
Potts model, parametric maxflow and k-submodular functions

Igor Gridchyn
IST Austria

igor.gridchyn@ist.ac.at

Vladimir Kolmogorov
IST Austria

vnk@ist.ac.at

Abstract

The problem of minimizing the Potts energy function
frequently occurs in computer vision applications. One
way to tackle this NP-hard problem was proposed by Kov-
tun [20, 21]. It identifies a part of an optimal solution by
running k maxflow computations, where k is the number of
labels. The number of “labeled” pixels can be significant in
some applications, e.g. 50-93% in our tests for stereo. We
show how to reduce the runtime to O(log k) maxflow com-
putations (or one parametric maxflow computation). Fur-
thermore, the output of our algorithm allows to speed-up
the subsequent alpha expansion for the unlabeled part, or
can be used as it is for time-critical applications.

To derive our technique, we generalize the algorithm of
Felzenszwalb et al. [7] for Tree Metrics. We also show
a connection to k-submodular functions from combinato-
rial optimization, and discuss k-submodular relaxations for
general energy functions.

1. Introduction
This paper addresses the problem of minimizing an en-

ergy function with Potts interaction terms. This energy has

found a widespread usage in computer vision after the sem-

inal work of Boykov et al. [4] who proposed an efficient

approximation algorithm for this NP-hard problem called

alpha expansion.

The algorithm of [4] is based on the maxflow algo-

rithm, also known as graph cuts. Each iteration involves

k maxflow computations, where k is the number of labels.

Several techniques were proposed for improving the effi-

ciency of these computations. The most relevant to us is

the method of Kovtun [20, 21] which computes a part of an

optimal solution via k maxflow computations. We can then

fix “labeled” nodes and run the alpha expansion algorithm

for the remaining nodes. Such scheme was a part of the

“Reduce, Reuse, Recycle” approach of Alahari et al. [1].

Our main contribution is to improve the efficiency of

Kovtun’s method from k maxflow computations to �1 +
log2 k� computations on graphs of equivalent sizes. In

some applications the method labels a significant fraction of

nodes [20, 21, 1], so our techique gives a substantial speed-

up. We may get an improvement even when there are few

labeled nodes: it is reported in [1] that using flow from Kov-

tun’s computations always speeds up the alpha expansion

algorithm for unlabeled nodes.

The idea of our approach is to cast the problem as an-

other minimization problem with Tree Metrics, and then

generalize the algorithm of Felzenszwalb et al. [7] for Tree

Metrics by allowing more general unary terms. This gen-

eralization is our second contribution. Finally, we discuss

some connections to k-submodular functions.

Other related work A theoretical analysis of Kovtun’s

approach was given by Shekhovtsov and Hlavac [25, 24].

It was shown that the method in [20, 21] does not improve

on the alpha expansion in terms of the quality of the so-

lution: if a node is labeled by Kovtun’s approach then the

alpha expansion would produce the same solution for this

node upon convergence (assuming that all costs are unique;

see [25] for a more general statement). Similarly, Kovtun’s

approach does not improve on the standard Schlesinger’s

LP relaxation of the energy [25].

We also mention the “FastPD” method of Komodakis et

al. [18, 19]. The default version of FastPD for the Potts en-

ergy produces the same answer as the alpha expansion algo-

rithm but faster, since it maintains not only primal variables

(current solution) but also dual variables (“messages”). In-

tuitively, it allows to reuse flow between different maxflow

computations. An alternative method for reusing flow was

used by Alahari et al. [1], who reported similar speed-ups.

2. Preliminaries
The Potts energy for labeling x ∈ LV is given by

f(x) =
∑
i∈V

fi(xi) +
∑

{i,j}∈E

λij [xi �= xj] (1)

Here V is the set of nodes, E is the set of edges, L is the set

of labels, λij are non-negative constants and [·] is the Iver-
son bracket. It is well-known that computing a minimizer

of (1) is NP-hard when |L| ≥ 3 [4].

2013 IEEE International Conference on Computer Vision

1550-5499/13 $31.00 © 2013 IEEE

DOI 10.1109/ICCV.2013.288

2320

2013 IEEE International Conference on Computer Vision

1550-5499/13 $31.00 © 2013 IEEE

DOI 10.1109/ICCV.2013.288

2320

Let us review the method of Kovtun [20, 21] for obtain-

ing a part of an optimal solution. (The method is applicable

to general functions - see [20, 21, 25]; here we consider

only the Potts energy, in which case the formulation simpli-

fies considerably.) For a label a∈L denote ā=L−{a}, and

let fi(ā)=min
b∈ā

fi(b). Define function fa : {a, ā}V →R via

fa(y) =
∑
i∈V

fi(yi) +
∑

{i,j}∈E

λij [yj �= yi] (2)

(A remark on notation: we typically use letter x for multi-

valued labelings and y for binary labelings).

