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Abstract

In this paper, we propose a multi-scale topological fea-
ture representation for automatic analysis of hand pos-
ture. Such topological features have the advantage of be-
ing posture-dependent while being preserved under certain
variations of illumination, rotation, personal dependency,
etc. Our method studies the topology of the holes between
the hand region and its convex hull. Inspired by the princi-
ple of Persistent Homology, which is the theory of computa-
tional topology for topological feature analysis over multi-
ple scales, we construct the multi-scale Betti Numbers ma-
trix (MSBNM) for the topological feature representation. In
our experiments, we used 12 different hand postures and
compared our features with three popular features (HOG,
MCT, and Shape Context) on different data sets. In addition
to hand postures, we also extend the feature representations
to arm postures. The results demonstrate the feasibility and
reliability of the proposed method.

1. Introduction
Hand gesture is one of the most commonly used signals

for human communication, expression, and demonstration

[14]. The complex structure of hands and the large number

of hand variations in various scales, occlusions, and rota-

tions make it a very challenging task for automatic analysis.

In general, hand gestures express certain information by

either dynamic movement [22, 24] (i.e., temporal hand ges-

tures) or static shape or configuration (i.e., static hand pos-

tures) [14], and can involve one hand or two hands [16]. In

this paper, we focus on the static hand postures of a single

hand.

Various approaches have been previously applied for the

feature representations and recognition of hand postures.

These features can be based upon shape, e.g. Shape Con-

text [2] and Chamfer Distance [26]; texture, e.g. Modified

Census Transform (MCT) [10]; or both shape and texture,

e.g. Histogram of Oriented Gradient (HOG) [3, 17].

In shape-based approaches, hand postures are recognized

by matching the hand contour to the training samples or to

a model built upon the training samples. The 2D hand mod-

els [13] are B-spline curves constructed by control points

which are matched to the hand region by using partitioned

sampling algorithms. However, a single 2D model is lim-

ited to describe one or two postures [13]. The 3D mod-

els [5, 18] are articulated to model the knuckles, finger tips

and the wrist. A Kalman Filter [18] is used to match the

hand image to the 3D models. However, Kalman Filter

is restricted to cases with known backgrounds [15]. Some

methods rely on the robust tracking of feature points such as

knuckles, and may require manual correction to these points

[5]. Oikonomidis successfully used Particle Swarm Opti-

mization to track 2 interacting hands, but the tracking frame

rate is 4Hz, and a set of RGB-D camera is required [16].

A common advantage of the shape based approaches is that

many of these features are invariant to rotation and scaling

[3]. In contrast, the approaches with texture included are

more robust when the background is cluttered [3]. How-

ever, texture features are not invariant to rotations, which

restrains the range of hand movement. It is still very chal-

lenging to robustly describe and recognize the variety and

individuality of hand features. Due to the complexity of

hand postures and the desire of real-time applications, peo-

ple either fuse multiple features [25] or develop new fea-

tures. In this paper, we develop a novel multi-scale topolog-

ical feature representation inspired by Persistent Homology.

Persistent Homology is a method for analysis of homol-

ogy at different scales [27]. It is an algebraic topological

invariant that has been used as a mathematical tool for al-

gorithmically analyzing topological features of shapes or

functions, and has been previously applied to the problem

of shape analysis and retrieval [4, 7]. However, those shapes

are quite more distinguishable than various hand postures.

Moreover, the topological similarity of hand postures makes

it difficult to distinguish various hand postures only based

on the topology of hand shapes.

In this work, we consider the complementary holes be-

tween the hand region and its convex hull as topological

spaces. We show that by examining these spaces, highly

discerning topological features are obtained. This finding

leads us to explore a new feature representation of hand
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Figure 1. The complementary holes (colored regions) between the

hand postures and their convex hulls.

postures, which lies in the hand’s complementary holes.

Specifically, we track the existence of the holes’ topolog-

ical features as the scale changes. We propose a multi-scale

topological feature representation for hand posture analysis

inspired by the principle of Persistent Homology. We study

the holes between the hand region and its convex hull and

distinguish different hand postures by the unique topology

of these holes. The unique multi-scale Betti Numbers ma-

trix (MSBNM) is computed for hand posture representation,

characterization, and classification.

