
Support surfaces prediction for indoor scene understanding

Anonymous ICCV submission

Paper ID 1506

Abstract

In this paper, we present an approach to predict the
extent and height of supporting surfaces such as tables,
chairs, and cabinet tops from a single RGBD image. We de-
fine support surfaces to be horizontal, planar surfaces that
can physically support objects and humans. Given a RGBD
image, our goal is to localize the height and full extent of
such surfaces in 3D space. To achieve this, we created a
labeling tool and annotated 1449 images with rich, com-
plete 3D scene models in NYU dataset. We extract ground
truth from the annotated dataset and developed a pipeline
for predicting floor space, walls, the height and full extent
of support surfaces. Finally we match the predicted extent
with annotated scenes in training scenes and transfer the
the support surface configuration from training scenes. We
evaluate the proposed approach in our dataset and demon-
strate its effectiveness in understanding scenes in 3D space.

1. Introduction
Knowledge of support surfaces is crucial to understand

or interact with a scene. People walk on the floor, sit in

chairs, eat on tables, and move objects around on desks.

Our goal is to infer the heights and extents of support sur-

faces in the scene from a single RGBD image. The main

challenge is that support surfaces have complex multi-layer

structures and that much of the scene is hidden from view

(Fig. 1). Often, surfaces such as tables, are littered with

objects which limits the effectiveness of simple plane fit-

ting strategies. Some support surfaces are not visible at all

because they are above eye level or obstructed by other ob-

jects.

Our approach is to label visible portions of the scene,

project these labels into an overhead view, and refine es-

timates and infer occluded portions based on scene priors

and context. See Figure 4 for an overview. One barrier

to our study was lack of a dataset that has complete 3D

annotations. We undertook an extensive effort to create

full 3D models that correspond to scenes in the NYU (v2)

dataset [14], which we expect will be of interest to many

�������	

���	���	

Figure 1: Challenge. Our goal is to predict the height and

extent of all support surfaces, including occluded portions,

from one RGBD image. As shown on the left, these surfaces

are often covered with objects and are nearly invisible when

they occur near eye-level. As shown on the right, we must

perform inference over large portions of the scene that are

blocked from view.

other researchers. Our annotations complement the exist-

ing detailed 2D object and support relation annotations and

can be used for experiments on inferring free space, support

surfaces, and 3D object layout.

Another challenge is in how to represent support sur-

faces, which are often scattered and multilayered. For ex-

ample, a shelf may be stacked on a computer desk that rests

on the floor, with a chair pushed under the desk. When ini-

tially viewing a scene, we do not know how many surfaces

there are or at which heights. Our solution is to infer a set of

overhead support maps that indicate the extent of supports

at various heights on the floor plan.

We need to specify the heights and extents of support

surfaces, which is difficult due to clutter and occlusion. Our

approach is analogous to that of Guo and Hoiem [3] who

first label an RGB image according to the visible surfaces

at each pixel and then infer occluded background labels. We

label visible pixels into “floor”, “wall”, and “object” using

the RGBD region classifier from Silberman et al. [14] and

then project these pixels into an overhead view using the

depth signal. Before projection, the scene is rotated so that

walls and floor are axis-aligned, using the code from [14].

We then predict which heights are likely to contain a sup-

port surface based on the normals of visible surfaces and

2013 IEEE International Conference on Computer Vision

1550-5499/13 $31.00 © 2013 IEEE

DOI 10.1109/ICCV.2013.266

2144

straight lines in the image. One height could contain mul-

tiple surfaces such as table and counter tops or the seats of

several chairs. For each height, we then predict the extent of

support on the floor map using a variety of 2D and 3D fea-

tures. These estimates are refined using an autocontext [16]

approach and shape priors incorporated by matching whole

surfaces from the training set, similarly to [3].

Our experiments investigate the accuracy of our esti-

mates of support height and extent, the effects of occlu-

sion due to foreground objects or surfaces above eye-level,

and the effectiveness of our contextual inference and shape

matching. Our method substantially outperforms a baseline

of plane-fitting, but there is still much room for improve-

ment by incorporating object recognition or more structured

models of relations among surfaces.

