
Neighbor-To-Neighbor Search for Fast Coding of Feature Vectors

Nakamasa Inoue and Koichi Shinoda
Tokyo Institute of Technology, Tokyo, 152-8552, Japan.
inoue@ks.cs.titech.ac.jp, shinoda@cs.titech.ac.jp

Abstract

Assigning a visual code to a low-level image descrip-
tor, which we call code assignment, is the most computa-
tionally expensive part of image classification algorithms
based on the bag of visual word (BoW) framework. This
paper proposes a fast computation method, Neighbor-to-
Neighbor (NTN) search, for this code assignment. Based
on the fact that image features from an adjacent region are
usually similar to each other, this algorithm effectively re-
duces the cost of calculating the distance between a code-
word and a feature vector. This method can be applied not
only to a hard codebook constructed by vector quantization
(NTN-VQ), but also to a soft codebook, a Gaussian mix-
ture model (NTN-GMM). We evaluated this method on the
PASCAL VOC 2007 classification challenge task. NTN-VQ
reduced the assignment cost by 77.4% in super-vector cod-
ing, and NTN-GMM reduced it by 89.3% in Fisher-vector
coding, without any significant degradation in classification
performance.

1. Introduction
Searching for matches to high-dimensional vectors is

the most computationally expensive part of various com-

puter vision algorithms. Examples of these algorithms in-

clude assigning visual words to low-level image descriptors

[1], finding the closest matches for image mosaicing [2],

or searching for nearest neighbor shapes to 3D shape mod-

els [3].

Most of them are simplified into either one of two prob-

lems: a hard-vector-quantization (VQ) problem or a soft-

VQ problem. In hard VQ, each input vector is assigned

to its closest codeword. In soft VQ, each input vector is

assigned to more than one codewords in a soft weighting

manner typically depending on distance between the input

vector and a codeword. Probabilistic models are often used

for soft weighting. A typical example is a Gaussian mixture

model (GMM) in which each codeword has a covariance

matrix and a weighting coefficient. One of the advantages

of soft VQ is that it reduces quantization errors. However,

there is a trade-off between speed and accuracy: soft VQ is

more accurate but slower than hard VQ.

Figure 1. Neighbor-to-neighbor (NTN) search. NTN search as-

signs a code to an input vector from a neighbor vector to a neighbor

vector. A typical example of a neighbor vector is a descriptor xj

adjacent to a descriptor xj−1 where image descriptors are densely

sampled from an image. The red path on the image shows the

ordering of descriptors.

Many studies have been done to develop fast hard/soft

VQ algorithms. Most of them use a tree structure to reduce

the computational cost. For hard VQ, approximate nearest

neighbor (ANN) algorithms such as the best bin first search

[4], randomized kd-trees [5], hierarchical k-means tree [6]

are known to provide speed-ups with only minor loss in ac-

curacy. Some other studies extend them to a probabilistic

model for soft VQ. For example, tree-structured GMM in

[7] extends hierarchical k-means to a GMM framework.

These previous studies assume input feature vectors are

independent from each other. However, input vectors are of-

ten strongly depend on each other when they are extracted

from the same region in an image. Their typical examples

are densely-sampled image descriptors such as dense SIFT,

which have been proven to be effective in image classifica-

tion [8, 9]. In dense SIFT, two adjacent descriptors are often

assigned to the same codeword since they are similar to each

other. This observation brings us to an idea to speed up VQ

by skipping calculations for such similar input vectors.

This paper proposes a fast computation method for code

assignment, which we call Neighbor-to-Neighbor (NTN)

search. This algorithm, assuming that 1) a set of neigh-

bor vectors of each input vector are defined and 2) an input

vector and its neighbor vector are similar, skips some dis-

tance calculations between a neighbor vector and a code-

word. This algorithm effectively utilizes a triangle inequal-

2013 IEEE International Conference on Computer Vision

1550-5499/13 $31.00 © 2013 IEEE

DOI 10.1109/ICCV.2013.156

1233

ity for the distances between neighbor vectors. We apply

NTN search to hard VQ (NTN-VQ) and a GMM based

soft VQ (NTN-GMM). In our experiments on image clas-

sification, we demonstrate the effectiveness of NTN-VQ on

super-vector coding, and NTN-GMM on Fisher-vector cod-

ing.

