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Abstract

We present a data-driven method for estimating the 3D
shapes of faces viewed in single, unconstrained photos (aka
“in-the-wild”). Our method was designed with an empha-
sis on robustness and efficiency – with the explicit goal of
deployment in real-world applications which reconstruct
and display faces in 3D. Our key observation is that for
many practical applications, warping the shape of a ref-
erence face to match the appearance of a query, is enough
to produce realistic impressions of the query’s 3D shape.
Doing so, however, requires matching visual features be-
tween the (possibly very different) query and reference im-
ages, while ensuring that a plausible face shape is pro-
duced. To this end, we describe an optimization process
which seeks to maximize the similarity of appearances and
depths, jointly, to those of a reference model. We describe
our system for monocular face shape reconstruction and
present both qualitative and quantitative experiments, com-
paring our method against alternative systems, and demon-
strating its capabilities. Finally, as a testament to its suit-
ability for real-world applications, we offer an open, on-
line implementation of our system, providing unique means
of instant 3D viewing of faces appearing in web photos.

1. Introduction
The problem of estimating the 3D shapes of faces from

photos is deceptively simple. We all have similar looking

and similar shaped faces. Yet when considering uncon-

strained, “in-the-wild” photos, our appearances can vary a

great deal. Many of these variations are due to the many

sources of appearance variability in general. Often, these

stem from the camera systems, and include pose variations,

changing lighting, noise and more. When considering pho-

tos of faces, these are all exacerbated by variabilities of the

faces themselves: expression changes, different ages, oc-

clusions (often facial hair and glasses), makeup and others

(e.g., Fig. 1). To reliably estimate the shape of a face, all of

these issues must be overcome.

Over the years this problem has attracted considerable

Figure 1. Faces can vary greatly in appearances, thereby challeng-

ing Machine Vision systems for 3D reconstruction whenever such

variations are allowed. Despite this, the underlying facial shapes

are similar. This fact can be exploited in order to allow the genera-

tion of novel, realistic, 3D views of even challenging face photos,

such as those shown here.

attention, and several highly effective approaches have

emerged. These were shown to be capable of estimating

accurate and detailed shapes from single photos, even to the

point of capturing the shapes of expressions [29, 31], wrin-

kles, and other fine facial features [14].

To achieve this accuracy, some employ collections of

carefully aligned, 3D face models, used for spanning the

space of face shapes [11, 29]. Others require manual seg-

mentation and localization of query faces [3, 7, 14]. Yet

others, including the commercial systems of [22] and [28],

are designed for controlled viewing conditions.

In this paper we are motivated by the observation that

although highly accurate reconstruction is always desirable
it is not always necessary; for many practical purposes, tol-

erance to challenging imaging conditions, fast processing,

minimal user interaction, and simplicity of training and data

acquisition, are as important, if not more. One such exam-

ple application is 3D viewing of faces appearing in casual

web photos (e.g., in Picasa and Facebook albums), where

minimal interaction and robustness to “in-the-wild” viewing

conditions is paramount. Another example is face recogni-

tion in unconstrained photos. Here, high-end face recogni-
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tion systems rely on the 3D reconstruction process mostly

to create an appealing alignment and cancel out-of-plane

pose differences, and do not necessarily require exact 3D

measurements [23].

We therefore propose a novel method for estimating the

3D shapes of faces in unconstrained photos. At the heart

of our method is a robust optimization process which em-

ploys a single reference face, represented by its appear-

ance (photo) and shape (depth map). This process attempts

to transfer reference depth values to match a query photo,

while preserving a global face shape. This, by optimiz-

ing for the joint similarities of appearances and depths of

the two faces. These similarities are considered locally, at

each pixel, with the optimization ensuring that global con-

sistency is achieved once the algorithm converges. We show

that this method converges quickly, and produces realistic

face shape estimates.

In summary, our contributions are as follows.

• A novel optimization technique and 3D reconstruction

system designed to enable new, 3D-view generation of

challenging face photos.

• Qualitative and quantitative tests demonstrating our

method’s performance compared to a range of alter-

native systems and techniques.

• Finally, as testament to our method’s suitability for re-

construction of unconstrained face photos, we offer an

open, on-line implementation allowing 3D reconstruc-

tion of faces in casual, real-world photos.

2. Related work

Reconstructing the 3D shape of an object viewed in a

single photo has long since been a central research theme

in Computer Vision. Motivated by the importance and

unique properties of faces as a class, many have turned

to designing monocular, face-shape estimation methods.