1.1. Related work

Interpreting indoor scenes has recently become an active

topic of research. One line of work is to predict boxy lay-

outs from RGB images [6, 7, 10, 8, 5, 12, 11], in which

occlusion and lack of 3D sensors is combatted with simple

scene models and strong priors. By operating on RGB-D

images that provide both color and depth signals, we aim to

explore more detailed and complex scene representations.

However, the depth signal does not trivialize the problem,

since many support surfaces are obscured by clutter or com-

pletely hidden.

Our approach directly builds on recent efforts by Silber-

man et al. [14] and Guo and Hoiem [3]. Silberman et al.

created the NYU v2 dataset and proposed algorithms to ori-

ent the scene, find major surfaces, segment the image into

objects, label regions into “prop”, “furniture”, “structure”,

and “floor”, and estimate which objects support which oth-

ers. Our approach incorporates their algorithms for esti-

mating 3D scene orientation and labeling visible pixels into

geometric classes. We differ in that we predict the full 3D

extent of support surfaces, and we extend their dataset with

full 3D annotations of objects using a tool that enables users

to markup scenes based on both image data and point clouds

from the depth sensor. Guo and Hoiem [3] propose an ap-

proach to label both visible and occluded portions of a 2D

image. We adopt their basic pipeline of labeling visible por-

tions of the scene and inferring occluded portions based on

autocontext and shape priors. However, our approach is ap-

plied to full 3D scenes, which requires new representations,

features, and matching strategies.

Other works reason about support relations between ob-

jects and other surfaces. Gupta et al. infer support in out-

door scenes from RGB images to aid in geometric label-

ing [4], and Silberman et al. [14] infer support relations and

types (e.g., supported from the side or from below) for pairs

of regions. Our work differs in its aim to infer full 3D extent

of support surfaces. Jiang et al. [9] propose an algorithm

that trains a robot to place objects based on 3D point clouds.

Our work on estimating underlying support surfaces would

facilitate object placement and allow more complex interac-

tions. Taylor and Cowley [15] estimate the layout of walls

from an RGBD image based on plane fitting and inference

in an overhead view but do not address the problem of sup-

port surfaces. Finally, our work has some relation to efforts

in 3D scene modeling (e.g., [2, 17, 13]). We differ in that

we are provided with only one viewpoint, and our goal is to

recover extent of underlying support surfaces rather than a

full model of visible objects and structures.

1.2. Contributions

This paper offers two main contributions: (1) detailed

3D annotations for the 1449 images of the NYU v2 Kinect

dataset that can be used to study 3D reconstruction, free

space estimation, and support inference; and (2) a model

and approach to recover the extent of support surfaces,

which is a fundamental but largely unexplored problem in

computer vision.

2. Creating 3D Annotations for Indoor Scenes
We extend the NYU Depth Dataset V2, which contains

1449 images of roughly 500 distinct scenes, with complete,

detailed 3D models (Fig. 2). Our annotation tool (Fig. 3)

enables users to model scenes based on both image data and

point clouds from the depth sensor while viewing the scene

from multiple angles. Our 3D annotations, combined with

the existing detailed 2D object annotations, will be useful

for exploring a wide variety of scene understanding tasks.

2.1. 3D Scene Model

We categorize scene elements into three classes:

• Layout structures include floors, walls and ceilings.

Because walls are always perpendicular to the floor,

they are modeled as line segments in the overhead view

and polygons in the horizontal view. Similarly, ceiling

and floors are line segments in the horizontal view and

polygons in the overhead view. We also model open-

ings such as doorways and windows on the walls as

polygons on the wall planes.

• Furniture objects are common in indoor scenes and

tend to have complicated 3D appearance. For example,

chairs and sofas cannot be modeled using cubic blocks,

and their support surfaces are often not the top part. To

accurately model them, we use Google SketchUp mod-

els from Google 3D Warehouse repository. We man-

ually select 30 models from these models to model 6

categories of furniture that are most common: chair,

table, desk, bed, bookshelf and sofa. The support sur-

face of each object is labeled by hand on the 3D model.

