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Abstract

The Still-to-Video (S2V) face recognition systems typi-
cally need to match faces in low-quality videos captured un-
der unconstrained conditions against high quality still face
images, which is very challenging because of noise, image
blur, low face resolutions, varying head pose, complex light-
ing, and alignment difficulty. To address the problem, one
solution is to select the frames of ‘best quality’ from videos
(hereinafter called quality alignment in this paper). Mean-
while, the faces in the selected frames should also be geo-
metrically aligned to the still faces offline well-aligned in
the gallery. In this paper, we discover that the interactions
among the three tasks–quality alignment, geometric align-
ment and face recognition–can benefit from each other, thus
should be performed jointly. With this in mind, we propose
a Coupling Alignments with Recognition (CAR) method to
tightly couple these tasks via low-rank regularized sparse
representation in a unified framework. Our method makes
the three tasks promote mutually by a joint optimization
in an Augmented Lagrange Multiplier routine. Extensive
experiments on two challenging S2V datasets demonstrate
that our method outperforms the state-of-the-art methods
impressively.

1. Introduction
In recent years, there has been increasing interest in

video-based face recognition for real world applications,

especially person identification or retrieval in surveillance

videos. Most of these works, e.g., [1, 2, 3, 4, 5], address the

so called Video-to-Video (V2V) face recognition problem,

in which query video sequences are matched against a set

of target video sequences.

In real-world applications, however, a more practical

scenario may be like this: the target set (or gallery) contains

still images which are usually collected by a high quali-

ty digital camera under controlled environment, e.g., ID or

driver license photo, thus of high resolution, in frontal view,

Figure 1. Coupling Alignments with Recognition (CAR) frame-

work. In our method, we jointly perform geometric alignment,
recognition and quality alignment in a close loop to estimate the

alignment parameters T , the identity labels L and the selecting

confidences C for a video face sequence. Note that, all the face

images in the top, left and bottom lines are from the same video.

with normal lighting and neutral expression. In contrast, the

query (or probes) can be a video clip, which is taken under

unconstrained environment by video surveillance cameras,

thus usually of low image quality, such as low resolution,

poor lighting, non-frontal poses, image blur and even se-

rious misalignment. To differentiate it from the V2V face

recognition problem, this scenario is specifically called the

Still-to-Video (S2V) face recognition problem [6, 7].

To our best knowledge, only a few works [6, 7, 8]

have studied the S2V face recognition problem. Most of

them learned the relationship between the still images and

video frames but did not directly handle bad quality frames,
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which very likely make the recognition perform badly. To

deal with this problem, another kind of methods such as

[9] is to first select the best quality frames and then inte-

grate the recognition results of the selected frames. In this

paper, we call the task of selecting good quality frames,

with the most similar quality to that of still images, as

quality alignment. As illustrated in the left part of Fig.1,

the frames in the red box can be selected to match against

the target faces, as these faces are in near frontal view. But,

how to achieve accurate quality alignment forms the first

challenge to attack for S2V face recognition scenario.

The second big challenge in S2V scenarios is the an-

noying geometric misalignment problem, which can lead

to severe performance degradation [10]. Specifically, the

problem arises because the faces taken from video can hard-

ly be geometrically aligned accurately by existing methods

(e.g., Active Shape Model (ASM) [11], Active Appearance

Model (AAM) [12]), as the faces are generally of low res-

olution, probably with motion blurring and often taken un-

der non-ideal lighting conditions. Furthermore, it is worth

pointing out that here the “misalignment” means not only

the mutual misalignment of the video frames but also their

joint misalignment with the target faces. As an example,

due to geometric misalignments, all the input video faces

in Fig.1 are incorrectly identified by traditional recognition

systems such as sparse representation-based classification

(SRC) [13] etc. We call this alignment task geometric align-
ment, in contrast to the quality alignment mentioned above.