This paper is organized as follows. The next section re-

views the related studies. Section 3 explains the NTN algo-

rithm in a simple framework, hard VQ. Section 4 describes

how to extend it to a GMM based soft VQ. Section 5 re-

ports the result of our evaluation, and Section 6 concludes

the paper.

2. Related work
Hard VQ is one of the most widely used methods in

computer vision algorithms including bag-of-visual-words

(BoW) [1]. A codebook is typically trained by using k-

means algorithm. Hard VQ costs O(K) to assign one

of K codewords to an input vector in a straightforward

way. Many previous studies reduce the costs from O(K)
to O(log K) by using a tree structure. Nistér et al. [10]

propose a “vocabulary tree” which uses a hierarchical k-

means tree. Lowe [2] uses a kd-tree for nearest neighbor

search of SIFT descriptors. Muja and Lowe [6] have pro-

posed an automatic selection method from the recent two

approximate nearest neighbor (ANN) algorithms: random-

ized kd-trees [5], and hierarchical k-means tree [6]. They

have provided it as a fast software library for approximate

nearest neighbors (FLANN). These methods are often used

with dimension reduction techniques such as product quan-

tization [11].

Soft VQ, which assigns more than one codewords to an

input vector, has been proposed to reduce quantization er-

rors in hard VQ. For example, a Gaussian mixture model

(GMM) [12] provides soft weighting based on the ratios of

Gaussian probabilities. Tree-GMM [7] extends the hierar-

chical k-means to a GMM framework in order to calculate

Gaussian probabilities quickly. Sparse coding [13] assigns

several tens of codewords to an input vector by solving a

constrained least square fitting problem. J. Wang el al. [14]

introduced k-nearest neighbor (k-NN) search as the prepro-

cessing to the sparse coding.

K. Chatfield et al. [15] compared recent image represen-

tations using these hard/soft VQ algorithms and reported

that the Fisher-vector (FV) coding [9] is the best and the

super-vector (SV) coding [8] is the second in terms of im-

age classification accuracy. FV and SV use a GMM based

soft VQ and hard VQ to assign codewords to image descrip-

tors, respectively. The speed of these methods is faster than

that of the other methods since their codebook size is rela-

tively small (256 ≤ K ≤ 1024). However, the coding step

is still the time-bottleneck of a pipeline for extracting image

representations.

Figure 2. A histogram of descriptors. Red bars: descriptors

that have the same visual word as a neighbor descriptor. White

bars: all descriptors. SIFT descriptors are extracted from every 4

pixels at 5 scales on the PASCAL VOC 2007 training images. The

codebook size is 512. 61.3% of two adjacent descriptors have the

same visual word.

In our experiments, the coding step occupies 85.3% and

88.4% of computational time in FV coding and SV coding,

respectively (see Section 5, Figure 11).

3. Neighbor-To-Neighbor (NTN) Search for
Vector Quantization

3.1. Outline

This section presents our neighbor-to-neighbor (NTN)

search in a simple framework, hard VQ. Let X be a set

of input vectors and B(x) be a set of neighbor vectors for

an input vector x ∈ X . The NTN search assumes that a

neighbor vector in B(x) is similar to x, and that the num-

ber of neighbor vectors is smaller than the codebook size.

A typical example that satisfies this assumption is densely-

sampled SIFT descriptors for image classification . Here,

B(x) is a set of the four descriptors adjacent to a descriptor

x (Figure 1 and Figure 2) or a set of descriptors in the same

pre-segmented region.

In NTN search, input vectors are ordered from a neigh-

bor vector to a neighbor vector to skip distance calculations

for some input vectors based on a triangle inequality. We

first explain the structure of our algorithm and then explain

our speeding-up idea.

3.2. Algorithm

Let {μk}K
k=1 be a codebook. In the initialization step

for j = 1, xj is randomly selected from X . Its code vj is

determined as

vj = argmin
k

djk, (1)

where distance

djk = ‖xj − μk‖, (2)

is calculated for each k = 1, 2, · · · ,K. This process is the

same as the straightforward hard VQ.

For j = 2, 3, · · · , N , the following three steps are iter-

ated (Figure 3).