2145

Figure 2: 3D annotation examples. Our annotations can be used to study estimation of 3D layout of support surfaces (as in

this paper), objects, or occupied space.

Figure 3: Annotation tool. Users annotate the 3D scene based on views of the RGB image (left), an overhead view (left-

center), and a horizontal view (right-center), and with the help of 2D object segmentations and automatic initial guesses of

the object footprint. The 3D model is shown on the right.

• 3D extruded models are used to describe all other ob-

jects. Most clutter objects are small and do not have

regular shape, and we simply model them as vertically

extruded polygons.

2.2. Preprocessing

The RGBD scenes are first preprocessed to facilitate an-

notation as well as support surface inference. Because the

preprocessing is automatic, we use the same procedure at

the start of our inference pipeline. We start with the cropped

RGBD scene, which corresponds to the area where infor-

mation from both sensors are available. Then the surface

normals are computed at each pixel, by fitting local planar

surfaces in its neighborhood. These local planar surfaces

take into account color information as well, in a procedure

similar to bilateral filtering, which improves robustness of

plane fits compared to using only depth information.

Next, we compute the dominant room orientation by it-

eratively aligning the surface normals to the x, y or z axes.

Initially, surface normals of each point is assigned to the

nearest axis. Then we fix the assignment and compute opti-

mal rotation matrix R of the room is computed using SVD,

based on all points that are aligned within a given threshold.

The point cloud is then rotated using R and we repeat from

the alignment step again until the rotation matrix does not

change any more.

2.3. Annotation procedure

If the floor is visible, our system estimates the floor

height from the depth information and object labels

(from [14]). If necessary, the annotator can correct or spec-

ify the floor height by clicking on a scene point and indicat-

ing its height above the floor.

The annotator then alternates between labeling in an

overhead view (from above the scene looking down at the

floor) and horizontal view (from the camera looking at the

most frontal plane) to model the scene:

1. The annotator is asked to click to select one region

from the 2D annotated image plane by clicking.

2. In the overhead view, the annotator is shown high-

lighted 3D points and an estimated bounding box that

correspond to the object. The annotator can fit a poly-

gon to the footprint of the object.

2146

3. The horizontal view is then shown, and the annotator

specifies the vertical height of the object by drawing a

line segment at the object’s height.

4. Additionally, the annotator can supply more details of

the object, such as adding openings to the wall or plac-

ing a detailed SketchUp model for furniture. The user

can choose the SketchUp model and orientation with a

single keystroke.

A major advantage of our annotation tool is that the an-

notation process can guided by depth values in RGBD im-

age, improving ease and accuracy of layout recovery and

object modeling. Furthermore, the tool uses existing 2D ob-

ject label in the image plane (available in the NYU dataset)

so that the 3D models are consistent with the 2D annota-

tion. The tool also has a number of handy features that

help users annotate quickly including (1) a snapping fea-
ture that snaps the polygon vertices to neighboring sup-

port surfaces or corners, and/or aligns annotations with the

room axes; 2) an initial guess of the extent by fitting de-
fault bounding boxes to depth points included in the re-

gion. Therefore the users can often trust the default model

configuration and have to edit only when the system’s esti-

mate is poor.

Our annotation tool is implemented in Matlab, and the

annotation is also available in Protocol Buffer1, an ex-

changeable data format. On average, it takes about 5 min-

utes to model a scene with more than 10 objects, depending

on the complexity of the scene. We recruited four student

annotators with little or no previous Matlab experience and

obtained thousands of very high quality annotations shown

in Figure 2.

3. Support surface prediction
In this section, we present an approach (Fig. 4) to predict

the vertical height and horizontal extent of support surfaces

in a scene. Scene parsing in an overhead view is very dif-

ferent than in the image plane. One challenge is that many

locations are blocked from view and do not have observed

evidence. On the other hand, since the room directions have

been rectified, objects tend to have rectangular shapes in an

overhead view. We design features that apply to the over-

head view and use spatial context to improve parsing re-

sults.

