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Abstract

In this paper, we investigate the properties of Lp norm
(p ≤ 1) within a projection framework. We start with the
KKT equations of the non-linear optimization problem and
then use its key properties to arrive at an algorithm for Lp

norm projection on the non-negative simplex. We compare
with L1 projection which needs prior knowledge of the true
norm, as well as hard thresholding based sparsification pro-
posed in recent compressed sensing literature. We show
performance improvements compared to these techniques
across different vision applications.

1. Introduction
Many successful algorithms for inverse problems rely

on regularization for improved reconstruction by enforcing

conformance to a-priori statistical properties of data. As-

sumptions of Laplacian, Gaussian and Generalized Gaus-

sian priors result in L1 (Lasso), L2 (Ridge regression) and

Lp norm regularization. In natural images, gradients, gen-

eral pixel differences and transform domain coefficients can

simultaneously have large peak near zero (due to smooth

areas) and very heavy tail (due to presence of edges and

object boundaries). The wavelet transform is tremendously

popular in the signal and image processing communities,

due in large part to its ability to provide parsimonious rep-

resentations for signals that are smooth away from isolated

discontinuities. The ability to construct low-dimensional,

accurate approximations make wavelets particularly useful

for image compression [23] and restoration [6]. If we com-

pute the pdf for the empirical distribution for the wavelet

coefficient magnitude and compare with the pdf’s obtained

by an exponential model with varying λ, we find that λ < 1
models the empirical distribution way better than Laplacian

distribution (λ = 1). This affect is shown in Fig. 1, where
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λ = 0.2 matches the empirical distribution most closely for

the Lena image.

Accurate modeling of such distributions leads to Lp

norm regularization with p < 1. Non-convexity of Lp

norm poses a major hindrance in efficient solution to re-

sulting optimization problem. Solving an under-determined

system of equations under non-convex Lp norm prior has

been known to be NP hard. As a practical alternative, it-

erative schemes such as iteratively re-weighted least square

(IRLS) [5] has been used as an approximation algorithm.

However, some problems, e.g. transform domain image de-

noising, can be cast as projection of a vector on norm ball

and does not involve solving an under-determined system of

linear equations. Such problems can directly benefit from

efficient projection on non-convex Lp norm ball. For other

problems, iterative schemes such as gradient-projection can

be devised with projection on non-convex norm ball as

building block, which of course looses guarantee of global

optimality, but presents a potentially attractive alternative

to IRLS and other competing methods. In this work we

Figure 1. Empirical and model pdf.

look into least square minimization as the primary problem

(f(x) = 1
2‖x− v‖22). In the literature, two complementary

formulations have been used to incorporate norm-based pri-

ors:

1. projection formulation min f(x) s.t.‖x‖ ≤ z where

norm prior term appears as constraint, and

2. penalty function formulation min f(x) + θ‖x‖ where
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norm prior term is part of objective function.

Regularization parameters z and θ serve an equivalent pur-

pose of controlling the relative significances of data and

prior terms. When L2 norm is used for data term and L1
norm is used for prior term in penalty function formulation,

regularization path is piecewise linear [19] and every point

on it corresponds to unique values of regularization param-

eter θ and z, thus establishing a one-to-one correspondence

between θ and z. Therefore, in principle, an algorithm for

any one formulation can be used to find solution of the

other formulation by using bisection over the regulariza-

tion parameter. Such equivalence, however, breaks down

in the case of non-convex norm prior. Fig. 2 (left) shows

that norm of the optimal solution exhibits vertical discon-

tinuity at some values of regularization parameter θ for the

penalty function formulation. Range of norm values corre-

sponding to such discontinuities are never attained by op-

timal solution of penalty function formulation. In contrast,

optimal solution of projection formulation exhibits continu-

ous decrease of projection error with increasing z as shown

in Fig. 2 (right). Consequently, for certain range of val-

ues of z, penalty function formulation can not emulate the

behavior of projection formulation. Projection function for-

mulation can be considered a more general problem with

penalty function formulation as a special case.