1234

(b) STEP1, j=2

: input vector

: codeword

: calculated distance

(a) INIT, j=1 (c) STEP2-1, j=2 (d) STEP2-2, j=2

(e) STEP1 (f) STEP2-1 (g) STEP2-2

Figure 3. Algorithm overview. (a) Initialization step: distance from an input vector x1 to each codeword is calculated. (b) STEP 1:

the next input vector x2 which minimizes Δ12 is selected from neighbor vectors. (c) STEP 2-1: d2k∗ is calculated where k∗ is the code

for x1. (d) STEP 2-2: a lower bound d21 = d11 − δΔ12 is calculated where δ is a parameter, calculation of d21 is skipped if d21 ≥ d2k∗ .

(e),(f),(g): STEP 1, 2-1, and 2-2 for xj(j > 2), respectively. In (g), accumulated distance Δij between xi and xj is used to obtain a lower

bound djk = dik − δΔij in Eq. (4).

(STEP 1: Select the next input vector)
For each x ∈ B(xj−1), calculate Δ(x) = ‖x− xj−1‖, and

set

xj = argmin
x∈B(xj−1)∩X̄

Δ(x), (3)

where X̄ = X \ {x1, · · · , xj−1} is a set of remaining input

vectors. If B(xj−1) ∩ X̄ = ∅ then xj is randomly picked

from X̄ .

(STEP 2: Calculate distance)
Set k∗ = vj−1.

2-1) Calculate distance djk∗ .

2-2) For k = 1, 2, · · · , k∗ − 1, k∗ + 1, · · · ,K, calculate a

lower bound djk for djk as follows.

djk = dik − δΔij , (4)

where i is the index of the input vector whose distance dik

has been calculated, δ is a parameter, and Δij is an accumu-

lated distance from xi to xj . This process will be explained

in detail in the next paragraph. If djk ≥ djk∗ then skip

calculation of djk, otherwise calculate djk.

(STEP 3: Output a code)
Calculate

vj = argmin
k∈E

djk, (5)

where E is a set of indices of codewords whose distance to

xj is calculated in STEP 2.

Here we explain Eq. (4) in STEP 2. For a given xj , let’s

go back to the previous input vector xi (i < j) whose dis-

tance dik has been calculated (Figure 3 (g)). Take the max-

imum such index i and let Δij be an accumulated distance

between xi and xj given by

Δij =
j∑

p=i+1

‖xp − xp−1‖. (6)

The triangle inequality gives

dik −Δij ≤ djk ≤ dik + Δij . (7)

It implies

∃δ∗ ∈ [−1, 1] s.t. djk = dik − δ∗Δij . (8)

Thus, for δ ≥ δ∗, djk in Eq. (4) is a lower bound of dis-

tance djk. Note that the result of coding by this algorithm

is exactly the same as that by the original hard VQ in this

case.

3.3. The parameter δ

Our idea to improve the speed of the algorithm is to re-

gard δ as a constant and use it as a parameter. Then, the

lower bound is efficiently updated from the previous lower

bound by

djk = dj−1,k − δ‖xj − xj−1‖. (9)

The lower bound is obtained by only one distance calcula-

tion from xj−1 to xj , which is already calculated in STEP 1.

By relaxing the restriction δ ≥ δ∗, we can further reduce

the computational cost though the exact solution may not

be obtained in such cases.

Alg. 1 summarizes the neighbor-to-neighbor (NTN)

search for hard VQ which outputs assigned codes for each

input vector quickly.

1235

Algorithm 1 NTN-VQ

Input: input vectors X (N = |X|),
codebook {μk}K

k=1, parameter δ.
Output: codes {vi}N

i=1

x1 ← Rand(X)
dk ← ‖x1 − μk‖ for all k
v1 ← argmin

k
dk; k∗ ← v1

for i = 2, · · · , N do
xi ← argmin

x∈B(xi−1)∩X̄

‖x− xi−1‖
dk∗ ← ‖xi − μk∗‖
for all k
= k∗ do

dk ← dk − δ‖xi − xi−1‖
if dk∗ > dk then

dk ← ‖xi − μk‖
if dk∗ > dk then k∗ ← k end if

end if
end for
vi ← k∗

end for

4. NTN Search for Gaussian Mixture Models
A Gaussian mixture model (GMM) is an extension of

hard VQ to a probabilistic framework since it provides a soft

assignment of codewords to an input vector. Here we ex-

tend the NTN search to a GMM framework (NTN-GMM).