3.1. Preprocessing

We first label pixels in the image plane using Silberman

et al.’s pipeline [14] into four geometric categories: “floor”,

“ceiling”, “wall” and “foreground”. We then project the

labeled pixels into the overhead view using the associated

depth signal.

1http://code.google.com/p/protobuf/

We also construct a voxel map representation of the

scene. We first voxelize the scene into grid and then project

onto the camera plane. The projected depths are then com-

pared to the depth values of the observed scene. All voxels

having smaller depth values are observed free space, and the

voxels larger depth values than the scene are not direct ob-

served. The rest of the voxels are outside of the view scope

and treated as “don’t care”.

3.2. Features

We use the following features, illustrated in Fig. 5.

1. Observed 3D points with upward normals are in-

dicative of support surfaces at that height.

2. Observed geometric labels are recorded as the mean

and max likelihood in each cell, after projecting to an

overhead view.

3. Edgemap is the detected straight line segments pro-

jected onto the overhead view. Horizontal straight

lines often occur at the edges of support surfaces.

4. Voxel occupancy is the amount of observed free space

voxels near the near the surface height. If a voxel is ob-

served to be free space, it cannot be a part of a support

surface.

5. Volumetric difference is the difference of number of

free space voxels above the height at this location sub-

tracted by the number of the number of free space

voxels below it. Support surfaces often have more air

above them than below.

6. Location prior is the spatial prior of where support

surfaces are in the training scenes, normalized by the

scale of the scene.

7. Viewpoint prior is the spatial prior of support surfaces

in training scenes with respect to the viewer.

8. Support height prior is the spatial distribution of the

vertical height of support planes.

3.3. Predicting support height

We first predict the support heights. Our intuition is that

at the height of a support plane, we are likely to see: (1)

observed surfaces with upward normals; (2) a difference in

the voxel occupancy above and below the plane; and (3)

observed 3D points near the height. Also, we use an esti-

mated prior, since some heights are more likely than others.

We sum over the features (upward-facing points, volumetric

difference, all 3d points) at the height of the proposed plane

and estimate an empirical log-likelihood for each, which is

used along with the prior probability in a linear SVM, which

2147

�������		������	���	

���������	�����	���	

	�����	������	

Input image� Feature processing�
Overhead space

prediction�
Support height�

detection�

���	�������	
�	���������	

�����	����	�����	
���������	

Support extent�
inference� Final prediction�

�������	�����	

������	�����	
���������	

Shape matching�
with examples�

Figure 4: Approach. The input is an aligned RGBD image. We first compute features based on the depth image and

estimated labels of image plane pixels into “floor”, “ceiling”, “wall” and “foreground”. These features are projected into an

overhead view and used to estimate the locations of walls (or floor free space). Next, a large number of horizontal planes

are proposed and classified as “support” or “non-support”. The horizontal extent of a supporting surface is then estimated

for each support plane based on the features at each point and surrounding predictions. Template matching is performed

with the footprints of training objects, which provides a more regularized estimate of support extent. In the rightmost image,

green pixels are estimated walls, blue pixels are floor, and red pixels are support surfaces, with lighter colors corresponding

to greater height. The darkly shaded portion corresponds to parts of the overhead map that are outside the camera’s viewing

angle. White lines correspond to wall estimates based on simple plane fitting.

Auto-context inference

�������	
�	
�
�	����	

����	���	
�����		��	����	

����	���	 �������	�	
�		 �
����
��	�	
�		

�� �����	
���������	

�	��	�����	�����
��	

Features

����		�����	��������	 �	��
���	�	��
����	

Input

Figure 5: Overhead scene parsing. The feature set we used in our support surface prediction: observed up-pointing points,

3D geometric labels and edgemaps are computed in the image plane and then projected. Volumetric difference, occupancy

and location/view prior are directly computed on the overhead grid. Auto context inference is applied to each predict support

height.

classifies into “support” or “non-support”. After classifi-

cation, we perform non-maximum suppression to remove

planes with very similar heights.