2. Topological Feature Representation of Hand
Posture

2.1. Representing hand postures using complemen-
tary holes

Topological features rely on the number of parts (con-

nected components) and holes of an object. Those features

are distinguishable for different objects while preserved to

distortions of the same object.

Since many hand postures yield the same topology as

they do not show any holes, we propose to “create” topo-

logical holes from hand images through the construction of

their convex hulls. The convex hull of a given hand pos-

ture is the minimal convex set containing the hand region

and can be derived by a convex polygon. Due to the typi-

cal concave shape of the hand region, non-trivial holes are

observed between the hand region and its convex hull. We

call these holes the complementary holes of a hand posture.

Figure 1 shows two examples of different postures and their

complementary holes. Using the complementary holes to

describe hand postures has the following advantages. First,

it is observed that each hand posture produces unique sets

of complementary holes. Second, the complementary holes

are independent to the illuminations and rotations. Third, it

is straightforward to quantify each set of the complementary

holes using the topological features.

Although each hand posture produces unique sets of

complementary holes, simply counting the number of holes

is not sufficient to distinguish different postures, nor reli-

able enough to tolerate variances of a single posture. This

is because the number of holes of a posture is changeable

due to noise in the hand images or variations of viewing

angles. Ambiguity may be caused by the same number of

holes from different postures. Multi-scale analysis for shape

description could be a remedy to alleviate this problem [4].

Inspired by the Persistent Homology, we propose a multi-

scale topological analysis to address this issue.

2.2. Persistent Homology and Betti Numbers

Homology is a mathematical tool used to algorithmically

analyze topological features of shapes. In other words, it is

an algebraic procedure for counting “parts”, “holes”, and

“voids” of various types [8]. Betti numbers [27] is used to

quantify the topological features: In a topological space, B0

is defined by the number of parts (connected components)

of the space, and B1 is defined by the number of holes.

Persistent Homology is the analysis of homology at dif-

ferent scales. A homology group K can be connected by a

series of homomorphism (Hi, i = 1, 2, ..s) processes with

scale 1 to s:

H1(K)→ H2(K)→ ...→ Hs(K)→ 0 (1)

In Persistent Homology, the scale is associated with the

connectivity of the points. Two points are considered as

connected if the distance between them is smaller than a

threshold [6, 27], and the scale is defined by the threshold.

So this scaling process will change the connectivity of the

points, therefore the persistence of the holes can change,

and so can the topological features. Because topological

features come in all scale-levels and can be nested or in

more complicated relationships, observing the homology

classes as to how they change as the scale changes [6] will

help us to exploit detailed features of hand postures.

To serve our purpose of hand posture representation, the

number of holes with respect to sequential scales is adopted

for Betti number representation. If we group the hand shape

and its convex hull as one topological space, we can analyze

the number of holes (B1) of this space. Moreover, if we

consider each hole as a topological space, we can analyze

the number of parts (B0) of the hole’s space (i.e. a hole

may split to multiple holes) as the scale changes. Such a

representation is not only taking account of the number of

holes but also the life-span of each hole. Details about the

feature representation of hand postures are illustrated in the

following sections.

2.3. Feature representation by MSBNM

Persistent Homology can detect holes in a coordinate-

free system [27]. In order to instantiate its application on a

Cartesian coordinate system, which is the 2D domain on

which the hand images are represented, we simplify the

computation of Persistent Homology with image process-

ing tools to locate holes in 2D images.

In addition, the definition of scaling in Persistent Ho-

mology allows us to take advantage of the computational

simplicity of the morphological operations to “connect” dif-

ferent components and represent different scales. In other

19291929



Figure 2. Construction of the B0 sequence, and B0 sequence being

part of multi-scale Betti Numbers matrix

Figure 3. Construction of multi-scale Betti Numbers matrix

words, dilating the image is a way of implementing the

scaling process used in Persistent Homology computations.

Multiple morphological dilations of the hand region leads

to multiple scales associated with the homology (i.e., 2D

holes) groups of the hand image. Since we consider each

hole as a topological space, applying the dilation operation

to the convex hull region of a hand is equivalent to apply-

ing an erosion operation O to the hole regions of the hand

within the convex hull. This operation is applied repeatedly

until the holes are completely eroded.