The algorithm structure of NTN-GMM is the same as NTN-

VQ, but instead of a lower bound of distance for NTN-VQ,

an upper bound of a Gaussian probability is calculated for

NTN-GMM.

Let μk, Σk and wk (k = 1, 2, · · ·K) be the mean vector,

the covariance matrix, and the mixture weight of the k-th

mixture component (codeword) of a GMM, respectively. A

code cjk for an input vector xj(j = 1, 2, · · · , N) to the k-th

codeword is given by

cjk =
pjk∑K

k′=1 pjk′
. (10)

Here pjk is a Gaussian probability given by

pjk =
wk

(2π)
2
d |Σk| 12

exp
(
−1

2
‖xj − μk‖2Σ−1

k

)
, (11)

where ‖x‖A =
√

xT Ax. Note that NK probability calcu-

lations are required in the standard GMM.

Our empirical observation shows that the distribution of

pjk over all the codewords is peaky, i.e., for each input vec-

tor xj , a few pjk’s have a large value and the others do not.

If xj is similar to xj−1, the “peak” is shifting gradually as

j increments. Conversely, the changes in the “bottom (no-

peak)” of the distribution are generally small. This observa-

tion brings us to an idea that we may ignore the change of

Gaussian probabilities in the “bottom” of the distribution.

For a given xj , let xi (i < j) be the previous input vector

whose Gaussian probability pik has been calculated. The

idea is to ignore the difference between pjk and pik and

assume pjk = pik for k ∈ G
(b)
i ∩ G

(b)
j to skip calculation

of pjk. Here, G
(b)
j is a set of mixture components in the

“bottom” of the distribution, which we call a bottom set,

given by

G
(b)
j = {k : pjk < pth}. (12)

where pth is a threshold to categorize the mixture compo-

nents into “peak” and “bottom”.

A bottom set G
(b)
j cannot be directly observed without

computing pjk. Thus, we introduce an upper bound pjk of

a probability pjk (see Appendix for details) given by

pjk = pik exp (δikΔij) . (13)

Here, Δij is the accumulated distance given by Eq. (6) and

δik is given by

δik = Skδ‖xi − μk‖Σ−1
k

, (14)

where δ ∈ [0, 1] is a parameter to control the speed of our

algorithm (as Subsec. 3.3) and Sk is the square root of the

spectral radius of Σ−1
k . Note that this upper bound is ob-

tained efficiently from a previous upper bound by

pjk = pj−1,k exp (δik‖xj − xj−1‖) . (15)

Finally, instead of the intersection of bottom sets G
(b)
i ∩

G
(b)
j , its subset Uij given by

Uij = {k : pjk < pth}, (16)

is used for determining mixture components to skip calcu-

lation of pjk (Figure 4).

The threshold pth should depend on the maximum value

of Gaussian probabilities at j, i.e., maxk pjk. However, this

value also cannot be observed without computing all Gaus-

sian probabilities at j. Since two adjacent descriptors are

expected to be similar to each other, the value at the previ-

ous maximum point is used to determine the threshold as

pth = pjk∗ , k∗ = argmax
k

pj−1,k. (17)

Note that, by this thresholding, Gaussian probabilities at the

previous maximum point and the current maximum point

(at least) will be calculated for each input vector.

Alg. 2 summarizes the NTN search for a GMM which

outputs soft codes for each input vector quickly.

To further improve the speed of NTN-GMM, avoid-

ing the exp computation is effective since our observation

shows that 63.0% of the computational cost in coding using

1236

Figure 4. Distribution of pik and pjk(i < j). Calculation of a

Gaussian probability pjk is skipped for k ∈ Uik.

a GMM is spent for it. An exp operator is deleted by tak-

ing a log of Gaussian probabilities and introducing log-max

(LM) approximation to approximate Eq. (10) by

cjk �
⎧⎨
⎩

1, if k = argmax
k

log pjk,

0, otherwise.
(18)

5. Experimental evaluation

5.1. Experimental setup

We perform image classification experiments on the

PASCAL VOC 2007 classification challenge [16]. The

dataset consists of 9,963 images, which are divided into a

training set (5011 images) and a testing set (4952 images).