It is also worth noticing that the above two alignment

problems are related. For example, intuitively, it is not

necessary for us to geometrically align the target faces with

those frame not selected by the quality aligning. On the con-

trary, the quality aligning results can be affected by the ge-

ometric (mis)alignment. Therefore, these two aligning pro-

cess should be coupled in some way. Furthermore, it is clear

that the above two types of alignments can heavily affect

the recognition results. It has been well accepted that high-

ly accurate recognition would be even impossible without

precise alignment. However, the other side of the coin, i.e.,

correct recognition can feasibly lead to more accurate align-

ments, has been long neglected. In other words, alignment

should not only simply precede recognition, but should also

benefit from recognition. To put it in another way, the two

kinds of alignments and recognition should be coupled to-

gether in a loop.

With above belief in mind, in this paper, we pro-

pose Coupling Alignments and Recognition (CAR) method

which tightly couples the above two alignment tasks with

recognition task, thus making them benefit each other in a

unified loop, as shown in Fig.1. Specifically, we assume

that if the faces in a video are accurately aligned with well-

aligned gallery faces, they can be well represented as sparse

linear combinations of the gallery faces with the same iden-

tity. This can connect and improve both of geometric align-
ment and recognition by simultaneously aligning and seek-

ing sparse representations of video faces over gallery still

faces. With better alignments and sparse representations,

our proposed quality alignment can cluster and weight dif-

ferent quality frames more accurately. In addition, we also

adopt low-rank prior that if video faces are in mild varia-

tions, a proper low-rank structure will exist. By incorpo-

rating the low-rank prior, each cluster of the same quality

faces obtained by quality alignment can be jointly aligned

and consistently represented as sparse linear combinations

of gallery set, which can backward promote both geomet-
ric alignment and recognition. Consequently, in this close

loop, our method iteratively aligns the video faces, identi-

fies them and selects good frames, which can improve the

three tasks mutually and finally corrects the initial possibly

erroneous recognition decision.

The rest of the paper is organized as follows. Section

2 briefly reviews the related work. Section 3 details the

proposed Coupling Alignments with Recognition (CAR)

method for S2V face recognition. Section 4 presents our

comprehensive experimental results on YouTube-S2V and

COX-S2V datasets, followed by conclusions in Section 5.

2. Related Work
In this section,we briefly introduce the sparse representa-

tion for alignment and the low-rank representation for sub-

space segmentation.

2.1. Robust Alignment by Sparse Representation

Designed for still images, Robust Alignment by Sparse

Representation (RASR) [10] simultaneously optimizes the

alignment parameters and the sparse representation coeffi-

cients. Specifically, suppose that y is the probe face image

which is misaligned and A = [a1, a2, . . . , ac] denotes the

training dictionary with c subjects. To make a more accu-

rate alignment, RASR assumes that the transformed image

has a sparse representation [13] over A:

min
α,τ,e

‖α‖1 + ‖e‖1, s.t. y ◦ τ = Aα+ e. (1)

where α is the sparse coefficient vector, τ is the transforma-

tion and e is the residual error.

Since the model of RASR is a non-convex optimization

problem, one of the difficulties is that it has many local min-

ima that correspond to aligning y to different subjects which

are not well-aligned. In this case, RASR turns to seek the

best alignment of the test face from subject to subject:

min
αi,τi,ei

‖ei‖1, s.t. y ◦ τi = Aiαi + ei. (2)

where Ai is the matrix associated with subject i, τi is the

transformation aligning y to subject i and ei is the residu-

al error of subject i in the transformation. Therefore, for
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a large-scale face database containing c subjects, Eq.(2)

needs to be solved c times, making RASR have a high time

consumption. To overcome this drawback, Misalignment-

Robust Representation method (MRR) [14] firstly aligns the

gallery images well offline and then directly solves its ob-

jective function in a global representation over the whole

gallery images without concerning local minima.

2.2. Robust Subspace Segmentation by Low-Rank
Representation

Low-Rank Representation (LRR) [15] effectively per-

forms subspace segmentation with low-rank prior. Specifi-

cally, a set of data vectors X = [X1, X2, . . . , Xc] are drawn

from a union of c subspaces {Si}ci=1, and Xi is the collec-

tion of ni data vectors drawn from the i-th subspace Si. As-

suming each subspace owns a low-rank structure, they used

the data X itself as the dictionary and find the lowest-rank

representation that can represent the data vectors as linear

combinations of the basis in the given dictionary:

min
Z
‖Z‖∗, s.t. X = XZ. (3)

where Z = [z1, z2, . . . , zn] is the coefficient matrix with

each zi being the representation of xi, ‖Z‖∗ denotes the

nuclear norm [16] of Z, i.e., the sum of the singular values

of the matrix.