Theorem 1 ([20, 21]). Let y ∈ {a, ā}V be a minimizer of
fa. For any x ∈ LV there holds f(xy) ≤ f(x) where label-

ing xy is defined via (xy)i =

{
a if yi = a

xi if yi = ā
for i ∈ V .

Consequently, there exists minimizer x∗ ∈ arg min
x∈LV

f(x)

such that x∗
i = a for all nodes i ∈ V with yi = a.

Kovtun’s approach requires minimizing function fa for

all a ∈ L. A naive way to do this is to use k maxflow com-

putations on a graph with |V | nodes and |E| edges, where

k = |L|. To reduce this to O(log k) maxflow computations,

we will use the following strategy. First, we will define an

auxiliary function g : DV → R whereD = L∪{o}, o /∈ D.

We will then present an efficient algorithm for minimizing

g, and show that a minimizer x ∈ argmin{g(x) | x ∈ DV }
determines a minimizer y ∈ argmin{fa(y) | y ∈ {a, ā}V }
for each a ∈ L in the natural way, i.e. yi = a if xi = a and

yi = ā otherwise. Function g will have the following form:

g(x) =
∑
i∈V

gi(xi) +
∑

{i,j}∈E

λijd(xi, xj) (3)

where d(·, ·) is a tree metric with respect to a certain tree T :

Definition 2. Let T = (D, E , d) be a weighted undirected
tree with positive weights d(e), e ∈ E . The tree metric onD
is the function d : D × D → R defined as follows: d(a, b)
for a, b ∈ D is the length of the unique path from a to b in
T , where d(e) is treated as the length of edge e ∈ E .

We define T as the star graph rooted at o, i.e. E =
{{a,o} | a ∈ L}. All edges are assigned length 1. The

unary functions in (3) are set as follows: gi(o) = 0 and

gi(a) = fi(a) − fi(ā) for a ∈ L. Function g in eq. (3) is

now completely defined. It can be seen that minimizing fa

is equivalent to minimizing g(y) over y ∈ {a,o}V .

The following observation will be crucial.

Proposition 3. For any i ∈ V and a, b ∈ L with a �= b
there holds gi(a) + gi(b) ≥ 0.

Proof. Let a1 ∈ argmin
a∈L

fi(a) and a2 ∈ arg min
a∈ā1

fi(a).

We have gi(a1) = fi(a1)−fi(a2) ≤ 0 and gi(a) = fi(a)−
fi(a1) ≥ fi(a2)− fi(a1) ≥ 0 for any a ∈ ā1. This implies

the claim.

More generally, we say that function gi : D → R is T -
convex if for any pair of edges {a, b}, {b, c} ∈ E with a �= c
there holds

d(a, c)gi(b) ≤ d(b, c)gi(a) + d(a, b)gi(c) (4)

Clearly, terms gi contructed above are T -convex. We will

prove the following result for an arbitrary tree T and func-

tion g with T -convex unary terms gi. (Part (a) will imply

that Kovtun’s approach indeed reduces to the minimization

of the function g above; part (b) will motivate a divide-and-

conquer algorithm for minimizing g.)

Theorem 4. Let {a, b} be an edge in E . For labeling
x ∈ DV define binary labeling x[ab] ∈ {a, b}V as follows:
x
[ab]
i is the label in {a, b} closest to xi in T .

(a) If x ∈ DV is a minimizer of g then x[ab] ∈
argmin{g(y) | y ∈ {a, b}V }.
(b) If y ∈ argmin{g(y) | y ∈ {a, b}V } then function g has
a minimizer x ∈ DV such that x[ab] = y.

Note, part (a) and a repeated application of Theorem 1

give that any minimizer x ∈ DV of g is a partially optimal

labeling for f , i.e. f has a minimizer x∗ ∈ LV such that

x∗
i = xi for all i with xi �= o.

In the next section we consider the case of an arbitrary

tree T , and present an efficient algorithm for minimizing

function g with T -convex unary terms. In section 4 we dis-

cuss its specialization to the star graph T with unit edge

length, and sketch some implementation details. Then in

section 5 we describe a connection to k-submodular func-
tions. Section 6 gives experimental results, and section 7

presents conclusions.

3. Minimization algorithm for general T
We build on the work of Kolen [15] and Felzenszwalb et

al. [7]. They considered the case when unary functions gi(·)
are given by gi(xi) = λid(xi, ci) where λi ≥ 0 and ci is a

constant node in D. [15] showed that such function can be

minimized via |D| maximum flow computations on graphs

with O(|V |) nodes and O(|E|) edges. Using a divide-and-

conquer approach, [7] improved this to O(log |D|) maxflow

computations (plus O(|D| log |D|) time for bookkeeping).