We use Mean Average Precision (Mean AP) over the 20 ob-

ject categories for evaluating classification accuracies. A

single core of a 2.93 GHz Intel Xeon CPU with an 8 GB

memory is used for measuring computational costs.

We implement NTN-VQ (Alg. 1) on super-vector (SV)

coding [8] and NTN-GMM (Alg. 2) on Fisher-vector (FV)

coding [9]. We compare them with two standard methods,

VQ, GMM, and two tree-based methods, ANN-VQ, Tree-

GMM. The ANN-VQ uses a fast library for approximate

nearest neighbor (ANN) search in [6, 15] for SV coding.

The Tree-GMM [7] is an extension of the hierarchical k-

means to a GMM framework for FV coding. In addition,

NTN-LM-GMM applies the LM approximation to NTN-

GMM.

In all experiments, 2 × 2 SIFT descriptors are extracted

from every 4 pixels 1 at 5 scales. We set a set of neighbor

vectors B(x) to a set of the four SIFT descriptors adjacent

to a descriptor x. We omit Gaussian weighting for SIFT

descriptors. The averaged number of descriptors per image

is 49580. A codebook is trained on randomly sampled 1

million descriptors by using k-means algorithm for VQ or

EM algorithm for a GMM. Covariance matrices for a GMM

are assumed to be diagonal. The codebook size is set to 512.

A one-vs-rest linear SVM is used for a classifier for each of

20 object categories, where the regularization parameter is

fixed to 1.0.

1Mean APs were 0.582, 0.582 and 0.574 for density of 3, 4, and 5,

respectively.

Algorithm 2 NTN-GMM

Input: input vectors X (N = |X|),
GMM {wk, μk,Σk}K

k=1, parameter δ.
Output: soft codes {cik}N

i=1
K
k=1

x1 ← Rand(X)
pk, pk ← wkN (x1|μk, Σk) for all k
δk ← Skδ‖x1 − μk‖Σ−1

k
for all k

c1k ← pkPK
k′=1 pk′

for all k; k∗ ← argmax
k

pk

for i = 2, · · · , N do
xi ← argmin

x∈B(xi−1)∩X̄

‖x− xi−1‖
pk∗ , pk∗ ← wk∗N (xi|μk∗ , Σk∗)
for all k
= k∗ do

pk ← pk exp(δk‖xi − xi−1‖)
if pk∗ < pk then

pk, pk ← wkN (xi|μk, Σk)
δk ← Skδ‖xi − μk‖Σ−1

k

end if
end for
cik ← pkPK

k′=1 pk′
for all k; k∗ ← argmax

k
pk

end for

Figure 5. Cumulative histogram of δ∗ . Statistics of the true δ∗

in Eq. (8) on PASCAL VOC 2007 training images is reported for

NTN-VQ.

5.2. Experimental Results

5.2.1 Speed of coding

In Table 1, we compare speed of coding at the fixed accu-

racy level. Overall, our NTN methods are faster than the

others while keeping the classification accuracy. We ob-

serve that NTN-VQ and NTN-LM-GMM reduce the assign-

ment cost by 77.4% and by 89.3%, respectively. Note that

there are no significant differences in Mean AP on random-

ization test (p < 0.05) between methods in the same split

table in Table 1. Here, a parameter δ is optimized on the

validation set, where half of training images are used for

training models and others are used for validating the mod-

els. As described in Subsec. 3.3, the restriction of δ ≥ δ∗

is relaxed in our methods. However, more than 90% of djk

gives a correct lower bound when δ = 0.20 for NTN-VQ as

shown in Figure 5.

Figure 6 shows the speed-accuracy trade-off for NTN

1237

Method δ Mean AP [test/val] |E| Time (sec) Reduction rate (%)

VQ - *0.568 / 0.519 512.0 856.2 0.0

ANN-VQ [6] - 0.563 / 0.518 - 475.7 44.4

NTN-VQ 0.20 0.563 / 0.519 57.8 193.2 77.4
GMM - *0.582 / 0.532 512.0 2595.7 0.0

Tree-GMM [7] - 0.582 / 0.532 295.2 1496.8 42.3

NTN-GMM 0.09 0.580 / 0.531 88.0 642.0 75.3

NTN-LM-GMM 0.09 0.579 / 0.531 88.0 276.8 89.3

Table 1. Speed comparison at the fixed accuracy level. VQ: standard hard vector quantization (VQ), ANN-VQ: approximate nearest

neighbor search [6], NTN-VQ: our neighbor-to-neighbor (NTN) search for VQ (Alg. 1), GMM: standard Gaussian mixture model (GMM),