O1(K)→ O2(K)→ ...→ Os(K)→ 0 (2)

In our proposed approach, we track the topology of each

hole as the scale changes. At the original scale, each hole is

shown as an individual region of connected component and

is considered as a topological space. As the scale changes,

the hole can stay, split, or vanish. The existence (e.g., life-

span) of each hole is described using a B0 sequence. If the

hole stays at one scale, its B0 value is 1. If it splits, its B0

value is increased accordingly. If it vanishes, its B0 value

is 0. Figure 2 illustrates the construction of B0 sequence as

the scale changes.

A B0 sequence is constructed for each hole in the con-

vex hull of the hand. We use the multi-scale Betti Numbers

matrix (MSBNM) as the feature representation to classify

different hand postures. The multi-scale Betti Numbers are

defined as a matrix as shown in Figure 2, where each col-

umn represents the B0 sequence (connected components)

of each hole along with the scales at which it is found, as

we consider each hole as a topological space. Each row is

associated with a certain scale. Figure 3 illustrates the con-

struction of the multi-scale Betti Number matrix. Notice

that the sum of each row is the total number of holes at each

individual scale, which is also the hand’s B1 value of the

topological space within its convex hull.

By computing multi-scale Betti Numbers (MSBNM), we

are capable to neutralize the effect of noise. If a hole is

short-lived, it is likely just caused by noise. However, if a

Figure 4. Examples of multi-scale Betti Numbers matrices of dif-

ferent hand postures. Each column of the matrix is the B0 se-

quence of the corresponding hole highlighted by the same color.

Figure 5. Hole correspondence.

hole is preserved at very large scales, the hole is significant

and should be considered as a key feature of the hand pos-

ture. Moreover, if a hole can split into multiple holes, it

must have a special shape (for example, like a dumbbell).

As a result, MSBNM partially reflects the size of each

hole, improving the distinguishability of different postures

with a same topology.

Figure 4 shows MSBNM of three hand postures from the

dorsal view. The holes are highlighted with different colors.

Ideally, the scale should change continuously, but we only

compute a fixed number of scales to reduce computation re-

dundancy. After intense experiments, we chose 7 scales,

including the original scale. In short, this new feature rep-

resentation is used to construct a unique feature matrix to

classify certain hand postures. Since we only choose 7 in-

stead of infinite scales, some large holes could stay in all

scales.

2.4. Acquisition of MSBNM

In this subsection, we address the issues how to construct

scale and rotation invariant multi-scale Betti Numbers ma-

trix (MSBNM), and how to maintain the consistent dimen-

sion of MSBNM, followed by the steps of the acquisition of

MSBNM.

As previously mentioned, morphological erosion is em-

ployed to represent different scales. In order to build a set of

scale-invariant Betti Numbers, the size of the erosion struc-

tures must also be adaptive to the size of the hand region.

We bound the hand region using an ellipse E, and use a

smaller ellipse which is 1:32 (by dimension, not area) of

E as the erosion structure. This parameter yields the best

performance in our experiments.

Since a hand can rotate to arbitrary angle, we need to es-

tablish a correspondence to construct rotation invariant MS-

BNM. The hole with longest life-span is determined as the

reference hole. This hole is the most significant and reli-

able hole. Then, the rest of the holes are sorted in counter-
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Figure 6. Twelve different hand postures

clockwise order with respect to the center of the hand, fol-

lowing the reference hole. Figure 5 shows an example

where the holes of two samples with the same posture were

matched.

Based on our observation, hand postures can only gener-

ate a finite number of hole regions. Thus, for hand posture

analysis, we only count at most 7 largest holes, resulting in

7 columns of MSBNM. In cases where some postures pro-

duce less than 7 holes, we add padding columns of 0s to the

MSBNM to make the matrix dimensions consistent.

The acquisition of MSBNM follows six steps:

(1) Compute the convex hull of the hand region.

(2) Consider the hand region and its convex hull as one

topological space and locate all holes inside the convex hull.

It is optional to use a threshold and discard the tiny holes

which are caused by noise.

(3) Enclose the hand region using an ellipse E, and use

a smaller ellipse which is 1
32 of E as the erosion structure.

(4) Consider each hole as a topological space, and apply

the morphological erosion operations iteratively 6 times on

the region to generate multiple scale representations. Then,

we record the B0 (connected components) sequence of each

individual hole space along with each step of the erosion

operation.