Their algorithm can be viewed as a generalization of the

algorithm in [12, 5, 6] for minimizing Total Variation func-

tionals g(x) =
∑

i gi(xi)+
∑

{i,j} λij |xj−xi|with convex

terms gi over x ∈ {1, 2, . . . , k}V (this corresponds to the

case when T is a chain with unit lengths).

In this section we show that with an appropriate modifi-

cation the algorithm of [7] can be applied to function (3)

23212321

a

b

A

B

Figure 1. Algorithm’s illustration. First, it computes y ∈
argmin{g(y) | y ∈ {a, b}V }. Suppose that y = (a, a, b, b, b).
By Theorem 4(b), g has minimizer x that belongs to regions A
and B. To find solution (x1, x2) for region A, the algorithm is

called recursively while fixing variables x3, x4, x5 to a (this is

equivalent to fixing these variables to their optimal labels in B -

the function changes only by a constant that does not depend on

x1, x2). Solution (x3, x4, x5) is computed similarly.

with T -convex unary terms, and present a self-contained

proof of correctness.1

The main step of the algorithm is computing a mini-

mizer y ∈ argmin{g(y) | y ∈ {a, b}V } for some edge

{a, b} ∈ E (this can be done via a maxflow algorithm). By

Theorem 4(b), y gives some information about a minimizer

of g. This information allows to split the problem into two

independent subproblems which can then be solved recur-

sively. We arrive at the following algorithm.

Algorithm 1 SPLIT(g)

Input: function g : DV → R specified by graph (V,E),
tree T = (D, E , d), unary terms gi : D → R and edge

weights λij

Output: labeling x ∈ argmin{g(x) | x ∈ DV }
1: if D = {a} return (a, . . . , a)
2: pick edge {a, b} ∈ E
3: compute y ∈ argmin{g(y) | y ∈ {a, b}V }
4: let Ta = (Da, Ea, da), Tb = (Db, Eb, db) be the trees

obtained from T by removing edge {a, b} (with a ∈
Da, b ∈ Db)

5: for c ∈ {a, b} do
6: let Vc = {i ∈ V | yi = c}
7: let gc be the function DVc

c → R obtained from g by

fixing all nodes in V − Vc to c, i.e. gc(x) = g(x̄)
where x̄i = xi for i ∈ Vc and x̄i = c for i ∈ V − Vc

8: let xc := SPLIT(gc)
9: end for

10: merge labelings xa, xb into labeling x, return x

Note that function gc in line 7 is defined on the subgraph

of (V,E) induced by Vc. Indeed, for each edge {i, j} ∈ E
with i ∈ Vc, j ∈ V − Vc pairwise term λijd(xi, xj) is

1The proof in [7] relied on results in [15], and used a different argu-

ment. In our view, the new proof shows more clearly why the extension to

T -convex unary terms is possible.

⇒a a b

N N ′
N N ′

Figure 2. Inserting edge into T . Given node a ∈ D and the parti-

tion of its neighborsN ∪N ′, tree T is modified as follows: (i) add

new node b /∈ D; (ii) add new edge {a, b}; (iii) keep nodes c ∈ N
as neighbors of a, but make nodes c′ ∈ N ′ neighbors of b.

transformed to a unary term λijd(xi, c). It can be checked

that this unary term is Tc-convex.

The following theorem implies that the algorithm is cor-

rect; its proof is given in section 3.1.

Theorem 5. If xc in line 9 is a minimizer of gc over DVc
c

for each c ∈ {a, b} then labeling x in line 10 is a minimizer
of g over DV .

The algorithm leaves some freedom in line 2, namely the

choice of edge {a, b} ∈ E . Ideally, we would like to choose

an edge that splits the tree into approximately equals parts

(|Da| ≈ |Db|). Unfortunately, this is not always possible; if,

for example, T is a star graph then every split will be very

unbalanced. To deal with this issue, [7] proposed to expand

tree T (and modify the input function accordingly) so that

the new tree T ′ admits a more balanced split. Details are

given below.

Let a be a node in D with two or more neighbors. Let

us split these neighbors into non-empty disjoint sets N , N ′

and modify tree T as described in Fig. 2. (This step is in-

serted before line 2; the new edge {a, b} becomes the output

of line 2.) We denote D′ = D ∪ {b}; also, let D′
a, D′

b be

the connected components of T ′ after removing edge {a, b}
(with a ∈ D′

a, b ∈ D′
b).