1.1. KKT conditions and combinatorial explosion

Consider an arbitrary algorithm A trying to solve

min f(x) (1)

s.t. gi(x) ≤ 0 ∀i ∈ Nn, hi(x) = 0 ∀i ∈ Nm

where Nk = {1, 2, . . . , k}. Lagrangian for (1) is given by,

L(x, α, β) = f(x) +

p∑
i=1

αigi(x) +

q∑
i=1

βihi(x) (2)

Assuming appropriate regularization conditions are met,

necessary conditions for local optimality are given by KKT

first order condition ∂L
∂x = 0, and

gi(x) ≤ 0︸ ︷︷ ︸
a

, hi(x) = 0︸ ︷︷ ︸
b

, αi ≥ 0︸ ︷︷ ︸
c

, αigi(x) = 0︸ ︷︷ ︸
d

, (3)

∀i ∈ Nn or Nm

Let us further assume that A attempts to solve the problem

by exhaustive search of solution space of KKT system of

equations. Even for convenient functional forms of f , gi,
hi, there is an inherent combinatorial branching involved in

complementary slackness condition Eq. 3(d). For ease of

future reference we refer to it as complementary slackness

condition (CSC) branching stage. In worst case, CSC could

lead to exponential (2n) number of systems of equations.

ForA to be potentially polynomial time, it must avoid com-

binatorial explosion at CSC. Note that this necessity is only

for family of algorithms which exhaustively search the solu-

tion space of KKT system of equations, and does not apply

to other methods such as interior point based techniques.

Once A has branched over all CSC possibilities, e.g. in

an outer loop, it will need to solve multiple instances of

a reduced KKT system of equations (without CSC condi-

tion). In the simplest of cases, this reduced system of equa-

tions could be a system of full rank linear equations and

vacuously satisfied inequalities, immediately yielding a so-

lution. However, in more general situations e.g. quadratic

constraints, corresponding elimination step involves further

branching. We refer to it as Elimination in Simultaneous

Equation (ESE) branching. For A to be polynomial time, it

must avoid combinatorial explosion at ESE as well as CSC.

Once A has branched over all ESE branching possibil-

ities, e.g. in a middle loop, it will need to solve multiple

instances of a single equation in a small number (may be

just one) of independent variables. We refer to this stage

as Roots of Single Equation (RSE) stage. In general, RSE

can also have exponential complexity. In present work, we

show that for globally optimal non-convex Lp norm pro-

jection problem, number of CSC and ESE branches can be

restricted to polynomial. Furthermore, we propose a con-

jecture, which guarantees polynomial time complexity for

RSE branch as well, thus making complete problem polyno-

mial time. Even if conjecture fails for very stringent norms

p ≤ 0.2, RSE stage, being a one dimensional root finding

problem, is conducive for generic global optimization meth-

ods such as branch and bound [22, 3]. This makes complete

problem (reducible to polynomial number of RSE stages)

efficiently solvable by branch and bound.

2. Lp Norm Projection for non-negative data
Lp norm projection problem is given by,

min
x

1

2
‖x− v‖22, (4)

s.t.
n∑

j=1

|xj |p ≤ z, for 0 < p ≤ 1

Except for the trivial case, when v lies inside norm ball and

optimal solution is x = v, optimal solution of above prob-

lem will lie at boundary of norm ball. This can be proved

by contradiction, by joining putative solution inside norm

ball with v by a line segment and showing that intersec-

tion of this line segment with norm ball will result in bet-

ter solution. Based on Lemma 3 from [7], we can work

with the absolute values of the elements of v and add the

sign to the projection x later such that vixi > 0. This

simplification adds an additional set of constraints for the

non-negativity of the projections themselves. For now let
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Figure 2. Left: norm of solution vs regularization parameter θ in penalty function formulation. Decrease of norm exhibits vertical discon-

tinuity and some norm values are never attained by regularization path. Right: Projection distance ‖x− v‖22 vs norm of optimal solution

for penalty function formulation (black bars) and projection formulation (blue curve). As regularization parameter z increases optimal

solution x for projection formulation continuously gets closer to target v. However corresponding decrease is discontinuous in case of

penalty function formulation.