3. Proposed Method
In this section, we present Coupling Alignments with

Recognition approach to jointly optimize three tasks—

geometrically aligning faces (geometric alignment), per-

forming recognition and selecting good quality frames

(quality alignment)—in a unified framework. In the end,

we also develop an efficient algorithm to solve it.

3.1. Formulation

The S2V face recognition problem matches low quality

facial video frames against high quality gallery still faces.

Let Y = [y1, y2, . . . , yn] be the misaligned probe video

faces, A = [A1, A2, . . . , Ac] be the gallery dictionary with c
subjects, where Ai represents the well-aligned gallery still

faces of the i-th subject. Formally, for the video faces Y ,

we want to estimate the alignment transformations T and

the identity labels L simultaneously by the following:

{T̂ , L̂} = argmin
T,L

‖Z‖1 +
c∑

i=1

‖BSi
‖∗ + ‖E‖1,

s.t. Y ◦ T = B + E, B = AZ,

Si = {j|Lj = i}, i = 1, 2, . . . , c, j = 1, 2, . . . , n.
(4)

where T = [τ1, τ2, . . . , τn] is the transformation matrix for

the video faces, Z = [z1, z2, . . . , zn] are the sparse repre-

sentation coefficient matrix of faces, Lj = argmink ‖yj ◦

τj − Akzjk‖2 is the identity label of face yj in recogni-

tion, Si is the segment of faces with the i-th identity in

recogntion, B’s columns contain the sparse representations

of video faces and E = [e1, e2, . . . , en] is a matrix of the

residual errors of video faces.

For joint geometric alignment and recognition, we adopt

the sparse representation prior that if the alignments of

video faces are accurate, they can be represented as good

linear combinations of well-aligned gallery still faces. So,

we need to seek an optimal set of deformations T for the

video sequence Y simultaneously with their sparse repre-

sentations over the gallery dictionary A. In this way, the

sparse representations over gallery set make faces from

video aligned with the gallery faces, thus geometrically

align them more accurately. Meanwhile, the aligned video

faces will obtain more accurate sparse representations in

terms of the entire gallery set.

Furthermore, both better geometric alignment and recog-

nition can facilitate quality alignment selecting good quali-

ty frames. Specifically, we assume that the video faces with

the same recognition identity are similar in appearance. Un-

der this assumption, video faces will be automatically clus-

tered into different segments (i.e., S1, S2, . . . , Sc) accord-

ing to the identities obtained by sparse representation-based

classifier. Additionally, different clusters of faces will be

weighted with different confidences, which are defined as:

CSi
=

|Si|∑
j=1,j∈Si

exp

(−‖ej‖1
σ2

)
(5)

where Si is calculated in Eq.(4), ej = yj ◦ τj − Azj ,

σ is empirically specified from the mean of ‖e‖1. Note

that, this novel frame selection can also work for all Sparse

Representation-based methods. With more accurate τj and

zj in the other two tasks, the reconstructed errors ej will up-

date the confidence CSi more accurately. Since the gallery

dictionary only contains frontal faces, the reconstructed er-

rors of faces in frontal cluster are often smaller than that of

non-frontal ones. As a result, with more accurate clustering

and weighting, quality alignment will select good quality

frames with higher confidences.

Besides, the three tasks are also simultaneously coupled

by low-rank prior, which assumes that since faces in one

video vary continuously, they should own a good low-rank

structure. When one video sequence has large inter-frame

differences, better low-rank structures will be obtained in

each of the individual clusters divided by quality alignment

task. In these different video segments, the sparse repre-

sentations of video faces are regularized by low-rank prior

respectively to achieve more consistent linear combinations

of gallery images and more accurate joint alignment of the

faces with gallery images. Specifically, in our algorithm,

we employ coarse-to-fine search strategy, which performs
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Algorithm 1 Main Algorithm of the CAR method

INPUT: Gallery data matrix A, probe video sequence data

matrix Y and initial transformation T of Y
1. WHILE not converged DO (outer loop)
2. compute Jacobian matrices w.r.t transformations:

Ji =
∂

∂ζ

(
vec(Ii ◦ ζ)

vec(‖Ii ◦ ζ‖2)
)∣∣∣∣

ζ=τi

, i = 1, . . . , n;

3. warp and normalize the images:

Y ◦ T =

[
vec(I1 ◦ τ1)

vec(‖I1 ◦ τ1‖2) , . . . ,
vec(In ◦ τn)

vec(‖In ◦ τn‖2)
]
;

4. set the segments at coarse search stage:

S1 = {1, . . . , n}, Si = φ, i = 2, . . . , c
5. solve the linearized convex optimization: (inner loop)

{T̂ , Ẑ} = argmin
T,Z

‖Z‖1 +
c∑

i=1

‖BSi
‖∗ + ‖E‖1,

s.t. Y ◦ T + JΔT = B + E, B = AZ;
6. update transformations:

T = T +ΔT ∗;
7. update segments at fine search stage:

Si = {j|i = argmin
k

‖yj ◦ τj −Akzjk‖2}.
8. END WHILE
9. Obtain the class label of probe video sequence with S2V

classification method.

OUTPUT: Class label of the probe video sequence.

low-rank regularization on whole video at the coarse search

stage and then conducts low-rank regularizations on differ-

ent clusters divided by the identities at the fine search stage.

More details will be described in subsection 3.2.

3.2. Optimization

The proposed model (4) involves nonlinearity problem

of the constraint Y ◦ T = B + E. Following recent

work [10], in this paper, we adopt the iterative lineariza-

tion scheme to solve the problem. After linearization, the

optimization is relaxed as a linearized convex optimization

problem, which can be efficiently resolved by Augmented

Lagrange Multiplier Method [17].

3.2.1 Iterative linearization

Due to the complicated dependence of Y ◦ T on the trans-

formations T , solving the nonlinearity of the constraint

Y ◦ T = B + E is difficult. Nonetheless, we can approx-

imate this constraint by linearizing about the current esti-

mate of T when the change in T is small. After introducing

the changes ΔT and the Jacobian J = ∂
∂T Y ◦ T with re-

spect to the transformation T , we write Y ◦ (T + ΔT ) ≈
Y ◦T +JΔT . Then, the nonlinearized optimization can be

approximated as the following linearized formulation:

{T̂ , L̂} = argmin
T,L

‖Z‖1 +
c∑

i=1

‖BSi‖∗ + ‖E‖1,

s.t. Y ◦ T + JΔT = B + E, B = AZ,

Si = {j|Lj = i}, i = 1, . . . , c, j = 1, . . . , n.
(6)

The complete optimization procedure is summarized as

Algorithm 1. In the input, the initial transformations of the

probe video sequence could be the similarity transforma-

tions according to the automatically detected locations of

eye centers. Steps from 1 to 8 are the outer loop, which iter-

atively linearizes the estimation of T and solves the convex

function in Eq.(6). Specifically, step 2 and 3 compute the Ja-

cobian matrices, warp and normalize the video faces. Step

4 sets only one segment (i.e., whole video sequence) when

coarse searching, which is in the first couple of iterations

of outer loop. Then step 5 conducts the inner loop, which

solves the convex programming detailed in the following

subsection. Next, we update the transformations at step 6.

The segments are updated at Step 7 when fine searching,

which is in remaining iterations of outer loop. Finally, we

obtain class label of the probe video with S2V classification

methods detailed in subsection 4.3.2.

3.2.2 Efficient Solution by Augmented Lagrange Mul-
tiplier Methods

In this work, we employ the Augmented Lagrange Multi-

plier (ALM) algorithm [17] to efficiently solve the convex

function at step 4 in Algorithm 1. The basic idea of the

ALM method is to search for a saddle point of the augment-

ed Lagrangian function instead of directly solving the origi-

nal constrained optimization problem. For our problem (6),

the augmented Lagrangian function is given by:

�u(B,E,ΔT,X) =
m∑
i

‖BSi
‖∗ + 〈X,h(B,E,ΔT )〉

+ λ‖E‖1 + μ

2
‖h(B,E,ΔT )‖2F

(7)

where h(B,E,ΔT ) = Y ◦ T + JΔT −B −E, X is a La-

grange multiplier matrix, μ is a positive scalar, 〈·〉 denotes

the matrix inner product, and ‖ · ‖F denotes the Frobenius

norm.