The length of new edge {a, b} is set to an infinitesimally

small constant ε > 0. The new unary function gεi : D′ → R

for node i ∈ V is defined via

gεi (c) = gi(c) + ε · ui · [c ∈ D′
b] ∀c ∈ D′ (5)

where we assume that gi(b) = gi(a), and ui ∈ R is cho-

sen in such a way that function gεi is T ′-convex. (Such

ui always exists - see below). The new functional is thus

gε(x) =
∑

i∈V gεi (xi) +
∑

{i,j}∈E λijd
ε(xi, xj) for x ∈

(D′)V , where dε is the new tree metric.

There holds |gε(x) − g(xb�→a)| ≤ const · ε for any

x ∈ (D′)V , where xb �→a is the labeling obtained from x
by assigning label a to nodes with label b. Therefore, if ε is

small enough then the following holds: if x ∈ (D′)V is an

optimal solution of the modified problem then xb�→a is an

optimal solution of the original problem.

23222322

The cost function used in line 3 can be written as gε(y) =
const + ε · g′(y) for all y ∈ {a, b}V , where function g′ :
{a, b}V → R is defined via

g′(y) =
∑
i∈V

ui · [yi = b] +
∑

{i,j}∈E

λij · [yi �= yj] (6)

Therefore, minimizing gε over {a, b}V is equivalent to min-

imizing g′ (and thus the minimizer does not depend on ε).

To summarize, we showed that the SPLIT algorithm

remains correct if we replace line 2 with the tree modifi-

cation step described above, and in line 3 compute y ∈
argmin{g′(y) | y ∈ {a, b}V }. Also, in line 10 we need

to convert labeling xb to (xb)b�→a before merging with xa.

Selecting ui It remains to show that value ui for node i∈V
can be set in such a way that function (5) is T ′-convex.

Proposition 6. Define

umin
i =−min

c∈N
gi(c)−gi(a)

d(a, c)
umax
i = min

c′∈N ′

gi(c
′)−gi(a)

d(a, c′)

There holds umin
i ≤ umax

i , and for any ui ∈ [umin
i , umax

i]
and ε > 0 function gεi in (5) is T ′-convex.

A proof is given in [9].

3.1. Proof of theorems 4 and 5

The proof is based on the theorem below. Versions of

this theorem in the case when T is a chain with unit weights

appeared in [12, 28, 5, 6]; eq. (7) was then called the coarea
formula [5, 6].

In part (b) we exploit the fact that unary functions gi are

T -convex, and make use of a well-known result about the

parametric maxflow problem [8].

Theorem 7. (a) [Coarea formula] There holds

g(x) = const+
∑

{a,b}∈E
g(x[ab]) ∀x ∈ DV (7)

where x[ab] ∈ {a, b}V is defined as in Theorem 4.
(b) Consider edges {a, b}, {b, c} ∈ E with a �= c. Let ybc be
a minimizer of {g(y) |y ∈ {b, c}V }. If yab is a minimizer of
{g(y)|y ∈ {a, b}V } then so is labeling yab ↓ ybc ∈ {a, b}V
where binary operation ↓ is defined component-wise via

� ↓ �′ =
{
� if �′ = b

b if �′ = c
∀� ∈ {a, b}, �′ ∈ {b, c}

Proof. Part (a) It is straightforward to check that the fol-

lowing holds for nodes i ∈ V and edges {i, j} ∈ E respec-

tively:

gi(xi) =

[∑
a∈D

(1− deg(a))gi(a)

]
+

∑
{a,b}∈E

g(x
[ab]
i)

λijd(xi, xj) = λij

∑
{a,b}∈E

d(x
[ab]
i , x

[ab]
j)

where deg(a) is the number of neighbors of a in T . Sum-

ming these equations gives (7).

Part (b) Let g′ : {0, 1}V → R be the function obtained

from g by associating 0 �→ a, 1 �→ b. Similarly, let

g′′ : {0, 1}V → R be the function obtained from g by asso-

ciating 0 �→ b, 1 �→ c. We can write

h′(y) � g′(y)
d(a, b)

= const+
∑
i∈V

u′
iyi +

∑
{i,j}∈E

λij |yj − yi|

h′′(y) � g′′(y)
d(b, c)

= const+
∑
i∈V

u′′
i yi +

∑
{i,j}∈E

λij |yj − yi|

where

u′
i =

gi(b)− gi(a)

d(a, b)
u′′
i =

gi(c)− gi(b)

d(b, c)

for i ∈ V . The T -convexity of gi implies that u′
i ≤ u′′

i .