us assume that vi’s are all positive so that the notations are

simpler to follow. For data with mixed sign we can remove

all the signs, solve the optimization problem and plug back

the signs again later. The simplified problem we investigate

is defined as: given v ∈ R
n+, solve

minx
1
2‖x− v‖22, s.t.

∑n
j=1 |xj |p ≤ z, (5)

for 0 < p ≤ 1, 0 ≤ xi, ∀i = {1, 2, . . . , n}

Duchi et al. [7] present a solution for the case where p = 1.

This is a specific case of the method investigated in this

paper. At p = 1 the problem is convex and hence well stud-

ied [13, 21]. We argue that a generic p-norm constraint pro-

vides greater control over the amount of sparsity obtained in

the projected domain albeit with additional non-linearity in

its formulation. [14] introduces a similar system, but does

not provide a generic framework. Only p = 1/2, 2/3 are

explored since analytic solutions can be obtained for these

systems. Our next proposition asserts that ordering of com-

ponents of v determines ordering of components of optimal

solution x.

Proposition 2.1. If vi > vj , then in optimal solution xi ≥
xj .

Proof: If xi < xj , then swapping xi and xj can be shown

to result in a better solution.�
We note that as a consequence of Prop. 2.1, Lemma 1.

from [7] restated below for ease of reference, still holds for

this problem.

Proposition 2.2. If vi > vj , and in optimal solution xi = 0,
then xj = 0.

An important consequence of Prop. 2.2 is that, combina-

torial explosion for CSC can be avoided. More specifically,

number of CSC branches will be upper bounded by n, the

dimensionality of v. The Lagrangian for the above opti-

mization problem can be written as

L(x, ζ, θ) = 1

2
‖x− v‖22 + θ(

n∑
j=1

xp
i − z)− ζ.x (6)

Eq.(6) is not differentiable whenever, at least one of xi’s is

zero. This precludes unconditional use of first order opti-

mality as a KKT necessary condition. When at least one of

xi’s is zero, consideration of local geometry of constraint

surfaces reveals that surface normal vector for xi ≥ 0, and

that for p-norm constraint become linearly dependent, thus

violating the linearly independent constraint qualification

(LICQ) criterion [18]. Hence, we adopt the more funda-

mental necessary condition that for the feasibility of local

optimality at a point, it must be impossible to decrease ob-

jective function further by any local movement remaining

feasible with the constraints. Whenever any xi is zero and

norm constraint is satisfied, any local movement with non-

zero component along xi will result in constraint violation.

This leads us to following modified optimality condition:

x is optimal only if, for all the non-zero components

{xi|i ∈ Nnon zero ⊂ Nn},
∑

xp
i = z and

xi − vi + pθxp−1
i = 0 (7)

The above condition is the starting point of our analysis.

We plot the representative curves for different values of vi
but fixed p and θ (Fig. 3 left). We observe that the whole

plot shifts down with increasing vi. For some value of vi,
the curve touches the horizontal line at 0 at one point (tan-

gent), indicating that (7) has one unique zero. We denote

this as vit(p, θ), since this value depends on p and θ. For all

values of vi > vit(p, θ), there are two roots for (7) denoted

as xl
i and xr

i .
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Figure 3. Plot for xi−vi+pθxp−1
i . Left: Changing vi for p = 0.6,

θ = 8. The curves move vertically down for increasing vi. For the

dotted red curve (vi = 5.6) the horizontal line at 0 is a tangent.