For appropriate choice of Lagrange multiplier matrix X
and sufficiently large constant μ, it can be shown that the

augmented Lagrangian function has the same minimizer as

the original constrained optimization problem [18]. To esti-

mate both the Lagrange multiplier and the optimal solution,

it is typical to iteratively minimize the Lagrangian function

approximately by minimizing the function against the three
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Algorithm 2 Algorithm of the CAR’s inner loop
INPUT: (B0, S, E0,ΔT 0, A)
1. WHILE not converged DO
2. Bk+1 = Y ◦ T + JΔT + 1

μkX
k − Ek;

3. Bk+1 = A(ATA+ λI)−1ATBk+1;
4. (Ui,Σi, Vi) = svd(Bk+1

Si
), i = 1, 2, . . . , c;

5. Bk+1
Si

= UiΓ 1

μk
[Σi]V

T
i , i = 1, 2, . . . , c;

6. Ek+1 = Γ λ

μk
[Y ◦ T + JΔT + 1

μk
Xk −Bk+1];

7. ΔT k+1 = J†(Bk+1 + Ek+1 − Y ◦ T − 1
μkX

k);

8. Xk+1 = Xk + μkh(Bk+1, Ek+1,ΔT k+1).
9. END WHILE
OUTPUT: Solution (Z∗, B∗, E∗,ΔT ∗) to problem (6).

unknowns B, E, T one at a time:

Bk+1 = argmin
B

�uk(B,E,ΔT,Xk)

Ek+1 = argmin
E

�uk(B,E,ΔT,Xk)

ΔT k+1 = argmin
ΔT

�uk(B,E,ΔT,Xk)

Xk+1 = Xk + μkh(Bk+1, Ek+1,ΔT k+1)

(8)

Since each step of the above iteration involves solving a

convex program, the problem can be solved efficiently by

a single step. To spell out of the solutions, let Γα[x] =
sign(x)·max{|x|−α, 0} be the soft-thresholding or shrink-
age operator for scalars, where α ≥ 0. Using the shrinkage

operator, we can rewrite the solution to each of (8) at steps

2-8 of Algorithm 2. Following [19], step 3 calculates the

collaborative representations of video faces over dictionary.

The svd(·) at step 4 denotes the Singular Value Decompo-

sition operator, and J† at step 7 denotes the Moore-Penrose

pseudoinverse of J . In our experiment, the algorithm al-

ways converges to the optimal solution to the problem (6),

and does so significantly faster than other alternative convex

optimization methods.

4. Experiments
In this section, we present extensive experiments to

demonstrate the effectiveness of our proposed Coupling

Alignments with Recognition (CAR) algorithm in terms of

both alignment accuracy and recognition performance. In

this work, we conduct evaluations on two S2V datasets:

YouTube-S2V collected from the YouTubeDB [20] and

COX-S2V [7], which are detailed in following subsection.

For alignment, we compare our approach with one of the

state-of-the-art blind joint alignment algorithm RASL [21].

Besides, the alignment results of recently proposed simulta-

neous alignment and recognition method MRR [10] is also

shown. For S2V recognition, we compare our CAR algo-

rithm with the following methods: (1)SRC/CRC: directly

input the original data into SRC algorithm [13] or CRC al-

gorithm [19]; (3)A-SRC/A-CRC: feed the data with align-

ment of RASL into SRC or CRC; (5)MRR: jointly aligns

and identifies the video faces frame by frame.

4.1. Evaluation Datasets

The YouTube-S2V dataset is collected by us from the

YouTube Faces DB [20], in which the videos are down-

loaded from YouTube. To design a S2V scenario, we se-

lect the videos of 100 different subjects from it while the

still images of these subjects are collected by Google Im-

age Search. As it is not easy to collect more than one high

quality frontal face images for ALL the subjects, to keep

uniform for all the subjects, we included only 1 frontal face

image for each person in the gallery, as in COX-S2V [7].