3.4. Estimating support extent

To estimate support extent, we divide the overhead view

into grid cells. For each cell of the floor plane, all features

are aggregated over a 3D vertical scene column and classi-

fied as “floor” or “wall” using a linear SVM. Likewise, for

2148

each support plane, we classify the grid cells in the over-

head view in that height into being part of support surface

or not. We use the follow set of features: (1) observed point

pointing up; (2) volumetric difference at each grid cell (3

levels); (3) projected surface map near the predicted support

height; (4) view dependent and independent spatial priors in

the overhead view; and (5) floor space prediction.

3.5. Integrating spatial context

The support surfaces have spatial contexts. When the

the object is partly occluded or partly out of scope, we do

not have direct appearance cues and need to rely on spatial

contexts to fill in the missing part. Guo and Hoiem used

auto-context procedure to overcome occlusion in 2D image

space. We used the same strategy in the overhead parsing.

Autocontext process iteratively aggregates the features

from the neighboring regions in a large template and applies

a discriminative classifier to predict labels for each grid cell.

Then the algorithm repeat by adding the output of previous

prediction into the feature set to repredict until the predic-

tion does not change anymore. We first compute feature at

each overhead cell on the overhead view as in the previous

subsection and apply autocontext. Figure. 5 visualizes this

iterative procedure.

3.6. Shape prior transfer using template matching

Although spatial contexts helps to fill in the occluded

part in the overhead view, it does not fully exploit the shape

prior such as objects often being rectangular. We further

harvest shape prior by matching the support extent prob-

ability map with the support surface layout template from

training scenes.

The matched template should have similar shape, scale

and spatial contexts with the probability map. We assign a

positive score to locations that are support surfaces on both

the prediction and the template; we assign a negative score

to penalize where the template overlap with the free space in

the probability map. We do not assign any score to location

that are out of the view scope.

The template matching uses convolution to compute

matching score and can be done efficiently using Fourier

transform. The translation vector can be found by doing the

inverse Fourier transform. We used the matched template

as shape prior if it is the top k matches and that the match-

ing score is above a threshold. Otherwise, we do not trans-

fer any shape prior. For scenes with complicated support

surface layout, it is often the case that there is not a single

perfect match, but there exist multiple good partial matches.

In such cases, we remove the probability from the current

matched part and rematch the remaining of the probability

map with the rest of the templates. And we repeat this to

the point when there are no good matching anymore.

Compare to holistic scene matching strategies such as

in case of Satkin et al. [11], our matching scheme is more

flexible because we allow translation and partial matches.

Our matching is also independent of the viewpoint since our

scenes automatically aligned, further improving the chance

of finding good matches.

4. Experiments

To verify the effectiveness of our propose method, we

evaluate our support surface prediction by comparing to the

ground truth support surfaces extracted from our annotated

dataset.

4.1. Generating ground truth

We predefined categories of objects that are “capable of

support”, such as table, sofa, shelves, cabinet etc. Such defi-

nition are mostly obvious. Alternatively it is also possible to

sort support relations and discover categories that are more

often supporters. Here we just manually defined. Ground

truth support surfaces are defined to be the top part of an

object from “supporter” category unless they are within the

0.15m to the ceiling.

For prediction, we project the depth points to the over-

head view and quantize the projected area into a grid with

a spacing of 0.03 m, we perform prediction and evaluation

based on this grid. The ground truth floor space is the union

of the annotated area union observed area, subtracted by the

area that has been occluded by walls from the viewpoint.

The area that are out of the scope are marked as “don’t

care”.

The ground truth of support plane is just the top surface

of objects, or, in case of the SketchUp model objects, the

annotated functional surface (e.g. the seat of a chair). To

make evaluation less sensitive to noise in localization, we

make the area around boundary of support surface within a

thickness of 0.15m to be “don’t care”. As in floor space, we

also do not evaluate the area that is out of the scope.