(5) Take the longest lived hole as the reference hole, and

put its B0 sequence into the first column of MSBNM.

(6) Sort the remaining holes in counter-clockwise order

with the reference hole first. Put their B0 numbers into the

corresponding columns of MSBNM. Padding columns of 0s

are added if the matrix has less than 7 columns.

Then, the MSBNM is to be used as the input of a classi-

fier for hand posture classification.

3. Experiments on Hand Posture Recognition

We created a database of 12 different types of hand pos-

tures with 100 samples of each posture and 1,200 samples

in total. The 12 postures are shown in Figure 6. In addition,

we have also tested our approach on another public hand

posture database [20].

Before the hand posture is described by MSBNM, the

region of the hand must be detected and segmented. There

exist different approaches to track and extract hand regions

Figure 7. The segmentation of hand region

Figure 8. Samples of our dataset with convex hull detected.

from images [11, 21]. Some researchers have also devel-

oped reliable hand tracking system with the assistance of

color gloves [23]. Since our focus is to evaluate the effi-

cacy of the new hand feature representation, we use a sim-

ple yet relatively reliable method [9], which combines back-

ground subtraction, skin region segmentation, and the AAM

method to detect the hand region. Further to ensure a sta-

ble background, a regular color camera is placed above the

hand. Figure 7 shows the segmentation of hand region.

After segmentation of the hand region, the program com-

putes the MSBNM of the hand posture at each frame. In

this experiment, all samples were collected from the dorsal

view under the same illumination. The yaw rotation range

of the hand is [0◦, 90◦], and the pitching/rolling of the hand

is [−30◦, 30◦]. The resolution of the image is 720 × 480,

while a hand region is approximately 150 × 150. Twelve

samples of our dataset are shown in Figure 8.

The performance of our MSBNM approach has been

compared to existing feature types, including HOG [17],

MCT [10], and Shape Context [2]. Note that an alterna-

tive approach based on the Chamfer Distance [19] is not in-

cluded for comparison as it has been proven rotation/scale

dependent [19] and is very time consuming [1] for practical

applications.

For MSBNM, MCT, and HOG, we train each of them on

3 different classifiers, Decision Tree (DT), Bayesian Net-

work (BN), and Classification via Regression (CR). The

performance of each feature is represented by the optimum

accuracy across all classifiers. For example, when using

MSBNM, Decision Tree yields the highest accuracy, so

we use this accuracy to represent the performance of MS-

BNM. The performance of Shape Context is evaluated us-

ing the Nearest-Neighbor based classifier suggested in its

references [2]. In our experiments, we used 5-fold cross-

validation on our data set (1200 samples). The accuracies

of each feature representation are shown in Table 1.

The confusion matrix of the classification by Decision

Tree using MSBNM is shown in Table 2.
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Approaches DT BN CR Performance
MSBNM (ours) 94.8 85.7 94.3 94.8
MCT [10] 83.4 88.6 88.6 88.6
HOG [17] 86.6 82.6 90.1 90.1
Shape Context [2] N/A N/A N/A 85.0

Table 1. Accuracy comparison of each feature representation, eval-

uated using cross-validation on our dataset. Shape Context is eval-

uated by the classifier in [2].

a b c d e f g h i j k l

100 0 0 0 0 0 0 0 0 0 0 0 a

0 98 0 0 0 0 2 0 0 0 0 0 b

0 0 93 0 0 0 0 0 1 0 0 6 c

0 0 0 93 0 0 0 0 3 4 0 0 d

0 0 0 0 98 0 0 0 0 0 1 1 e

0 1 0 0 0 96 0 0 1 0 2 0 f

0 0 0 0 0 0 100 0 0 0 0 0 g

0 3 2 0 0 0 0 81 0 0 0 14 h

0 0 0 0 1 2 0 0 97 0 0 0 i

0 0 0 1 0 0 1 1 0 92 2 3 j

0 0 0 1 2 0 0 0 0 1 93 3 k

0 0 2 0 0 0 0 0 0 1 0 97 l

Table 2. The confusion matrix (shown as percentages) of 12

classes, evaluated using cross-validation on our dataset. Each row

represents the samples of the same class.

Figure 9. Samples of Jochen’s dataset.