For evaluation of S2V face recognition, we design an un-

supervised scenario, which uses the still images for gallery

and the videos for probe without any training set.

The COX-S2V [7] dataset contains 1,000 subjects, with

each subject 1 high quality photo and 4 video clips cap-

tured by normal camcorders. The four kinds of test video

sequences are in different qualities: Both video1 and video3

sequence contain low resolution faces (around 16 × 20)

while the faces in video2 and video4 are of relatively higher

resolution (around 48 × 60); The face poses in video1 and

video2 are of nearly-controlled while the poses in video3

and video4 are unconstrained. In the protocol, the images

and videos of 300 persons are used for training and the rest

700 person’s corresponding data are used for testing. In the

test, the still images are enrolled in the gallery while the

video sequences are contained in the probe. To design an

unsupervised case on COX-S2V, we also conduct experi-

ments on it without the training set.

4.2. Experimental Settings

In our experiments, a commercial face detection SDK

OKAO1 was employed to detect faces and locate eyes in

both still images and videos. For the YouTube-S2V dataset,

the size of the normalized face image is set to 48× 60, and

the coordinates of the eye centers are (12, 27) and (36, 27)
respectively. For the COX-S2V dataset, the size of the nor-

malized face image is set to 96 × 120, and the coordinates

of eye centers are set to (24, 54) and (72, 54) respectively.

The methods RASL (in A-SRC, A-CRC) and MRR are

performed using codes from the original authors. As the

original work of RASL, the method’s default parameters

are used in our experiments. The initial transformation of

each face image is calculated according to the automatical-

ly detected eye center positions and the type of transfor-

mation in RASL is the similarity transformation, which is

also used in both MRR method and our method CAR. For

MRR algorithm, we use the first η columns of U and set

1 http://www.omron.com/r d/technavi/vision/okao/detection.html
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Figure 2. Rows from top to bottom show the alignment and identi-

fication results of SRC(original faces), A-SRC(RASL), MRR and

CAR respectively on one video sequence from YouTube-S2V. The

tick indicates the face is correctly identified, and the red box indi-

cates the face frame is selected in quality alignment.

Figure 3. Gallery faces and average faces from videos before

and after alignment. SRC shows the average of original video

faces from a face detector using its quality alignment result; and

A-SRC(RASL), MRR, CAR show the average faces after their re-

spective alignments.

η = 25. The regularized parameter λ in sparse represen-

tation and collaborative representation is set to 3 and 0.05

respectively. The other parameters of MRR are setted as

follows: η1 = 25, η2 = 40, S = 25. The iteration num-

ber of seeking the optimal solution in RASL, MRR is set to

25. The iteration number of coarse searching in CAR is 13,

while that of fine searching is 12.

4.3. Evaluation results on S2V alignment and recog-
nition

In our CAR algorithm, the tasks of alignments and

recognition are tightly coupled. However, to facilitate the

comparison with conventional alignment and recognition

approaches respectively, we will present the results for

alignments and recognition respectively in the subsection.

4.3.1 Evaluation of Alignment Accuracy

We illustrate results on the YouTube-S2V database to

evaluate the alignment accuracies of RASL, MRR and our

method CAR. Before alignment, we obtain an initial esti-

mate of the transformation in each image using the off-the-

shelf face detector. As a blind alignment method, original

RASL jointly aligns the video faces without considering the

gallery still faces. To align with the gallery images, in this

experiment, RASL is used to add all the gallery still im-

ages into the video sequence and jointly align the still faces

and video faces together. As a simultaneous alignment and

recognition method designed for still images, we use MRR

to align the video faces frame by frame in each video clip.

In contrast, our algorithm CAR jointly align the video faces

mutually with the gallery still images.

Fig.2 shows alignment and recognition results of one

video sequence with 13 selected frames from the YouTube-

S2V dataset. As shown in Fig.2, the misalignments of input

video faces are very serious: the eyes of most faces are not

in horizontality, the face scales are not the same, and most

ones do not have the whole mouth. Although RASL joint-

ly aligns the eyes of video faces in the same horizontality,

most aligned faces have partial mouth. MRR aligns sever-

al video faces accurately, but it still makes some faces in

a wrong scale, such as f2,f3,f5. In contrast, except faces

f11-f13 owning exaggerated facial expressions, our method

CAR aligns most of faces including f2,f3,f5 to the gallery

still image. In addition, faces in red box are the selected

ones in quality alignment. The results manifest our method

CAR can also achieves more accurate quality alignment.