4.2. Experimental setup

We use the training/testing split from Silberman et al pa-

per, with a training of 795 scenes and 654 scenes. For train-

ing support height classifier, we scan the vertical extent of

the scene with spacing of 0.01m. The negative examples

are the ones are far away from any ground truth heights by

a threshold of 0.15m. The positive ones are just the anno-

tated heights. We use a linear classifier to train and predict

on support heights. At testing time, we also scan all vertical

heights with 0.01m spacing and than apply non-maximum

suppression, with a tolerance of 0.15m.

In autocontext, we used a template of sparse template

points with a distance of 0, 0.03, 0.12, 0.27, 0.48, 0.75m

away from the center pixel distributed in a star shape . This

large template helps us to model the long range contextual

2149

interactions. We repeat the autocontext for 3 iterations be-

fore it terminates.

To do template matching, we first aggregate the support

surface configurations from training scenes, and obtain a

total of 1372 templates. For the extent probability map we

predict at each support height, we retrieve the top 10 tem-

plates with the highest matching scores. If the matching

score is below a threshold of 200, we do not use the tem-

plate to transfer shape prior. If the remaining score of the

probability map is above this threshold of 200, we rematch

until there is no good matching anymore.

4.3. Qualitative results

In Figure. 6, we display the visualization of support sur-

face prediction in the overhead view. Although the scenes

are cluttered and challenging, we are able to predict most

of the support surface extents even if they are severely oc-

cluded (kitchen counter in first image on the top left) or is

partly out of view (the chair in first top right image). Fur-

thermore, the transferred support planes can give us a rough

estimation of individual support objects.

However, there are cases where the support surfaces are

hard to find because they are not obvious or not directly

observed. For example, in the cabinet tops in the bottom left

image are above the camera height. The seat of the chair in

the bottom right image is out of the field of view and is hard

to detect.

4.4. Quantitative results

We evaluate accuracy of support extent prediction with

precision-recall curves. The ground truth consists of a set

of known support pixels at some floor position and verti-

cal height and a set of “don’t care” pixels at the edges of

annotated surfaces or out of the field of view. Our predic-

tions consist of a set of confidence-valued support pixels.

Computation of precision-recall is similar to that for object

detection, as in the PASCAL VOC challenge [1]. The most

confident predicted pixel at the same overhead position and

within 0.15m height of ground truth support pixel is labeled

positive (or “don’t care” if that is the ground truth label).

All other pixels are labeled as negative so that duplicate de-

tections are penalized. Because there are many points per

image in the dataset, we sample 1000 pixels from each im-

age, so that each image has the same weight. Precision-

recall curves are computed based on samples accumulated

over the 654 test images.

Fig. 7 shows the results of our quantitative analysis. We

compare to a baseline of plane-fitting, using the Silberman

et al. [14] code for plane segmentation and selecting ap-

proximately horizontal surfaces as support surfaces. The

baseline does not have confidences, so it is a single point

on the curve. In Fig. 7(a), we see that our method outper-

forms the baseline by 12% precision at the same recall level

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Final prediction
Plane fitting
W/o autocontext

(a) PR curve of all support surfaces

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Invisible part
Visible part

(b) PR curve on visible and invisible

part

Figure 7: Precision-Recall curve of support surface ex-
tent prediction.

or 11% recall at the same precision. The gain due to use of

autocontext and shape fitting is large. Most of the gain is

due to autocontext; the improvement due to shape fitting af-

fects qualitative results more than quantitative. In Fig. 7(b),

we compare performance for occluded support surfaces to

unoccluded (visible) ones. In qualitative results, we show

predictions that have confidence greater than the value cor-

responding to the 0.4 recall threshold.

5. Conclusions

We propose 3D annotations for the NYU v2 dataset and

an algorithm to find support planes and determine their ex-

tent in an overhead view. Our quantitative and qualitative

results show that our prediction is accurate for nearby and

visible support surfaces, but surfaces that are distant or near

or above eye-level still present a major challenge. Because

many surfaces are occluded, contextual reasoning is nec-

essary to achieve good performance. Methods to improve

detection of support planes above eye-level (which are not

directly visible) and to recognize objects and use categori-

cal information are two fruitful directions for future work.