From Table 1, we can see our MSBNM approach outper-

forms HOG, MCT, and Shape Context.

Besides our own data set, we also tested on a dataset of

Jochen Triesch Static Hand Posture Database [20]. Since

the focus of this work is not on hand region segmentation,

we only used the data set with light background. We se-

lected 4 types of postures from their data set, which had

been included in our posture set as (a), (b), (c) and (h)

shown in Figure 6. As a result, 96 samples, collected from

24 different persons, were used for testing. The samples of

their postures are shown in Figure 9.

Since the hand images of Jochen’s dataset are taken from

palm view, where the textures are different from dorsal

view, we created a training set of 100 samples of each of the

12 hand postures (1200 in total) of the palm view from our

lab. The accuracies of classification of the Jochen’s dataset

are shown in Table 3.

The confusion matrix of the classification by Decision

Tree using multi-scale Betti Numbers is shown in Table 4.

From above tables, we can see that our MSBNM ap-

proach outperformed all of the other methods even when

we used our database for training and the Jochen’s dataset

for testing. It is observed that topological features are better

Approaches DT BN CR Performance
MSBNM (ours) 84.4 72.9 84.4 84.4
MCT [10] 25.0 25.0 25.0 25.0
HOG [17] 25.0 25.0 25.0 25.0
Shape Context [2] N/A N/A N/A 33.3

Table 3. Accuracy comparison of each feature representation,

trained on our dataset and tested on Jochen’s dataset.

a b c d e f g h i j k l

83 13 0 0 0 0 4 0 0 0 0 0 a

0 92 0 0 0 0 8 0 0 0 0 0 b

0 0 63 0 0 0 0 37 0 0 0 0 c

0 0 0 0 0 0 0 100 0 0 0 0 h

Table 4. The confusion matrix (shown as percentages) of 4 classes,

trained on our dataset and tested on Jochen’s dataset. Each row

represents the samples of the same class.

Figure 10. Performance curves with respect to different resolutions

(a) and different SNRs (b)

conserved than the texture and hand contour. The results

demonstrate that our approach is more robust than the com-

pared approaches in terms of the personal-independent test

for hand posture classification.

4. Performance Evaluation
In order to evaluate the robustness of our MSBNM ap-

proach, we conducted experiments for hand posture recog-

nition under various imaging conditions (e.g., different im-

age qualities, rotations, illuminations, etc.), and compared

it to the state of the art approaches (e.g., MCT, HOG, and

Shape Context).

4.1. Evaluation on various image resolutions

We evaluated the performance using hand images with

different resolutions. We conducted experiments on various

image resolutions, i.e., 720p, 640p, 512p, 480p, and 320p,

respectively. The performance (highest accuracy across dif-

ferent classifiers) at each resolution is plotted in Figure 10

(a).

As shown in Figure 10 (a), the performance of MSBNM

is relatively stable and superior to the other approaches from

the high resolution to the low resolution. It shows that

the proposed topological feature representation is more ro-

bust under various image resolutions than the compared ap-
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proaches.

4.2. Evaluation on degraded images with noise

We evaluated the performance using hand images with

noise. There are two types of degradations affecting the

hand postures recognition. The first one is the Gaussian

noise caused by the hardware. The second one is imperfect

or noisy segmentation of the hand region caused by uneven

illumination. In our experiments, we evaluated the perfor-

mance by adding random image degradations of both types

to our data set used in Section 3. We then compared our

approach to the other approaches. We controlled the SNR

of each image quality level, and plotted the performance
(highest accuracy across different classifiers) curve of each

approach regarding to the SNR, shown in Figure 10 (b).

In Figure 10 (b), the performance of our approach is su-

perior to MCT and Shape Context. It is also superior to

HOG unless the noise is increased dramatically (e.g. SNR

becomes lower than 10dB). MCT computes texture fea-

tures of a hand image, so it is deteriorated by the Gaussian

noise. The degradation of our approach and Shape Context

is caused by imperfect segmentation of the fingers due to

the presence of heavy noise.