Since there is no ground truth for this dataset, we ver-

ify performances of involved method visually by plotting

the average faces before and after geometric alignment and

quality alignment. Fig.3 shows the gallery faces and the

mean faces of videos from 10 subjects in YouTube-S2V. For

example, in Fig.3, the first average face of SRC is the mean

of the faces with red box (i.e., f1,f2,f4,f5) in SRC row of

Fig.2. Note that the average faces after CAR’s alignment

are more clear and aligned with gallery images more accu-

rately than those of other methods. This result suggests that

our method CAR achieves the improved geometric align-

ment in unconstrained S2V scenario.

This can be explained by that, via jointly exploiting the

sparse representation prior and low-rank prior, our method

demonstrates much more robustness in aligning the video

faces. On one hand, the sparse representation over gallery

dictionary makes the video faces aligned to the still images,

which are well-aligned. But, in the S2V case, several faces

are not robustly aligned only with the sparse representation.

Consequently, on the other hand, the low-rank prior facil-

itates those more easily aligned video faces to correct the

alignments of the others in the same video sequence. For

example, as shown in Fig.2, the bad aligned faces f2,f3,f5
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Table 1. Unsupervised S2V face recognition results (rank-1 recognition rate (%)) on YouTube-S2V(Y) and COX-S2V(Ci) datasets.

Methods
Min Voting C-Voting

Y C1 C2 C3 C4 Y C1 C2 C3 C4 Y C1 C2 C3 C4

SRC 8.62 15.43 40.57 1.86 14.57 8.62 14.29 38.43 2.00 14.57 10.78 15.57 42.29 2.86 18.71

CRC 7.76 14.86 41.00 3.00 14.43 8.62 14.57 38.86 3.86 17.71 10.34 14.43 43.57 4.14 19.71

A-SRC 19.82 20.57 37.71 4.14 16.43 23.27 21.71 37.00 4.00 17.14 26.29 22.14 39.00 4.57 18.29

A-CRC 20.26 16.43 39.86 2.57 16.43 25.00 18.71 41.14 4.14 18.71 29.74 19.43 41.29 4.00 19.43

MRR 21.55 25.71 42.71 3.71 12.71 25.43 28.00 43.71 4.57 13.29 28.45 26.43 44.14 3.57 13.57

CAR 24.57 38.57 52.57 5.43 21.00 30.17 42.14 54.14 9.14 25.14 36.21 43.42 55.00 10.71 28.86

in MRR are correctly aligned by f1,f4 in CAR. Due to bet-

ter geometric alignment of CAR, the faces f2,f3,f5 are also

identified correctly.

4.3.2 Evaluation of S2V Face Recognition

The S2V recognition involves defining the similarity be-

tween video sequence and gallery images and determin-

ing which strategy is used for classification. In this ex-

periment, we adopt the image-set based similarity Djk =
‖yj ◦ τj − Akzjk‖2, which is used in SRC [13], and the

following three different strategies for S2V classification:

• Min: idY = argmink Djk, where j = 1, . . . , n;

• Voting: idY = argmaxi ‖Si‖, where Si = {j|i =
argmink Djk};

• C-Voting: voting strategy with confidences obtained

by quality alignment: idY = argmaxi CSi
, where

CSi is defined in Eq.(5), we empirically set σ = 0.4
according to the mean of error ‖e‖1.

For S2V face recognition on YouTube-S2V and COX-

S2V, we first evaluate the comparative methods in unsuper-

vised case, where additional training set are not used for

obtaining the discriminant information. Table 1 summa-

rizes the S2V recognition results on the two S2V datasets.