The two possible solutions for vi = 8 are denoted in the figure as

xl
i and xr

i . Right: Changing θ for p = 0.6, vi = 8. The solid

black line joins the minimum points for the different curves.

Proposition 2.3. The left root xl
k corresponding to any vk

is NOT part of the optimal solution for (5), except possi-
bly for the smallest vi among those with non-zero optimal
projection xi.

Proof: We prove the proposition in two stages. In the

first stage, we note that since xl
i moves towards left with in-

creasing vi, in optimal solution, two distinct entries vi and

vj can not have the same root xl
i = xl

j as it will violate

Prop. 2.1. This means at most one vi can have correspond-

ing left solution at xl
i. In second stage of proof, we note

that since, irrespective of ordering of vi’s, xr
i for any vi is

larger than xl
j for all other vj’s, j 	= i. Hence, any vi with

corresponding solution at xl
i must be the smallest vi among

those with non-zero xi, otherwise Prop. 2.1 would again be

violated. �
An important consequence of Prop. 2.3 is that, combina-

torial explosion of ESE can be avoided, since the number of

ESE branches are upper bounded by 2. One branch corre-

sponds to solution where smallest non-zero xi corresponds

to the left root and all other xj’s correspond to the right

roots. The other branch corresponds to solution where all

non-zero xi’s correspond to right root. We denote the two

corresponding solutions as xL and xR respectively.

2.1. Algorithm

Based on aforementioned propositions, we present an

outline of the proposed method in Algorithm 1. RSEL

and RSER represent RSE stage operations corresponding

to choice of which root (left or right) is used for different

equations in KKT system.

As can be seen from Fig. 3 (left), for all vi and θ, the

curve has a unique minimum point, which can be shown to

be

ximin
= [p(1− p)θ]

1
2−p (8)

Next we evaluate (7), but for different values of θ, as

shown in Fig. 3 (right). The entire curve goes up and right

Algorithm 1 Algorithm outline for projection on Lp norm

ball from positive orthant

1: REQUIRE v ∈ R
n+, z > 0, p ∈ (0, 1)

2: v← sort(v) /* decreasing order */

3: xopt ← 0
4: OBJopt ←∞
5: for ρ = 1 to n /* CSC branching */ do
6: for j = 1 to 2 /* ESE branching */ do
7: if j == 1 /* first ESE branch: smallest non-zero xi

comes from left root */ then
8: XL ← RSEL(v(1 : ρ), z, p) (Eq. 7 left root)

9: else if j == 2 /* second ESE branch: all xis come

from right root */ then
10: XR ← RSER(v(1 : ρ), z, p) (Eq. 7 right root)

11: end if
12: end for
13: x← argminx(1:ρ)∈XL∪XR,x(ρ+1:n)=0‖(x− v)‖2
14: if ‖(x− v)‖2 < OBJopt then
15: OBJopt ← ‖(x− v)‖2
16: xopt ← x
17: end if
18: end for
19: reorder xopt according to initial sorting of v
20: return xopt

with increasing θ, for constant vi and p. The above obser-

vations can be combined to draw the following conclusion.

Proposition 2.4. For every vi there exists a θ (and corre-
sponding xi), given p, such that Eq. 7 has a unique 0 (tan-
gent). The values are given by

θtan(vi, p) =
v2−p
i

p(1−p)[ 1
1−p+1]

2−p , (9)

xitan(v, p) =
1−p
2−pvi (10)

Proof: Substituting (8) in (7) and equating to 0 gives the

expression for θtan. Substituting it back into (8) gives ex-

pression for xitan
. �

To explore the behavior of the two ESE branches we

chose a random v, and set a suitable norm such that none of

the elements of its projection x can be zero. This allows us

to study the behavior of the two solutions xL and xR. We

find θtangent corresponding to vs, the smallest element of

v and then go on reducing it until zero. This leads to the

curves shown in Fig. 4. For p ≥ 0.5 the nature of the curves

obtained remains same. But for more stringent sparsity re-

quirements p < 0.5 and higher dimensional problems the

solution norm for xL can intersect the norm constraint line

multiple times as shown in Fig. 4 (right). This observation

leads to the following conjecture:

Conjecture: For some integer r, the rth derivative of

the norm curve for xL against θ (Fig. 4 right, blue curve)

has only one zero crossing.
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Figure 4. Left: Plot of objective value for xL (blue) and xR (red) with changing θ, with p = 0.6. Center: similar curves for the norms

of the solutions. The horizontal axis denotes decreasing θ from θtangent to 0 in 1000 steps. Right: for higher dimensions and stringent

p = 0.3 norm value wrt xL touches the norm constraint line at multiple points.

Empirically we found that the 2nd derivative has one

zero crossing, leading to maximum 3 zero crossings for the

solution norm, as shown in Fig. 4 (right). In such cases,

plot consists of one (initial) convex segment, and one (later)

concave segment concatenated together. The location of the

zero crossing can be found using piecewise binary search.

We found that the conjecture fails in a few trials, less than

1%, depending on value of p (very small), and distribution

of the elements of v. We could still argue that our algorithm

based on the above conjecture, will give us globally optimal

solution with very high probability. A similar argument is

proposed by Bredies et al. [1] (Sec. 4) where they claim

that lp penalties converge to a solution whenever one of two

theorems are applicable.

3. General sparse coding problem

The above developments were all concentrated on solv-

ing a projection problem over separable variables. Now we

look into the more generic problem,

w̃ = argmin
w

||Y −Aw||2 + β|φTw|p (11)

Using the half-quadratic penalty method [11, 12, 24], we

now introduce the auxiliary vector x, such that

w̃ = argmin
w

||Y −Aw||2 + ζ

2
‖x− φTw‖22 + β|x|p (12)

This equivalent formulation decouples the non-linear norm

term from the principal variable with the additional property

that it is exactly same as the previous formulation when ζ →
∞. This can now be subdivided into two parts

w̃s = argminw ||Y −Aw||2 + ζ
2‖x− φTw‖22 (13)

xs = argminx
ζ
2‖x− φTw‖22 + β|x|p (14)

Alternating solution for the two subproblems leads to the

solution of the the original system (Eq. 11) as ζ →∞.

4. Experiments

4.1. Comparison against L1 norm minimization
techniques

In this section we describe comparative experiments with

other algorithms, primarily with algorithms which produce

sparsity in otherwise more established methods, specifi-

cally, projection onto convex sets (POCS) [2]. We compare

against alternate projection algorithms proposed by Can-

des and Romburg [4](L1POCS) and Lu Gan [8](KPOCS)

where the projection alternates between a POCS projection

and a sparsifying projections which typically bounds the L1
norm of the projected vector. The problem is the reconstruc-

tion of x from limited measurements denoted as y = Φx,

where y ∈ R
m, x ∈ R

N , and m < N . Let the original sig-

nal be x̂. The reconstruction is guaranteed if x̂ is K sparse

and Φ follows the restrictive isometry property (RIP). The

solution of sparse POCS lies in the intersection between the

hyperplane P = {x : Φx = y} and the L1 ball B of radius

||x||1. If the exact norm of the original signal is known, i.e.

‖x̂‖1, then L1POCS iteratively projects onto the convex sets

P and B to find the common intersection point (i.e. recover

x from y). In the absence of the knowledge of the true norm

of the unknown vector, L1POCS generates a sparse approx-

imation of the original vector.

Jacques1 proposed a simplification of the technique pro-

posed by Lu Gan [8]. A hard thresholding step, keeping the

K largest components of a vector is used as the second pro-

jection step. The principle difference in the two schemes is

that in [8], the extra information is the sparsity of x (as in

CoSaMP [17]), whereas in [4] the expected L1 norm of the

original signal is required. A similar method to KPOCS

called gradient descent with sparsification (GraDes) has

been independently proposed by Garg and Khandelwal [9].