We need to show the following: if y′, y′′ ∈ {0, 1}V are

minimizers of h′ and h′′ respectively then labeling y′ ∨ y′′

is a minimizer of h′. This is a well-known fact about the

parametric maxflow problem ([8], Lemma 2.8). Indeed,

h′(y′ ∨ y′′)− h′(y′) ≤ h′(y′′)− h′(y′ ∧ y′′)

= h′′(y′′)− h′′(y′ ∧ y′′) +
∑

i:(y′
i,y

′′
i)=(0,1)

[u′
i − u′′

i] ≤ 0

We say that a family of binary labelings y = (yab ∈
{a, b}V | {a, b} ∈ E}) is consistent if there exists labeling

x ∈ DV such that x[ab] = yab for all {a, b} ∈ E . Theo-

rem 7(a) implies that the minimization of g(x) over x ∈ DV

is equivalent to the minimization of

G(y) =
∑

{a,b}∈E
g(yab) (8)

over consistent labelings y = (yab ∈ {a, b}V | {a, b} ∈ E).
Next, we analyze the consistency constraint.

Proposition 8. Family y is consistent iff for every for any
pair of edges {a, b}, {b, c} ∈ E with a �= c and any node
i ∈ V there holds (yabi , ybci) �= (a, c).

23232323

Proof. Let us fix a node i ∈ V , and denote yi =
(yabi | {a, b} ∈ E}). Clearly, there is one-to-one corrre-

spondence between possible labelings yi and orientations

of tree T . Namely, to each yi we associate a directed graph

G[yi]=(D, �E [yi]) with �E [yi]={(a, b) | {a, b}∈E , yabi =b}.
It can be seen that yi is consistent (i.e. there exists xi ∈

D with yabi = x
[ab]
i for all {a, b} ∈ E) iff graph G[yi] has

exactly one sink, i.e. a node without outgoing edges. This

is equivalent to the condition that each node a ∈ D has at

most one outgoing edge in G[yi]. This is exactly what the

condition in the proposition encodes.

We can now prove Theorems 4 and 5. Here we prove

only Theorem 4(b); for other parts were refer to [9].

Consider the following algorithm for constructing a fam-

ily of binary labelings y. Initially, we set y = (yab) where

yab = y is the labeling chosen in Theorem 4(b). We also

initialize subtree T ′ = (D′, E ′) of T via D′ = {a, b}, E ′ =
{{a, b}}, and then repeat the following while T ′ �= T : (i)

pick edge {a′, b′} ∈ E−E ′ with a′ ∈ D−D′, b′ ∈ D′, add a′

toD′ and {a′, b′} to E ′; (ii) pick ya
′b′ ∈ argmin{g(y) |y ∈

{a′, b′}V }; (iii) go through edges {b′, c′} ∈ E ′ with c′ �= a′

(in some order) and replace ya
′b′ with ya

′b′ ↓ yb′c′ .
By Theorem 7(b), the constructed family of binary label-

ings y satisfies the following: ya
′b′ ∈ argmin{g(y) | y ∈

{a′, b′}V } for all {a′, b′} ∈ E . Using Proposition 8, it is

also easy to check that family y is consistent; let x ∈ DV

be the corresponding labeling. Theorem 7(a) implies that x
is a minimizer of g.

4. Implementation details

In this section we sketch implementation details of Al-

gorithm 1 applied to the function constructed in section 2

(so T is a star graph with nodes D = L ∪ {o}). We will

discuss, in particular, how to extract optimal flows.

We use the edge insertion operation at each call of

SPLIT except when D = {a,o} for some a ∈ L. Thus,

computations can be described in terms of a binary tree

whose nodes correspond to subsets of labelsA ⊆ L (Fig. 3).

Let Ω be the set of nodes of this tree. For each A ∈ Ω we

run a maxflow algorithm; let VA ⊆ V be the set of nodes

involved in this computation. Note that sets VA for nodesA
at a fixed depth form a disjoint union of V (except possibly

the last level). Therefore, these maxflow computations can

be treated as a single maxflow on the graph of the original

size. The total number of such computations is �1+ log2 k�
(the number of levels of the tree).

For each A ∈ Ω we set up a graph with the set of nodes

VA ∪ {s, t} and the cut function

fA(S∪{s}, T∪{t})=
∑
i∈VA

uA
i [i∈T]+

∑
{i,j}

λij [i∈S, j∈T]

Figure 3. Binary tree for the set L = {1, . . . , 7}. Each node is a

subset A ⊆ L; L is the root and singleton subsets are the leaves.