Tree-GMM: an extension of the hierarchical k-means to a GMM framework in [7] NTN-GMM: our NTN search for a GMM (Alg. 2),

NTN-LM-GMM: NTN-GMM with log-max approximation. δ: a parameter of our NTN methods, Mean AP: image classification accuracy

on the testing set and the validation set of the VOC 2007 classification challenge. |E|: the number of distance or probability calculations

per input vector, Time: assignment time in sec, Reduction rate: reduction rate of the assignment cost. Note that there are no statistically

significant differences in Mean AP between the method marked “*” and each other method in the same split table on randomization test

(p < 0.05).

methods for different values of δ. We observe that NTN-

LM-GMM outperforms NTN-GMM and NTN-VQ in terms

of both speed and accuracy. This is because NTN-LM-

GMM has the advantages of both of NTN-VQ and NTN-

GMM: it only requires distance calculations without using

an exp operator as NTN-VQ, but it has a weight coefficient

and a covariance matrix for each codeword as NTN-GMM.

Compared with tree-based methods, a disadvantage of

NTN methods is that they are not very effective if neigh-

bor vectors are not similar to each other. We confirm this

in Figure 7: a tree-based ANN-VQ performs better than

RAND-VQ which replaces a neighbor vector by a randomly

sampled vector in each iteration of NTN-VQ. Notably, the

average distance between two neighbor descriptors (xj−1

and xj) is 132.8 and 507.7 for NTN-VQ and RAND-VQ,

respectively. This confirms that the assumption that neigh-

bor vectors are similar to each other, is necessary for NTN

methods.

In addition, we confirm the necessity of the accumulated

distance in Eq. (6) by replacing it with direct distance, i.e.,

Δij = ‖xi−xj‖ in Figure 8. If we ignore computation time

for Δij , for example in the case where a distance matrix

on input vectors is pre-computed in some way, the direct

distance is better than the accumulated distance. In general,

the accumulated distance is computationally effective since

it derives efficient update rules of a lower/upper bound in

Eq. (9) and (15).

5.2.2 Result examples

We examine the effectiveness of NTN-VQ for several differ-

ent images in Figure 9. The reduction rate of the assignment

cost by NTN-VQ is 84.9% for the image (a) and 66.8% for

the image (d). Here, (a) and (d) are the best and the worst

cases on PASCAL VOC 2007, respectively. This shows that

NTN methods are more effective for images which can be

segmented into several uniform regions. Notably, NTN-VQ

Figure 6. Speed-accuracy trade-off for different values of δ.
Trade-off between assignment time and Mean AP is reported. All

plots are for δ = 1.0, 0.9, · · · 0.1, 0.09, · · · , 0.01. VQ: standard

hard vector quantization (VQ), NTN-VQ: neighbor-to-neighbor

(NTN) search for VQ, GMM: standard Gaussian mixture model

(GMM), NTN-GMM: NTN search for a GMM, NTN-LM-GMM:

NTN-GMM with the log-max approximation.

is still better than ANN-VQ even in the worst case.

5.2.3 Codebook size

The simplest idea to reduce the assignment cost is to re-

duce the codebook size. In Figure 10, which shows the

speed-accuracy trade-off for different codebook sizes, we

confirm that using NTN methods is better than reducing the

codebook size. This also confirms that NTN-LM-GMM

is the best in both speed and accuracy. Note that there

is no significant difference in Mean AP between a stan-

dard method and a NTN methods for each codebook size

K = 2048, 1024, · · · , 16.

1238

Figure 7. Comparison with RAND-VQ. Trade-off between as-

signment time and Mean AP is reported. NTN-VQ: neighbor-to-

neighbor (NTN) search for VQ, this is the same plot as Figure 6,

ANN-VQ: approximate nearest neighbor search [6], RAND-VQ:

NTN-VQ in which a neighbor vector is replaced by a randomly

sampled vector.