Broadly speaking these methods can be classified as either

“shape from X” approaches or learning based techniques.

Shape from X methods make assumptions on the prop-

erties of the scene itself, here the faces appearing in the

photos. Some exploit the symmetry of faces [7]. More

often, however, methods rely on the reflectance properties

of facial skin, along with assumptions on scene lighting,

and extract shapes of faces from shading [1, 14]. Because

these methods are sensitive to background clutter, they

require careful segmentation of the foreground face from

any background in the photo in order to perform accurately.

In addition, they are sensitive to occlusions, further limiting

their applicability in the scenarios considered here.

Machine learning based methods can further be classified

as those which explicitly model a distribution of allowable

face shapes and those which employ non-parametric sam-

pling (data-driven) techniques. Notable examples of the for-

mer are the well known Morphable Models [3, 4, 16, 29, 31]

and the related methods of [11, 24, 30]. These all require

carefully aligned 3D face scans to be assembled and then

used to learn the space of faces.

Related to our work here is the on-line, commercial

Vizago system [28], based on a recent extension of the

Morphable Models [16]. Unlike our own on-line system

(Sec. 4.3) it requires careful manual localization of facial

points and selection of the query gender. Some comparisons

of our reconstructions with those obtained using Vizago

are presented in Fig. 2. The commercial FaceGen soft-

ware [22], likewise requires manual localization, though

slower to converge.

Figure 2. Visual comparison with Vizago. Top: Query pho-

tos; Middle: Shapes estimated by the on-line, commercial system

of [28], which implements the recent Morphable Models variant

described in [16]; Bottom: Our own results.

Our own method belongs to the latter family of tech-

niques. These attempt to match parts of the query photo

to parts of reference faces, in order to obtain local estimates

for the query’s depth. A final shape is assembled by com-

bining the reference estimates. To our knowledge, the first

such “by-example” technique for single-view reconstruc-

tion was presented in [9] (see also [10]). Face Reconstruc-

tion In-the-Wild was recently proposed by [15], combining

an example based approach with a shape from shading face

model. These previous methods, however, typically require

long run-times [9] or hundreds of query photos [15] and are

therefore unsuitable for on-line processing.

In contrast, our system, though easily extendable to han-

dle multiple references, requires only a single reference to

produce realistic looking estimates. It requires no manual

interaction. It is robust to illumination, expression changes

as well as occlusions and viewpoint differences. Finally, it

is efficient, estimating depths in seconds.
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Figure 3. Overview of our depth estimation process. (a) During

pose adjustment we obtain a camera matrix for the query photo,

given detected facial features (Sec. 3.1). (b) Using this matrix,

the reference, 3D model is re-rendered and our joint appearance-

depth optimization process is applied using the aligned, rendered

reference and its depth (Sec. 3.2). Note the reference photo super-

imposed on the query. See Sec. 3.2 for further details.

3. Depth estimation
For a single query photo IQ, we seek an estimate for

the shape of the face appearing in it. Here, we represent

the shape as a depth-map which assigns every pixel coordi-

nate p = (x, y) in the query photo a distance to the surface

of the face along the ray emanating from the optical cen-

ter through p. Fig. 3 provides an overview of our system.

It involves two main steps: (a) Pose adjustment and refer-

ence generation; (b) Iterative optimization. In the following

sections we describe these in detail.

3.1. Pose adjustment

Unconstrained photos often present faces in varying,

possibly extreme, pose differences. Previous methods have

dealt with this either by warping the query image to a “nor-

malized” pose (e.g., [15]), or by integrating pose estima-

tion directly into the depth estimation process [3, 9]. Here,

our system relies on an initial pose adjustment step, which

produces a reference photo IR and matching depth DR in

approximately the same pose as the query.

Specifically, we assume a single, reference, textured,

3D-model (i.e., triangulated mesh) of a face. In all our ex-

periments we used the same 3D model, arbitrarily selected

from the USF Human-ID database [25]. We begin by ren-

dering this reference model in a fixed, frontal pose. 68 facial

landmarks p′k,k∈[1,68] = (x′k, y
′
k) are detected in this image

using the method of [33], selected for its accuracy in real-

world face photos. Our rendering software provides us with

the 3D coordinates P ′ = (X ′, Y ′, Z ′) of the surface point

projected onto each rendered pixel p′, thereby associating

Figure 4. Reconstructions with different references. (a) Four

pose-adjusted references used in separate reconstructions of the

same query. (b) Following pose adjustments, noticeable differ-

ences remain between the references’ depths and the query’s ap-

pearance. These are particularly evident around the nose (on the

right). (c) Our depth optimization (Sec. 3.2) reshapes the reference

depths, matching them to features of the query. Note the minor

effect of using different references, evident when comparing our

results on the last row. (d) The query photo.

each detected point p′k with a 3D point P ′k.