(S
.∪ T = VA). To define uA

i , we need to specify the

meaning of the source s and the sink t. For non-leaf nodes

A ∈ Ω the source corresponds to the left child A� and the

sink corresponds to the right child Ar; we then have

uA
i ∈ [gi(o)− min

a∈A�

gi(a),−gi(o) + min
a∈Ar

gi(a)] (9)

where we use the current value of gi(o) (it is zero initially

and then gets decreased). For a leaf A = {a} we use a

different intepretation: s corresponds to label a and t corre-

sponds to label o, therefore uA
i = gi(o)− gi(a).

We perform all maxflow computations on a single graph.

We use the Boykov-Kolmogorov algorithm [3] with flow

and search trees recycling [14]. We maintain values ui for

nodes i ∈ V that give the current cut functions encoded by

the residual graph. After computing maxflow at a non-leaf

node A the residual graph is modified as follows. First, for

each arc (i→ j) from the source to the sink component we

do the following:

1. Set ui := ui − λij and uj := uj + λij ; this simulates

pushing flow λij along the path t→ j → i→ s.

2. Remove arcs (i→ j), (j → i) from the graph.

3. Update gi(o) := gi(o)− λij .

Now we need to set unary costs for maxflow computations

at the children A�, Ar of A. Consider node i ∈ VAc
, c ∈

{�, r}. First, we compute the appropriate value uAc
i ; if Ac

is not a leaf then we compute interval (9) forAc and choose

the value uAc
i from the interval closest to ui.

2 Then we

change the graph by adding δAc
i = uAc

i −ui to the capacity

of (s → i) (or subtracting from the capacity of (i → t)),
and update ui := uAc

i .

Remark 1 The following property can be shown. Suppose that

node i ∈ V ended up at a leaf {a} ∈ Ω. Let P be the path from

L to {a}, and define values cAi for A ∈ P so that cLi = uL
i and

cBi = cAi + δBi for edges (A,B) ∈ P . Then values cAi for nodes

A ∈ P − {a} are non-decreasing w.r.t. the inorder of the binary

tree.3

2It can be shown that we only need to know a∗ ∈ argmina∈L gi(a),
gi(a

∗) and gi(o) for that.
3The monotonicity would also hold for the leaf {a} if we changed the

meaning of the source and the sink for computations at the leaves {a} ∈ Ω
that are right children. However, we found it more convenient to use our

interpretation.

23242324

Such monotonicity implies that computations at non-leaf nodes

fall into the framework of parametric maxflow of Gallo et al. [8].

As shown in [8], all computations can be done with the same

worst-case complexity as a single maxflow computation. How-

ever, this requires a more complex implementation, namely run-

ning in parallel two push-relabel algorithms. Experiments in [2]

suggest that this is less efficient than a naive scheme.

Extracting flows Let us fix label a ∈ L. Recall that Al-

gorithm 1 yields the minimum of function fa given by (2).

An important question is how to obtain an optimal flow cor-

respoding to this computation; as reported in [1], using this

flow speeds up the alpha expansion algorithm.

It suffices to specify the flow ξij for each arc (i → j)
with {i, j} ∈ E (the flow from the source and to the sink

can then be easily computed). We used the following rule.

For each edge we store flow ξ′′ij after the final maxflow and

flow ξ′ij immediately before maxflows at the leaves. For

each node i ∈ V we also store leaf Ai ∈ Ω at which node i
ended up. We now set flow ξij as follows:

• if Ai = Aj = {a} set ξij := ξ′′ij
• otherwise let A ∈ Ω be the least common ancestor of

Ai,Aj , {a} in the binary tree. If {a} belongs to the left

subtree of A then set ξij := ξ′ij , otherwise set ξij := ξ′ji.

We hope to prove to correctness of this procedure in a future

publication; at the moment we state it as a conjecture that

was verified experimentally. We mention that we were not

able to find a scheme that would store only one flow per arc.

5. Relation to k-submodular functions
In this section we discuss some connections between

techniques described earlier and k-submodular functions in-

troduced in [16, 13]. We also define k-submodular relax-
ations of discrete functions f : LV → R which generalize

bisubmodular relaxations [17] of pseudo-Boolean functions

in a natural way.

Definition 9 (k-submodularity). Let � be the partial order
on D = L ∪ {o} such that a ≺ b iff a = o and b ∈ L.
Define binary operations �,� : D ×D → D via

(a�b, a�b) =
{
(o,o) if a, b ∈ L, a �= b

(min{a, b},max{a, b}) otherwise

where min and max are taken w.r.t. partial order �. Func-
tion g : DV → R is called k-submodular (with k = |L|) if

g(x� y) + g(x� y) ≤ g(x) + g(y) ∀x, y ∈ DV (10)

where operations �,� are applied component-wise.