We replaced the norm projection scheme in these two tech-

niques by our method (LpPOCS). The measurement matrix

Φ is a Gaussian random matrix. The parameter p = 0.6 if

not stated otherwise and we keep the norm constraint to be

1http://nuit-blanche.blogspot.com/2008/04/monday-morning-

algorithm-16-s-pocs.html
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Figure 5. Plot of reconstruction from sparse measurements. Blue

curve is the true data. Red dots are the reconstruction points. Left

to right: L1POCS with ‖y‖1 estimate, L1POCS with true ‖x̂‖1
estimate, KPOCS with K = 3.5 ∗ m, LpPOCS with p = 0.6
and norm constraint equal to ‖y‖1. The experiment reports re-

sult when there was no additional noise introduced on y. Problem

specifics are: N = 128, m = 20, K = 3.5 ∗m.

‖y‖1. The norm parameter p works analogous to the forced

sparsity K. Qualitative results for the noiseless case are

shown in Fig. 5. Reducing the value of p generates sparser

results. As we introduce more noise all the methods start to

deteriorate. This effect is most pronounced in the KPOCS

technique with fixed K.

4.2. Comparison with Iterative Least Squares
(IRLS) and similar techniques

We compare against iterative least squares based algo-

rithms to establish the general acceptability of our tech-

nique. Note that several authors have used the f-measure

criterion to identify the merits of sparse solutions defined as

f −measure = 2
supp(xtrue) ∩ supp(xsolve)

supp(xtrue) + supp(xsolve)
(15)

where supp((x)) is the support of the vector x. f-measure

closure to 1 means better identification of the true support

of the unknown vector. Gasso et al. [10] introduced a dif-

ference of convex functions (DC) based method to tackle a

similar problem. They show improvements over the perfor-

mance of the IRLS method proposed by Saab et al. [20]. We

perform similar experiments, to the ones reported by Gasso

et al. [10], with the measurement matrix being a Gaussian

random matrix with n = 128 rows and d = 256 columns.

Note that due to step 5 (branching over the entire support

of v) in Algo. 1 our method almost always finds the true

support of the solution vector x, except for very stringent

norm requirements for p ≤ 0.05 or for very noisy data.

This can be easily observed from Fig. 6. Also note that the

sorting step in our method enables us to solve the original

non-linear problem, rather than the ε padded systems which

are normally used in IRLS based techniques.

Figure 6. Comparing F-measure performance of different penalty

functions with respect to the number of active elements. F-

measure of the compared algorithms. Log, lq, Log ε and lq ε are

same as defined in Gasso et al. [10]. IRLS is [20] the number next

to it denotes the value of the norm constraint q, Lq our denotes the

proposed method. Left: SNR = 10db, right: SNR = 30db.

4.3. Image denoising with Lp norm projection

In this section we present an alternative formulation to

p-norm projection problem which can be motivated by con-

sidering MAP estimation of a signal x ∈ R
n with compo-

nent wise Generalized Gaussian prior distribution p(xi) =
1

2αΓ(1+1/β)exp(−(|xi|/α)β), from its noisy version v, cor-

rupted by an additive noise e ∈ R
n|ei ∼ N (0, σ2). Apply-

ing Bayes rule, p(x|v) ∝ p(x)p(v|x) = p(x)p(e), corre-

sponding negative log likelihood function in given by,

L(x) ∝
∑n

i=1 |xi|β
αβ

+

∑n
i=1(xi − vi)

2

2σ2
(16)

∝
n∑

i=1

θ|xi|β + 1

2
(xi − vi)

2 (17)

where θ = σ2/αβ . For any exponent parameter β and noise

variance σ2, scale parameter α can be estimated from noisy

signal itself, using the following relation.

var(v) = var(x) + var(e) = α2
Γ(3/β)