4.3. Evaluation under cross illuminations

Knowing that illumination conditions can impact the per-

formance of hand posture recognition, we evaluated the pro-

posed MSBNM approach using a training set and a testing

set with different lighting conditions. We collected hand

posture samples under four different lighting conditions:

bright illumination, medium bright illumination, dark illu-

mination, and uneven illumination. Besides changes to the

pixel intensities, inconsistent illuminations may also cause

poor white balance and Gaussian noise from the camera.

Thus hand region segmentation may be poor and contain

errors due to the lower quality images and result in a degra-

dation in recognition performance.

In our experiments, under each illumination condition,

we collected 100 samples of each posture. The data set

consisted of 4,800 samples in total. Then, we performed

a 4-fold cross-validation, where each fold contained sam-

ples of one specific illumination condition. Note that the

data with three lighting conditions were used for training,

and the remaining data with a fourth lighting condition was

used for testing. Therefore the illumination condition in the

test set was different with those used in the training set. We

repeat different combinations using 4-fold cross-validation.

This experiment is referred to as cross illuminations and the

accuracies are shown in Table 5.

As shown in Table 5, the performance of our approach

is notably higher than the other approaches. MCT is based

on computations of pixel intensity values, which suffered a

significant degradation due to the poor lighting conditions

Approaches DT BN CR Performance
MSBNM (ours) 81.3 73.7 81.4 81.4
MCT [10] 31.4 30.6 37.0 37.0
HOG [17] 65.5 61.7 65.1 65.5
Shape Context [2] N/A N/A N/A 64.2

Table 5. Accuracy comparison under cross illuminations, wherein

the training set and testing set had different lighting conditions.

Shape Context is evaluated by the classifier in [2].

as compared to the Betti Numbers approach. HOG takes

both contour information and pixel intensity values, but still

suffers when both features are degraded. In contrast, MS-

BNM and Shape Context are not influenced heavily by the

pixel intensities, but was impacted due to the imperfect seg-

mentation of the hand image due to the poor image qual-

ity. However, using topological features, our MSBNM still

demonstrates better robustness than Shape Context.

4.4. Evaluation under cross poses on various rota-
tions

We evaluated the performance of MSBNM approach

when the training set and the testing set had different hand

rotations. In the first experiment, we evaluated the ro-

bustness of our approach against in-plane rotations (yaw).

The yaw rotation range was divided into 4 sectors: [0◦,

90◦], [90◦, 180◦], [180◦, 270◦], and [270◦, 360◦], and the

pitching/rolling of the hand was [−30◦, 30◦] in each of

the sectors above. We collected 100 samples of each pos-

ture within each rotation range, so the data set consists of

4,800 samples in total. Then, we performed a 4-fold cross-

validation, in which each fold contains samples of a corre-

sponding sector. The training set and the testing set were in

different rotation ranges. In other words, the hand poses in

the testing set do not appear in the training set. We refer to

this experiment as cross poses validation. The performance
(highest accuracy across different classifiers) is shown in

Table 6.

In the second and third experiment, we evaluated the

robustness of our approach against out-of-plane rotations

(pitch and roll). In the training set of 1200 samples, all

rotations are trivial. In the testing set of pitch, the pitch-

ing range of all 1200 test samples was [30◦, 45◦]. In the

testing set of roll, the rolling range of all 1200 test samples

was [−45◦, −30◦] ∪ [30◦, 45◦]. The performance (highest

accuracy across different classifiers) is shown in Table 6.

Approaches Cross pose Pitching Test Rolling Test

MSBNM (ours) 86.8 72.4 67.8
MCT [10] 34.1 22.0 20.7

HOG [17] 17.9 46.8 52.6

Shape Context [2] 79.0 58.0 58.8

Table 6. Performance comparison wherein the training set and test-

ing set had different rotation ranges.
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Figure 11. (a) Depth images; (b) the real-time application

From Table 6, we can observe that the performance of

MSBNM is significantly higher than the other three. Dif-

ferent rotation ranges influenced the representation of HOG

and MCT features. Although Shape Context is robust to

in-plane rotations, it is less robust to out-of-plane rotations

than MSBNM. This verifies that our feature representation

has much better rotational robustness.

4.5. Evaluation on a different modality

In this part, we performed the same experiment as the

first experiment described in Section 3, except the images

were captured using the depth camera of the Microsoft

Kinect instead of a color camera. The depth camera was

put in front of the hand, so the hand is segmented by using

the distance between the hand and the camera as shown in

Figure 11 (a).