It is easy to check that function g constructed in section 2

is k-submodular. Another way to obtain a k-submodular

function is as follows. Consider some function f : LV →
R. We say that function g : DV → R is a k-submodular
relaxation of f if g(x) = f(x) for all x ∈ LV , and function

g is k-submodular. It can be seen that any function f :
LV → R admits a k-submodular relaxation; we can set,

for example, g(x) = f(x) for x ∈ LV and g(x) = C for

x ∈ DV − LV , where C ≤ minx∈LV f(x).
k-submodular relaxations for k = 2 have been stud-

ied in [17] under the name bisubmodular relaxations. It

was shown that if f is a quadratic pseudo-Boolean func-

tion then the tightest bisubmodular relaxation is equivalent

to the roof duality relaxation [10]. It was also proved that

bisubmodular relaxations possess the persistency, or partial
optimality property. The argument of [17] extends trivially

to k-submodular relaxations, as the following proposition

shows.

Proposition 10. Let g be a k-submodular relaxation of f
and y∗ ∈ DV be a minimizer of g. Function f has a min-
imizer x∗ ∈ LV such that x∗

i = y∗i for all i ∈ V with
y∗i ∈ L.

Proof. First, observe that for any z ∈ DV there holds g(z�
y∗) ≤ g(z) since g(z�y∗)−g(z) ≤ g(y∗)−g(z�y∗) ≤ 0.

Let x ∈ LV be a minimizer of f , and define x∗ = (x �
y∗) � y∗. It can be checked that x∗

i = y∗i if y∗i ∈ L, and

x∗
i = xi if y∗i = o. Thus, x∗ ∈ LV . Labeling x∗ is a

minimizer of f since

f(x∗) = g((x � y∗) � y∗) ≤ g(x � y∗) ≤ g(x) = f(x)

Thus, k-submodular relaxations can be viewed as a gen-

eralization of the roof duality relaxation to the case of mul-

tiple labels. Recently, Thapper and Živný showed [26] that

a k-submodular function g can be minimized in polynomial

time if g is represented as a sum of low-order k-submodular

terms. (This was proved by showing the tightness of the Ba-
sic LP relaxation (BLP); when g is a sum of unary and pair-

wise terms, BLP is equivalent to the standard Schlesinger’s

LP [27].) This suggests a new possibility for obtaining par-

tial optimality for discrete functions f .

Potts model Let us compare the approach above with the

Kovtun’s approach in the case of the Potts energy function

f from eq. (1). A natural k-submodular relaxation of f is

the function

g̃(x) =
∑
i∈V

g̃i(xi) +
1

2

∑
{i,j}∈E

λijd(xi, xj) (11)

where g̃i is a k-submodular relaxation of fi and d is the tree

metric used in section 2. It is natural to set g̃i(o) to the

maximum possible value such that g̃i is k-submodular; this

is achieved by g̃i(o) =
1
2 [fi(a1) + fi(a2)] where fi(a1) is

the smallest value of fi and f(a2) is the second smallest.

23252325

The proposition below shows that minimizing g̃ yields

the same or fewer number of labeled nodes compared to the

Kovtun’s approach. Its proof is given in [9].

Proposition 11. Let g be the function (3) corresponding to
the Kovtun’s approach, and g̃ be the k-submodular relax-
ation of f given by (11). Assume for simplicity that g and g̃
have unique minimizers x and x̃ respectively. If x̃i = a �= o
for node i ∈ V then xi = a.

Although a k-submodular relaxation of the Potts energy

turns out to be worse than Kovtun’s approach, there are clear

similarities between the two (e.g. they can be solved by the

same technique). We believe that exploring both approaches

(or their combination) can be a fruitful direction for obtain-

ing partial optimality for more general functions.

6. Experimental results
We applied our technique to the stereo segmentation

problem on the Middlebury data [22, 23, 11]. Computations

consist of two phases: (1) solve the Kovtun’s approach, and

(2) run the alpha-expansion algorithm for the unlabeled (or

“non-persistent”) part until convergence. For phase 1 we

compared the speed of our algorithm (which we call “k-sub
Kovtun”) with the ‘Reduce’ method of Alahari et al. [1].

For phase 2 we used the FastPD method of Komodakis et

al. [18, 19]. We used original implementations from [1]

and [18, 19] and a Core i7 machine with 2.3GHz.

As a by-product, k-sub Kovtun produces a labeling

which we call a Kovtun labeling: pixel i is assigned the la-

bel a where it ended up, as described in Sec. 4. Empirically,

this labeling has a good quality - see below.

Matching costs The number of labeled pixels strongly

depends on the method for computing matching costs fi(·)
and on the regularization parameter λ (which is the same

for all edges). We tested the SSD matching costs and SSD

cost averaged over the 9×9 window centered at pixel i. The

latter method gave a lower error4 in 6 out of 8 images (see

Fig. 4(c)) and labeled significantly more pixels. We thus

used aggregated SSD costs for all experiments.