Given a query image, it is processed by first running

the Viola-Jones detector [27]. The detected face is then

expanded to 2.2 times its size, cropped and rescaled to

250 × 250 pixels. We refer to this as the query photo IQ.

We again use [33] to detect the same 68 landmarks in IQ,

giving us points pk = (xk, yk). Using these, we form corre-

spondences (pk, P
′
k), from 2D pixels in the query photo to

3D points on the model (Fig. 3(a)). We then solve for both

intrinsic and extrinsic camera parameters, using a standard

calibration method [8]. The obtained camera matrix A3×3,

3D rotation matrix R3×3 and 3D translation vector t3×1,

relate 3D reference points with the query photo’s viewpoint

by pi ∼ A[R t]P ′i .

These camera parameters allow us to re-render the refer-

ence model, along with its depth, in a query-adjusted pose.

Although we found the detection step to be accurate, it is

currently the run-time bottleneck. In order to expedite this

step, detection is performed on a small, 150 × 150 pixels,

query photo. The reference image and depth subsequently

used to estimate depths are rendered at 250× 250 pixels.

3.2. Depth optimization

Following the pose adjustment step, the reference photo

and depth, IR and DR, are in approximately the same pose

as the query. Small pose estimation errors, along with

differences in the shape of the reference head compared to

that of the query, still remain, as demonstrated in Fig. 4(b).

We next bridge these differences and fit a depth estimate

tailored to the query’s appearance. To this end, we begin by

considering what makes for a good face depth estimate.
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What is a suitable depth estimate? Intuitively, we expect

similar looking facial features to have similar shapes; any

variations in the appearance of one face should imply a like

variation in its shape. In other words, although the sought

depth DQ should be different from the reference, these dif-

ferences should be minimized, and should follow variations

in the appearance of the query compared to the reference.

Formally, we define the local appearance (depth) at

pixel p as f(IQ, p) and f(IR, p
′) (similarly, f(DQ, p) and

f(DR, p
′)). The function f represents a feature transform,

applied to pixel p (p′). Here, we use the SIFT descrip-

tor [19], extracted at a constant scale and orientation (i.e.,

Dense-SIFT [26]) and applied to both images and their

depth maps. Our goal can now be stated as follows: We

seek to warp the reference depth DR to match the query

image; that is, to obtain for each query pixel p a vector

w(p) = [u(p), v(p)]T , mapping it to a pixel p′ in the ref-

erence, thereby assigning it with the reference depth. Fol-

lowing the reasoning above, a good warp should satisfy the

following requirements:

1. Small displacement. Depth assigned to query pixel p
should come from a nearby reference pixel. That is,

|u(p)|+ |v(p)| is minimized for all pixels.

2. Smoothness. Adjacent query pixels, p1 and p2 should

be assigned depth values from adjacent reference pix-

els p′1 and p′2. That is, |u(p1) − u(p2)| and |v(p1) −
v(p2)| are minimized for all pixels.

3. Joint depth-appearance similarity. We require that

for any pixel p, its appearance as well as depth, will

resemble the appearance-depth of its matched refer-

ence pixel, minimizing ||f(IQ, p) − f(IR, u(p))||1 +
||f(DQ, p)− f(DR, u(p))||1 for all pixels.

Requirements 1 and 2 have been imposed by previous

methods for optical-flow (see, e.g., [5]). Moreover, [17, 18]

have extended these by additionally requiring the similarity

of SIFT descriptors, partially meeting our third require-

ment. Unlike [17, 18], however, we require that the warped

depths be also similar to those of the reference. This

requires the matching procedure to take into account the

(yet unknown) query depth DI , and not only its appearance.