Approaches DT BN CR Performance
MSBNM (ours) 89.2 83.0 88.7 89.2
MCT [10] 25.8 26.2 24.3 26.2
HOG [17] 89.4 81.9 92.1 92.1
Shape Context [2] N/A N/A N/A 86.7

Table 7. Accuracy comparison for depth images. Shape Context is

evaluated by the classifier in [2].

The depth images are lower quality compared to color

images, and they have no texture information. Also, some

part of the hand may not be captured due to the sensitivity

of the camera. The accuracies of each feature representation

are shown in Table 7. The accuracy of MCT is very low be-

cause MCT is based on the texture of an image. The accu-

racy of HOG is slightly higher than MSBNM, because our

approach is more sensitive to missing parts than HOG as we

discussed previously. However, the result still demonstrates

the applicability of our approach to different modalities.

5. Application and Extension
5.1. Real-time application

Based on the feature representation of MSBNM, we de-

signed a real-time application. In this application, the user

can use hand postures defined in Figure 6 to interact with

a program, such as drag (Posture a), draw on (Posture b),

zoom in (Posture h), or reset (Posture c) the map. A snap-

shot of our application is shown in Figure 11 (b).

Figure 12. Eight arm postures and their complementary holes

The results demonstrate the computational efficiency of

the proposed feature representation and show the feasibility

for hand posture recognition in real-time.

5.2. Extension to arm postures

The idea of MSBNM representation of hand postures is

extendible in nature to the arm postures representation as

the arm postures exhibit the similar “hole” topological fea-

tures under the convex hull of a body. We exploit the depth

camera of Kinect to capture various arm postures. Figure 12

shows eight postures used for our study.

Using the depth camera, we captured 100 samples of

each arm posture of one person as the training set, and 100

samples of each arm posture of another person as the test-

ing data. The accuracies of each feature representation are

shown in Table 8. The confusion matrix of the classification

by Decision Tree using Betti Numbers is shown in Table 9.

Approaches DT BN CR Performance
MSBNM (ours) 93.0 84.0 89.0 93.0
MCT [10] 36.3 45.3 44.9 45.3
HOG [17] 79.6 50.9 80.0 80.0
Shape Context [2] N/A N/A N/A 87.5

Table 8. Accuracy comparison of arm postures. Shape Context is

evaluated by the classifier in [2].

The results are similar to the ones in Section 4.5. How-

ever, MSBNM approach yields the highest accuracy, be-

cause arm appearance is reliable during the image capture.

The results in Table 8 demonstrates the applicability of us-

ing our MSBNM representation for arm posture recogni-

tion.

A B C D E F G H

64 0 0 27 0 9 0 0 A

0 98 0 0 0 0 0 2 B

0 0 100 0 0 0 0 0 C

0 0 2 98 0 0 0 0 D

0 1 0 0 99 0 0 0 E

9 0 0 5 0 85 0 1 F

0 0 0 0 0 0 100 0 G

0 0 0 0 0 0 0 100 H

Table 9. The confusion matrix (shown as percentages) of arm pos-

tures
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6. Conclusion
In this paper we proposed a novel approach to analyze

the topological features of hand postures at multi-scales.

Since many postures do not show explicit “holes”, we com-

pute the convex hull of the hand region and consider the

complementary space of the hand as holes. We use the

multi-scale Betti Numbers matrix inspired by Persistent Ho-

mology to describe the multi-scale topological features of

the hand posture.

Experimental results show that the multi-scale topolog-

ical feature representation of hand postures by MSBNM

is capable of distinguishing multiple hand postures against

various illuminations, rotations, and resolutions.

In our future work, we will further analyze the Homol-

ogy of the hand posture and will investigate the issue of

partial occlusion by fusing it with the other texture based or

contour based features.

The emerging technology of Leap Motion [12] shows

very impressive results yet with very limited working range,

due to the use of infrared based technique. Our approach is

applicable to various modalities with a great potential to ex-

pand the working range as well as to analyze data obtained

by the other devices including Leap Motion.

The multi-scale Betti numbers matrix as a new feature

descriptor is also applicable for representing objects with

holes or complementary holes. It, in principle, can be ex-

tended to describing any other topological objects for clas-

sification, recognition, and image information retrieval.
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