In addition, our dataset enables researchers to study prob-

lems of occupancy (or free space), estimation of navigable

paths, 3D reconstruction, and other spatial understanding

tasks.

References
[1] M. Everingham, L. Van Gool, C. K. I. Williams,

J. Winn, and A. Zisserman. The PASCAL Visual Ob-

ject Classes Challenge 2010 Results. http://www.pascal-

network.org/challenges/VOC/voc2010/workshop/index.html.

7

[2] Y. Furukawa, B. Curless, S. M. Seitz, and R. Szeliski. Re-

constructing building interiors from images. In ICCV, pages

80–87, 2009. 2

2150

��������	�	��
	 �����	����	
������	
��
��	

��
����
�	
��
��	 �
��		����
�	
����������	

��������	�	��
	 �����	����	
������	
��
��	

��
����
�	
��
��	 �
��		����
�	
����������	

Figure 6: Overhead visualization. Green and blue and red areas are estimated walls, floor and support surfaces respectively.

The brighter colors of support surfaces indicate higher vertical heights relative to the floor. Dark areas are out of the view

scope.

[3] R. Guo and D. Hoiem. Beyond the line of sight: Labeling

the underlying surfaces. In ECCV, pages 761–774, 2012. 1,

2

[4] A. Gupta, A. A. Efros, and M. Hebert. Blocks world re-

visited: Image understanding using qualitative geometry and

mechanics. In ECCV, 2010. 2

[5] A. Gupta, S. Satkin, A. A. Efros, and M. Hebert. From 3d

scene geometry to human workspace. In CVPR, 2011. 2

[6] V. Hedau, D. Hoiem, and D. Forsyth. Recovering the spatial

layout of cluttered rooms. In ICCV, 2009. 2

[7] V. Hedau, D. Hoiem, and D. Forsyth. Thinking inside the

box: Using appearance models and context based on room

geometry. In ECCV, 2010. 2

[8] V. Hedau, D. Hoiem, and D. A. Forsyth. Recovering free

space of indoor scenes from a single image. In CVPR, pages

2807–2814, 2012. 2

[9] Y. Jiang, M. Lim, C. Zheng, and A. Saxena. Learning to

place new objects in a scene. I. J. Robotic Res., 31(9):1021–

1043, 2012. 2

[10] D. C. Lee, M. Hebert, and T. Kanade. Geometric reasoning

for single image structure recovery. In CVPR, 2009. 2

[11] S. Satkin, J. Lin, and M. Hebert. Data-driven scene under-

standing from 3D models. In BMVC, 2012. 2, 6

[12] A. G. Schwing, T. Hazan, M. Pollefeys, and R. Urtasun. Ef-

ficient structured prediction for 3d indoor scene understand-

ing. In CVPR, pages 2815–2822, 2012. 2

[13] T. Shao, W. Xu, K. Zhou, J. Wang, D. Li, and B. Guo. An

interactive approach to semantic modeling of indoor scenes

with an rgbd camera. ACM Trans. Graph., 31(6):136, 2012.

2

[14] N. Silberman, D. Hoiem, P. Kohli, and R. Fergus. Indoor

segmentation and support inference from rgbd images. In

ECCV, pages 746–760, 2012. 1, 2, 3, 4, 7

[15] C. J. Taylor and A. Cowley. Parsing indoor scenes using rgb-

d imagery. In Robotics: Science and Systems, 2012. 2

[16] Z. Tu and X. Bai. Auto-context and its application to high-

level vision tasks and 3d brain image segmentation. IEEE
Trans. Pattern Anal. Mach. Intell., 32(10):1744–1757, 2010.

2

[17] J. Xiao and Y. Furukawa. Reconstructing the world’s muse-

ums. In ECCV (1), pages 668–681, 2012. 2

2151