Joint depth-appearance optimization. To obtain a depth

estimate which meets the above criteria, we employ a “co-

ordinate descent” optimization [2]. Specifically, we define

the following cost function:

Ct(w) =
∑
p

min (||f(IQ, p)− f(IR, u(p))||1, k) +
∑
p

ν (|u(p)|+ |v(p)|) + (1)

∑
(p1,p2∈N)

[ min (α|u(p1)− u(p2)|, d) +

min (α|v(p1)− v(p2)|, d) ] +∑
p

min
(
||f(Dt−1

Q , p)− f(DR, u(p))||1, k
)

Where k and d are constant threshold parameters and

N defines neighboring pixel pairs (i.e., p1 and p2 are

close). The second and third terms of the cost function,

Eq. 1, reflect our requirements for small displacements

and smoothness. The first is similar to the one defined

by [17, 18] and enforces appearance similarities. Here,

however, we add the fourth term, which expresses our

requirement that the estimated depths be similar to the

reference depths. In order to do that, we define our cost

at time t, by comparing the reference depths to those

estimated at time t − 1. To minimize this cost, at time t,
we establish correspondences using the modified optical

flow formulation [6], implemented by the SIFT-Flow

system [17]. We use it here by representing the features

extracted from the photos and the depths as vector images,

and adding the depth channels, vector images representing

the features extracted from Dt−1
Q and DR, to the input

provided to SIFT-Flow. Finally, we set the initial depth

estimate at time t = 0 as the reference depth.

Dealing with background. Background clutter has been

addressed by previous methods either by requiring that the

face be manually segmented (e.g., [9, 14]), imposing the

segmentation of a reference face onto the query [15], or else

assuming that the shape to be reconstructed encompasses

the entire photo, as in outdoor scene reconstruction [13].

Here, the uniform background of a rendered image IR
can result in correspondences to arbitrary reference pixels,

wherever it does not contain background information and

the query does. This has the adverse effect of letting the size
of the background influence the quality of the estimated

depth. We address this by superimposing the pose-adjusted

reference (Sec. 3.1) onto the query image, and use that

as the reference image (See Fig. 3(b)). Thus, both query

and reference share the same background, encouraging

zero flow in this region. This leaves only face pixels with

the freedom of being assigned flow vectors according to

the differences in appearance. This has the additional

advantage of allowing the optimization to automatically

infer the segmentation of the foreground face from its
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Figure 5. Convergence of the iterative optimization. The L2 dis-

tance between depth maps estimated in successive iterations, along

with the Standard Errors, averaged over all 76 queries. Alongside

the convergence, we provide an example reconstruction, demon-

strating how features inconsistent with the appearance-shape of

the reference face, gradually dissolve. Note that the first iteration

is equivalent to depth estimation using SIFT-Flow alone ([17], see

also Sec. 4.1).

background (see also Sec. 4.2).

Complexity and run-time. Informally, in each iteration,

our optimization progresses by choosing an assignment

of depth values to all pixel, thereby improving (minimiz-

ing) the value of the target function. It can therefore be

considered an instance of coordinate descent optimization,

well known to converge to a local minimum of the cost

function [20]. We verify the convergence property of our

method by estimating depths for the rendered views of

76 of the 77 models from [25], using the first model as a

reference. Fig. 5 presents the diminishing change in depth

estimates from one iteration to the next, by plotting the

L2 distances between estimates from successive iterations,

averaged over all queries. Evidently, depth estimates con-

verge in as little as four iterations. This whole optimization

is thus equivalent to running SIFT-Flow, four times, on

256 dimensional feature vectors. The total runtime for

this optimization was approximately 20sec., measured on

a 2.4GHz Intel Core i5 Processor notebook with 4Gb RAM.

Comparison with Depth Transfer. It is instructional to

compare our approach to the recent, related “Depth Trans-

fer” of [13] which also produces depth estimates by warping

reference depths, using SIFT-Flow to obtain initial matches.

Like us, they observed that doing so may be inaccurate, as

it disregards the reference depths and how they may con-

strain the estimated output. Their proposed means of ad-

dressing this, however, is different from our own. Specifi-

cally, following an initial correspondence estimation using

SIFT-Flow [17, 18], they optimize the output depth sepa-
rately from the appearance in a subsequent process which is

Method log10 RMSE REL

(i) Baseline 0.0772 24.7806 1.8839

(ii) Face-Molding [14] 0.0753 24.6197 2.2197

(iii) SIFT-Flow [17] 0.0746 24.2617 1.8293

(iv) Depth Transfer [13] 0.0766 24.2897 1.8165

(v) Our method, 4 Itr. 0.0743 24.0949 1.7877

(vi) Our method, 5 Itr. 0.0742 24.0907 1.7902

(vii) Our method, 10 Itr. 0.0742 24.0681 1.7839

Table 1. Empirical results on the USF Human-ID database [25].