Figure 8. Comparison of the accumulated distance and the
direct distance. VQ error rate in NTN-VQ for different values of

δ is reported. All plots are for δ = 1.0, 0.9, · · · 0.1, 0.09, · · · 0.01.

Accumulated distance: Δij is defined by Eq. (6). Direct distance:

Δij is replaced by the direct distance ‖xi − xj‖. Pre-computed

direct distance: the direct distance is used but distance calculations

for it are not counted.

5.2.4 Relative computational time in a pipeline

Figure 11 shows the relative cost of coding with respect to

the cost of the other steps of processing pipeline for extract-

ing SV and FV representations. As can be seen, the coding

step is the majority of the whole processing pipeline: 85.3%

and 88.4% of computational time are occupied from it in

FV coding and SV coding, respectively. NTN-VQ, NTN-

GMM and NTN-LM-GMM reduces the total computational

cost by 66.0%, 66.5%, and 85.3%, respectively. Note that

the cost of pooling in FV coding, which generate a final

FV representation, is also reduced by the LM approxima-

tion since we can skip some summations in pooling if cik is

equal to zero.

Figure 9. The computational cost reduction by NTN-VQ for
different images. Four images (a), (b), (c), and (d) are from PAS-

CAL VOC 2007. The reduction rate of the assignment cost by

NTN-VQ and ANN-VQ for each image is reported.

Figure 10. Speed-accuracy trade-off for different codebook
sizes. Trade-off between assignment time and Mean AP for code-

book sizes of K = 2048, 1024, 512, · · · , 16. is reported. VQ:

standard hard vector quantization (VQ), NTN-VQ: neighbor-to-

neighbor (NTN) search for VQ δ = 0.20, GMM: standard Gaus-

sian mixture model (GMM), NTN-GMM: NTN search for a GMM

δ = 0.09, NTN-LM-GMM: NTN-GMM with the log-max ap-

proximation δ = 0.09.

For large-scale image classification, for example on the

ImageNET with more than 20,000 object categories, we

should consider the SVM-classification cost, which is neg-

ligible in our experiments on PASCAL VOC with 20 cat-

egories. To reduce the SVM-classification cost, applying

dimension reduction techniques such as product quantiza-

1239

tion [11] to the final image representation can be effectively

utilized.

6. Conclusion
We have proposed a fast computation method for search-

ing for the matches, neighbor-to-neighbor (NTN) search,

and its applications to vector quantization (VQ) and a

Gaussian mixture model (GMM). We tested NTN-VQ and

NTN-GMM on super-vector coding and Fisher-vector cod-

ing, respectively. Our experiments on the PASCAL VOC

2007 classification challenge showed that NTN-VQ, NTN-

GMM, and NTN-LM-GMM reduced the assignment cost

by 77.4%, 75.3%, and 89.3%, respectively, without any

significant degradation in the image classification perfor-

mance. This result confirms the effectiveness of our pro-

posed algorithms.

In future work, we will focus on the speeding up of the

feature extraction step that we didn’t discuss in this pa-

per. Approximation of dense sampling and SIFT descriptors

would be interesting as promising next steps.

Acknowledgement
This work was supported by JSPS KAKENHI Grant

Number 11J04223.

References
[1] G. Csurka, C. Dance, L. Fan, J. Willamowski, and C. Bray.

Visual categorization with bags of keypoints. Proc. ECCV
SLCV workshop, pages 59–74, 2004. 1, 2

[2] D. G. Lowe. Distinctive image features from scale-invariant
keypoints. IJCV, 60(2):91–110, 2004. 1, 2

[3] M. Ovsjanikov, W. Li, L. Guibas, and N. J. Mitra. Explo-
ration of continuous variability in collections of 3d shapes.
ACM Trans. Graph., 30(4):1–10, July 2011. 1

[4] J. S. Beis and D. G. Lowe. Shape indexing using approx-
imate nearest-neighbour search in high-dimensional spaces.
Proc. CVPR, pages 1000–1006, 1997. 1

[5] C. Silpa-anan and R. Hartley. Optimised kd-trees for fast
image descriptor matching. Proc. CVPR, pages 1–8, 2008.
1, 2

[6] M. Muja and D. G. Lowe. Fast approximate nearest neigh-
bors with automatic algorithm configuration. Proc. VISAPP,
pages 331–340, 2009. 1, 2, 5, 6, 7