The columns of Y and Ci represent the testing on YouTube-

S2V and video i (as detailed in section 4.1) of COX-S2V

respectively. Before comparing involved methods, we need

to compare the three different classification strategies. The

experimental results demonstrate that the C-Voting is bet-

ter than other two strategies for S2V recognition. This is

because that the C-Voting with quality alignment is more

suitable for S2V scenario. In the CAR’s result of Fig.2, the

f1-f5 are identified as a right ID while f6-f11 are recognized

as a wrong ID. In this case, although the Voting will give

the wrong final identification, the C-Voting will identify the

video correctly by favoring f1-f5 with higher confidences.

Then, we conclude the results of different methods: Due

to the blind alignment preprocess of RASL, A-SRC and

A-CRC performs slightly better than the original methods

Table 2. Supervised S2V face recognition results (rank-1 recogni-

tion rate (%)) on COX-S2V (Ci) dataset.

Methods C1 C2 C3 C4

LDA 47.57 68.28 20.00 49.58

PaLo 52.43 73.00 22.00 56.71

SRC 55.43 71.14 19.86 52.43

CRC 58.57 68.51 22.14 51.29

A-SRC 40.86 63.57 11.00 40.43

A-CRC 39.43 64.71 12.29 40.86

MRR 64.43 68.71 26.14 53.29

CAR 72.57 77.29 35.43 61.43

SRC and CRC. By simultaneously aligning and recogniz-

ing faces frame by frame, MRR works better than RASL.

In contrast, our CAR algorithm outperforms the other meth-

ods remarkably. This is because the proposed method CAR

improves the recognition by both more accurate geometric

alignment and better frame selections in quality alignment:

the geometric alignment generates better sparse represen-

tations over gallery set by jointly aligning the video faces

more accurately. In different clusters divided by quality

alignment, low-rank regularizations are conducted on the

sparse representations of video faces to make the sparse

representation-based classification more robust.

In the supervised experiment, we use the additional train-

ing set of COX-S2V to train LDA model to extract discrim-

inant features for both still images and video frames. In

training, for A-SRC, A-CRC, MRR and CAR, the train-

ing images are all aligned in advance by the corresponding

alignment methods. In test stage, we still use gray feature

before the identification and LDA feature at the final recog-

nition. Due to space limitation and in order to fairly com-

pare with the benchmark work [7] on COX-S2V, we use

Min strategy in the supervised scenario. As shown in Table

2, comparing with the original method LDA and the method

PaLo [7] on COX-S2V, our method CAR significantly out-

perform them with average gains of 15.32% and 10.65%

respectively. The superiority of CAR demonstrates that the

face misalignment in videos is indeed one of the most im-

portance challenges in S2V scenario. Besides, CAR again

32953302



performs much better than other methods in the supervised

S2V face recognition. This supervised case also suggests

that the idea coupling alignments and recognition is utterly

desirable for S2V face recognition.

4.4. Complexity analysis

The main time complexity of of our method is solv-

ing the linearized convex optimization (i.e., Equ. (7))

by Augmented Lagrange Multiplier (ALM). Our ALM

solver mainly contains SVD operation, whose complexity

is O(m2n + n3), where m is the dimension of feature and

n is the number of video frames. As m � n when n is

reduced to the number of frames in one cluster at the fine-

searching steps, the complexity is O(m2).
Here we take the experiment on YouTube-S2V dataset

as example: on a 2.93 GHz Intel(R) Core(TM) i7 CPU ma-

chine, the MATLAB implementation of our approach re-

quires about 160 seconds to simultaneously align and iden-

tify a video sequence containing about 157 frames. This

speed is similar to that of MRR (about 144 seconds), which

to our best knowledge is the most related and by far the

fastest method (about 72 times speedup to RASR [20]) solv-

ing the problem addressed in this paper.

5. Conclusion
In this paper, we first studied the mutual influence among

geometric alignment, quality alignment and recognition in

the S2V face recognition scenario. The mutual promotions

among the three tasks inspired us to propose a method Cou-

pling Alignments and Recognition (CAR), which tightly

combines the three tasks by making full use of sparse rep-

resentation prior and low-rank prior. As far as we know, the

proposed method is the first attempt to jointly perform and

simultaneously improve the above three tasks in a unified

framework for the S2V application. By jointly considering

the three interactive tasks, our algorithm has demonstrat-

ed significant superiority over those methods treating them

separately through extensive experiments on two challeng-

ing datasets YouTube-S2V and COX-S2V.
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