Lower values are better. Bold values are the best scoring. Please

see text for further details.

Figure 6. Visual comparison of different reconstruction meth-
ods. Shapes estimated for an example query in our empirical tests

(Table 1). From left to right: The reference photo and depth-map;

Depth-Transfer [13]; our own method; the ground truth depth; fi-

nally, the query photo. We provide also the log10 absolute differ-

ence between the estimated and ground truth depth at each pixel,

superimposed on the ground truth depth. Here, darker (bluer)
colors are better – implying smaller differences.

applied to the depth values alone. Although Depth Transfer

was shown to far out-perform the state-of-the-art in single-

image, depth estimation of outdoor scene photos, we have

noticed that when applied to faces this process may over-

smooth the estimated depth (see Sec. 4.1).

4. Experiments

Our system employs the SIFT-Flow and SIFT descriptor

code from [17], using their default values for all parameters,

unchanged. Standard OpenCV routines were used for cam-

era calibration. The reference model was rendered, along

with its depth-map and 3D coordinates of the surface pro-

jected onto each pixel, using our own rendering software,

developed in OpenGL for this purpose. Finally, we use

the facial feature detector of [33] for the pose estimation

(Sec. 3.1), using their original MATLAB code.
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4.1. Empirical tests

We compare the accuracy of our method to several exist-

ing state-of-the-art methods. As there is no standard, pub-

licly available benchmark for face depth reconstruction, we

design our own benchmark tests. To this end, we use the

77 models of the USF Human-ID database [25], fixing the

first model, ID “03500 1”, as reference and all others as

queries. We use the evaluation protocol defined by [21]

and compare each estimated depth-map, DQ, to its known

ground truth depth, D∗Q, by computing for each method

the following error measures: The log10 Error, (log10),

| log10(DQ) − log10(D
∗
Q)|, the Root Mean Square Error

(RMSE), defined by

√∑76
i=1

(
DQi −D∗Qi

)2

/N , and the

Relative Error (REL), defined by
|DQ−D∗

Q|
D∗

Q
. The log10 and

REL errors were averaged over the 76 queries.

Table 1 lists error rates for the following methods: (i)

Baseline performance computed by setting DQ = DR;

that is, taking the reference depth itself as the estimated

depth-map; (ii) the shape-from-shading, “Face-Molding”

approach of [14]. We use our own implementation of their

method, as no publicly available implementation exists; (iii)

SIFT-Flow [17] used to compute dense correspondences

between appearances alone, returning the reference depth,

warped using the obtained flow; finally, (iv) Depth Trans-

fer [13], using a single reference photo and depth-map. All

these were compared to our own error rates, (v-vii), reported

for four, five, and ten optimization iterations.

We note that the methods we tested were selected due to

being recent, efficient, and not requiring manual assistance

(as in [22, 28]) or reference data beyond a single reference

photo and depth-map pair (e.g., [15]). The only exception is

Face-Molding [14] which requires a mask to be positioned

around the central part of the face. We empirically selected

the shape and size of this mask to optimize performance,

and report the best results we have obtained. No other

attempt was made to optimize parameters for any method.

Discussion. Several things are evident from Table 1. First,

row (i) suggests that although the numerical differences be-

tween the methods are small, these differences are signifi-

cant; the reference depth is typically an unsuitable depth es-

timate, as demonstrated in Fig. 4(b), yet its error scores are

only slightly higher than other methods. Second, despite

being the state-of-the-art for outdoor scene reconstruction,

Depth Transfer [13] performs worst than the simpler SIFT-

Flow, as measured by both the log10 error and RMSE. This,

despite using SIFT-Flow for initialization. We believe this is

due to over smoothing of the depth, which may be less suit-

able for face photos than outdoor scenes. All three of our

methods outperform the others, with four-iterations better

than SIFT-Flow based on appearance alone, and with per-

Yaw error log10 RMSE REL

0◦ 0.0743 24.0949 1.7877

10◦ 0.0828 25.7653 2.2485

20◦ 0.1110 31.9553 2.9834

30◦ 0.1336 36.8970 3.4663

40◦ 0.1559 41.4488 3.8008

Table 2. The robustness of our depth optimization (Sec. 3.2) to

pose adjustment errors. Please see text for further details.