[7] N. Inoue and K. Shinoda. A fast map adaptation tech-
nique for gmm-supervector-based video semantic indexing
systems. Proc. ACM Multimedia, pages 1357–1360, 2011.
1, 2, 5, 6

[8] X. Zhou, K. Yu, T. Zhang, and T. S. Huang. Image classifi-
cation using super-vector coding of local image descriptors.
Proc. ECCV, pages 141–154, 2010. 1, 2, 5

[9] F. Perronnin, S. Jorge, and T. Mensink. Improving the fisher
kernel for large-scale image classification. Proc. ECCV,
pages 143–156, 2010. 1, 2, 5

[10] D. Nister and H. Stewenius. Scalable recognition with a vo-
cabulary tree. Proc. CVPR, pages 2161–2168, 2006. 2

[11] H. Jégou, M. Douze, and C. Schmid. Product quantization
for nearest neighbor search. IEEE Trans. on Pattern Analysis
and Machine Intelligence, 33(1):117–128, 2011. 2, 8

[12] F. Perronnin, C. Dance, G. Csurka, and M. Bressan. Adapted
vocabularies for generic visual categorization. Proc. ECCV,
pages 464–475, 2006. 2

Figure 11. Relative computational cost. Computational cost

for each step of super-vector (SV) coding and Fisher-vector (FV)

coding is reported. The codebook size is 512. Feature extraction:

SIFT descriptors are extracted from every 4 pixels at 5 scales, Cod-

ing: each descriptor is assigned to codeword(s), Pooling: an SV

or FV image representation is generated. 85.3%, 56.6%, 88.4%,

65.4% and 64.2% of computational time is occupied from coding

by VQ, NTN-VQ, GMM, NTN-GMM, and NTN-LM-GMM, re-

spectively. Total computational cost is reduced by 66.0%, 66.5%

and 85.3% by NTN-VQ, NTN-GMM, and NTN-LM-GMM, re-

spectively.

[13] T. Huang. Linear spatial pyramid matching using sparse cod-
ing for image classification. Proc. CVPR, pages 1794–1801,
2009. 2

[14] J. Wang, J. Yang, K. Yu, F. Lv, T. Huang, and Y. Gong.
Locality-constrained linear coding for image classification.
Proc. CVPR, pages 3360–3367, 2010. 2

[15] K. Chatfield, V. Lempitsky, A. Vedaldi, and A. Zisserman.
The devil is in the details: an evaluation of recent feature
encoding methods. Proc. BMVC, pages 1–12, 2011. 2, 5

[16] M. Everingham, A. Zisserman, C. Williams, and L. V. Gool.
The pascal visual obiect classes challenge 2007 (voc2007)
results. http://www.pascal-network.org/challenges/VOC/voc
2007/workshop/index.html, 2007. 5

Appendix
The upper bound pjk of the probability (Eq. (13)) is de-

livered as follows. The law of cosines gives

∃δ∗ ∈ [−1, 1] s.t. ‖xj − μk‖2Σ−1
k

(19)

= ‖xi − μk‖2Σ−1
k

+ ‖xi − xj‖2Σ−1
k

− 2δ∗‖xi − xj‖Σ−1
k
‖xi − μk‖Σ−1

k
.

For δ ≥ max(δ∗, 0), it implies

‖xj − μk‖2Σ−1
k

≥ ‖xi − μk‖2Σ−1
k

− 2Skδ‖xi − xj‖‖xi − μk‖Σ−1
k

≥ ‖xi − μk‖2Σ−1
k

− 2SkδΔij‖xi − μk‖Σ−1
k

, (20)

where Sk is the square root of the spectral radius of Σ−1
k and

Δij is the accumulated distance given by Eq. (6). Thus, we

have

pjk=
wk

Zk
exp

(
−1

2
‖xj − μk‖2Σ−1

k

)
(21)

≤ wk

Zk
exp

(
−1

2
‖xi − μk‖2Σ−1

k

+ SkδΔij‖xi − μk‖Σ−1
k

)
(22)

= pik exp
(
SkδΔij‖xi − μk‖Σ−1

k

)
(23)

= pik exp (δikΔij) = pjk, (24)

where Zk = (2π)
d
2 |Σk| 12 and δik is given in Eq.(14).

1240