Γ(1/β)
+ σ2(18)

⇒ α =

√
(var(v)− σ2)

Γ(1/β)

Γ(3/β)
(19)

When components of x can be logically grouped as multi-

ple disjoint sets with different scale parameter α, e.g. sub-

bands of wavelet decomposition, (19) should be interpreted

15981598



Figure 7. Denoising Results. First to third column: noisy image, best L1 reconstruction (PSNR = 25.9dB) and best LP reconstruction

(PSNR = 26.7dB) respectively. Last column: PSNR values for different p against the scale correction factor S.

as an independent relation for each set. Due to separability

of the likelihood we need to solve a set of one dimensional

optimization problems of the form

f(x) = θxp +
1

2
(x− v)2 s.t. x ∈ [0, v] (20)

Krishnan et al. [14] proposed an LUT based approach for

general p and analytical approach for p = 1/2 and p = 2/3
to find optimal solution of (20). We propose an efficient so-

lution for general p which can either be used without LUT

or can be used to reduce the size of the LUT and number of

lookups . Optimal solution will be located either at bound-

ary of interval [0, v] or where derivative is zero i.e. at some

root of f ′(x) = pθxp−1+x−v = 0which is same as Eq. 7.

Our algorithm does the norm minimization for all the

bands of the image together and does not need the sub-band

norms to be separately mentioned as done in [4]. The neces-

sity of maintaining sub-band norms in [4] defeats the pur-

pose of random measurements and limits the applicability

of their method for unknown norms. For the generalized

Gaussian prior, the α estimate in (19), usually underesti-

mates the true parameter α and hence we introduce a cor-

rection factor of the form (1 + ε)S , where we empirically

determine ε = 0.15 ± 2%. Ideally the model should per-

form best for S = 0. This effect can be observed in Fig. 7

(left most column), where the lower p values usually peak at

s = 0. As we approach L1 norm (p = 1.0) the peak shifts

to a different position (s=0.5), corresponding to a correc-

tion of about +7% in the estimate for α. The images show

the noisy image, the best L1 reconstruction, and the best Lp

norm reconstruction respectively.

4.4. Sparse lp PCA

Informative feature selection by sparse PCA has been

proposed recently by Naikal et al. [15]. The key intuition

in this work is as follows. Let us assume a data matrix

A = [y1,y2, . . . ,ym] ∈ R
n×m, where the m vectors yi

are assumed to be centered. The empirical covariance ma-

trix is given by ΣA = 1
mAAT . Sparse PCA computes the

first sparse eigenvector of ΣA by optimizing the following

objective [25]

xs = argmax xTΣAx s.t.‖x‖2 = 1, ‖x‖1 < k (21)

Once the first eigenvector is identified, the second can be es-

timated by repeating the same procedure for the deflated co-

variance matrix Σ′A = ΣA−(xTΣAx)xx
T . We replace the

final l1 norm constraint by the more generic lp norm con-

straint. We report comparative results to Naikal et al. [15]

in Fig. 8. Note that with the lp norm formulation, lesser fea-

tures are selected. Most of the repeated features are further

dropped as compared to l1 sparse PCA. For the four class of

images shown, Naikal et al. [15] report recognition perfor-

mance of 86.8±4.164%with average 24.5 features selected.

The performance numbers for our method are 85.6±2.14%
with average 20 features selected per class.

5. Conclusion
In this paper we have looked into the projection onto the

Lp norm ball and provided some insights into constructing

an exhaustive search algorithm. The results for simulated as

well as real experiments encourage us to believe that con-

trollable sparsity afforded by p < 1 models can be used
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Figure 8. Top: Images of 4 objects in the BMW database [16]

with superimposed SURF features; Middle: Informative features

detected by the l1 sparse PCA approach from [15]; Bottom: Infor-

mative features detected by lp sparse PCA.

instead of the prevalent p = 1 model, albeit at the cost of

convexity of formulation.
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