Figure 7. Depth optimization (Sec. 3.2) performed without ad-
justing the reference pose (Sec. 3.1). Illustrating the results in

Table 2. Leftmost column is the reference. Next columns, left to

right, are the query, with increasing yaw angle difference to the

reference. On top are the photos; bottom shows estimated depths.

Without pose adjustments, quality can noticeably degrade, break-

ing down at around 20◦ yaw, pose error.

formance improving with additional iterations.

Fig. 6 visualizes some of these results, by presenting

depth estimates for several of the methods that were tested.

To better illustrate the misalignment errors, Fig. 6 also

color codes the per-pixel log10 absolute distances between

the estimated depths and the ground truth. Clearly, our

method has fewer noticeable misalignments compared to

the others. Also evident is that all methods are influenced

by the selection of the reference model, as noted also

by [14]. As evident from Fig 4(c), however, differences in

depth estimates due to the use of different references, have

minor effects when visualizing the face in 3D.

Robustness to pose adjustment errors. Pose adjustment

errors can occur whenever the facial feature detector fails

to accurately localize the key-points used to estimate the

query’s pose. Table 2 provides reconstruction errors, again

computed using the USF database [25] with model, ID

“03500 1” as reference, and averaging over all other models

as queries. Here, we progressively increase the yaw angle

between the query photo and the reference, from 0◦to 40◦.
Four optimization iterations were performed, and so the first

row is equal to row (v) in Table 1.

The results in Table 2 show that reconstruction errors

36053612



Figure 8. Example faces in 3D. From left to right: example pho-

tos from the LFW collection [12]; 3D views of the photos with

estimated 3D faces; 3D views of automatically segmented faces;

final flows from the reference face. Flow values are color coded;

flow color legend provided at the bottom of the figure.

gradually increase with larger pose errors. Fig. 7 visual-

izes these results by presenting the depths obtained for the

same query at increasing angle differences. Interestingly,

the depth obtained at 10◦appears rotated correctly, despite

the misaligned reference. The same is true for 20◦, though

with such a large pose difference, some artifacts appear.

These artifacts grow worst with larger alignment errors.

Figure 9. Faulty estimation. An example of a typical failure, here

resulting from an occluding hand.

4.2. Qualitative results

Fig. 1, 2, 4, and 8 present many examples of faces recon-

structed and rendered from various views in 3D. These pho-

tos were mostly taken from the original (unaligned) LFW

collection [12], or from the web, making a point of choos-

ing those which would be considered challenging due to

facial hair, expressions, varying poses, and more. In all

these cases, the reconstructed geometry allows exploring

the faces in 3D, with few noticeable artifacts. Moreover, in

the segmented images (e.g., Fig. 8, second column from the

right), faces were segmented automatically, by considering

only pixels in the largest connected component of non-zero

depth values. Segmenting faces in photos is itself a chal-

lenging problem, and it would be worth while to explore

how well this approach performs in comparison with exist-

ing art [32]. Here, we found our depth estimates to provide

reliable means for face segmentation, and did not pursue

these alternatives. Finally, in Fig. 9 we provide an example

of a typical faulty reconstruction, resulting from the hand

occluding part of the face.

4.3. Our on-line face reconstruction system

In order to demonstrate our system’s capabilities, we

have designed an on-line system for web-based 3D view-

ing of real-wold face photos, publicly accessible using

modern web-browsers. We implemented our method as a

server-side process, providing a simple interface for client-

side applications. One such client application is a Google

Chrome extension. It enables users to select photos ap-

pearing in web-pages by a simple mouse click. A selected

photo is then automatically sent to the server service, the

shape of the face is estimated on the server, and then dis-

played back on the Chrome browser. Users typically wait

about a minute before a surface is returned and can be ex-

plored in 3D, much of this time required for data trans-

fer. To access the system, please visit our project webpage,

available from www.openu.ac.il/home/hassner/
projects/ViewFaces3D.

5. Conclusions
Today, as web-browsers are integrated with 3D engines,

and with the advent of 3D printers, there is an increased

demand for accessible ways of creating 3D models. In re-

sponse to this, we present an efficient and robust system
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for 3D estimation of faces, designed to tolerate extreme

variabilities in facial appearances. Our system is designed

around an optimization which uses appearance and depth

jointly to regularize the output depth. We tested our method

extensively, comparing it to existing alternatives, including

commercial products, in order to evaluate its capabilities.

Finally, we demonstrate how this process may be employed

within a real-world system by offering a public system for

on-line face shape estimation.
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