifica-

tion algorithm. We therefore used the shape manifold MKL

framework proposed in Section 5.2 that allows us to better

handle these variations by exploiting the shape information

encoded by different number of landmarks. In particular,

we computed three kernels corresponding to 200, 400 and

600 landmarks. We used one-vs-all MKL/SVM classifiers

with a fixed σ value of 0.17 for all kernels. In Table 4, we

compare our MKL results with those obtained with a sin-

gle kernel generated by 400 landmarks, as well as with the

baselines presented in [1]. We also present the results of

SVM and MKL on the tangent space (TS).

6.2. Shape Clustering

We next tackled the problem of visual object categoriza-

tion via shape clustering. To this end, we made use of the

ETH-80 dataset and employed the clustering algorithm of

Section 5.4. For each object in the dataset, we used 20 im-

ages to determine the kernel bandwidth σ and report results

on the remaining images. We compare our method (Man-

ifold KKM) against three other clustering methods on the

shape manifold: k-means clustering on the tangent space

(Tangent KM), kernel k-means on the tangent space with

the Euclidean Gaussian kernel (Tangent KKM) and mani-

fold k-means clustering (Manifold KM) that uses the Pro-

crustes distance and Karcher mean (Section 3) at each iter-

ation instead of the usual Euclidean distance and arithmetic

mean. For each method, to overcome the sensitivity of (ker-

nel) k-means to initialization, we ran the algorithm with 20
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different random initializations and picked the iteration that

converged to the minimum sum of point-to-centroid dis-

tances (according to the distance used by the algorithm).

In Table 6, we report clustering accuracy as a function of

the number of classes used. Note that our kernel k-means

algorithm significantly outperforms the other methods.

With Matlab implementations, the times spent on clus-

tering in the final test by Tangent KM, Tangent KKM, Man-

ifold KM and Manifold KKM (ours) were 15.46s, 3.69s,

58.51s, and 3.61s, respectively. Note that the Manifold KM

algorithm is computationally more demanding than our ker-

nel k-means algorithm since it involves repeatedly comput-

ing Procrustes distances and Procrustes means.

6.3. Shape Retrieval

Finally, we exploited our kernel for the task of shape

retrieval. State-of-the-art shape retrieval methods [13, 1]

perform exhaustive nearest neighbor search over the en-

tire database using nonlinear distances between the shapes,

which does not scale with the database size. Here, instead,

we make use of the kernel PCA algorithm of Section 5.3 to

obtain a real valued Euclidean representation of the dataset

while preserving the important shape variances. We then

perform shape retrieval on the resulting Euclidean space,

which can be done more efficiently. To validate our shape

retrieval approach, we used the SQUID Fish dataset [14]

which consists of 1100 unlabeled fish contours. We ob-

tained 100 landmarks from each contour. We set aside 10

different fish shapes from the dataset as query images and

used the remaining shapes to obtain a d = 50 dimensional

real Euclidean representation of the dataset. For retrieval,

we projected each query shape to the 50-dimensional space

and found its 5 nearest neighbors using the standard Eu-

clidean distance. Fig. 2 depicts our retrieval results. Note

that the retrieved shapes match the query ones very accu-

rately. We are unable to provide quantitative results on this

dataset due to lack of ground truth.

We also evaluated our manifold kernel PCA algorithm

against (non-kernel) PCA and kernel PCA on the tangent

space, with the ETH dataset in the setting described in Sec-

tion 6.1.1. Nearest neighbor classification on a reduced, 50-

dimensional space was used with all algorithms. Table 5

summarizes the results of this experiment.

Method
Tangent

PCA

Tangent

Ker. PCA

Manifold

Ker. PCA

Accuracy 75.70 78.14 81.80

Table 5: Dimensionality reduction. Recognition accuracies on

the ETH-80 dataset using 1-NN in a 50-dimensional space ob-

tained with different dimensionality reduction methods.

Nb. of

classes

Tangent

KM

Tangent

KKM

Manifold

KM

Manifold

KKM

3 63.50 78.41 65.40 86.98
4 51.30 77.98 53.33 83.45
5 46.57 69.43 50.09 74.67
6 43.57 63.73 44.76 65.32
7 44.35 64.01 46.87 67.14
8 39.40 56.60 43.80 63.69

Table 6: Shape clustering. Clustering accuracies on the ETH-

80 dataset. KM and KKM denote k-means and kernel k-means,

respectively.

7. Conclusion

In this paper we have introduced a positive definite ker-

nel on the shape manifold that allows us to embed the man-

ifold in a high-dimensional RKHS. This Procrustes Gaus-

sian kernel has let us extend popular kernel methods in Eu-

clidean spaces to the shape manifold while accounting for

the geometry of the manifold. To the best of our knowl-

edge, this marks the first time popular classification meth-

ods in Euclidean space, such as SVM and MKL, have been

generalized to the shape manifold. We have shown that the

resulting methods achieve better performance than existing

algorithms. This could be attributed to the fact that kernel

methods perform recognition in a high-dimensional space

while most existing methods resort to simple nearest neigh-

bor search. In the future, we plan to extend the use of our

Procrustes Gaussian kernel to other kernel algorithms.
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