Regularization parameter The effect of λ is shown in

Fig. 4(a). Larger values of λ typically give fewer labeled

pixels. For subsequent experiments we fixed λ = 20 (which

is also the default value in the stereo package that comes

with [22]); this value appears to work well for most of the

images.

Speed comparisons The speed of different algorithms is

given in Table 1. k-sub Kovtun is approximately 10 times

faster than the ’Reduce’ method [1] (except for Venus and

Tsukuba, which have fewer labels). The fraction of non-

persistent pixels ranged from 7% to 50%, which made the

second phase significantly faster.

4As in [22], we define the error rate as the percentage of pixels whose

predicted label differs from the ground truth label by more than 1.

Image(# labels) Alahari k-sub k-sub % non-

et al. +FastPD persistent

Teddy(60) 3423 320 1016 18.1

Cones(60) 3858 243 466 6.8

Tsukuba(16) 519 254 469 19.3

Venus(20) 903 266 570 16.0

Lampshade1(60) 5006 523 3850 48.8

Aloe(60) 2786 236 819 10.5

Flowerpots(60) 5492 568 3489 50.5

Baby1(45) 2766 285 1095 22.0

Table 1. Runtimes (in milliseconds) and % of unlabeled pixels.

We also tested how the running time of the first phase

depends on the number of labels. For this experiment we

subsampled the set of allowed labels; the unary cost was set

as the minimum over the interval that was merged to a given

label. Results are shown in Fig. 4(b). As expected, we get a

larger speed-up with more labels.

It is reported in [1] that the flow from Kovtun’s compu-

tations speeds the alpha-expansion algorithm. We were un-

able to replicate this in our implementation. However, we

observed that initializing FastPD with the Kovtun’s labeling

speeds it up compared to the “�min-initialization” [1].5 The

average speed-up was 14.2% (details are given in [9]).

Quality of the Kovtun’s labeling We found that in the ma-

jority of cases Kovtun’s labeling actually has a lower error

rate compared to the alpha-expansion solution (even though

the energy of the latter is better) - see Fig. 4(a). Disparity

maps are shown in [9]. Since computing Kovtun’s labeling

requires much less computation time, we argue that it could

be used in time-critical applications.

Not surprisingly, Kovtun’s labeling is more reliable in

the labeled part, i.e. the error rate over persistent pixels is

lower compared to the rate over the entire image (Fig. 4(a)).

Thus, for applications that require higher accuracy one

might use an alternative technique for the unlabeled part.

7. Conclusions
We see the contributions of this work as two-fold. On

the practical side, we showed how to improve the running

time for the frequently used Potts model. We tested it on

the stereo problem (partly because there is an established

dataset for that), but we expect similar speed-ups for seg-

mentation problems where labels correspond to different se-

mantic classes. If the number of persistent pixels is low for

a given application then one could use the cost aggregation

trick to get more discriminative unary functions; as we saw

for stereo, this only improves the accuracy. For time-critical

applications one could potentially skip the second phase and

use the Kovtun’s labeling as the final output.

On the theoretical side, we introduced several concepts

(such as k-submodular relaxations) that may turn out to be

5In this method we set xi ∈ argmina fi(a). This initialization was

shown in [1] to outperform the uniform initialization xi = 0.

23262326

(a) (b) (c)
Figure 4. Results for images “Teddy”: (a) dependency of the error rate on the smoothness term λ, (b) comparison of run-times of the

’Reduce’ approach of [1] and k-sub Kovtun, (c) effect of the average costs aggregation - data points correspond to different values of

the smoothness term from 0 to 100. Results for other stereo pairs are given in [9]. The plots exhibit a similar behaviour, except that

occasionally the ER of the Kovtun’s labeling becomes worse than the ER of alpha-expansion for a sufficiently large λ (plots (a)), and for

Lampshade1 and Aloe the best ER of SSD was lower than the best ER of aggregated SSD (plots (c)).

useful for other energy functions. We hope that these con-

cepts could lead to new directions for obtaining partially

optimal solutions for MAP-MRF inference.

Acknowledgements We thank the authors of [1] for an-

swering questions about their implementation.

References
[1] K. Alahari, P. Kohli, and P. H. S. Torr. Dynamic hybrid algorithms for

MAP inference in discrete MRFs. PAMI, 32(10):1846–1857, 2010.

1, 6, 7, 8

[2] M. Babenko, J. Derryberry, A. Goldberg, R. Tarjan, and Y. Zhou.

Experimental evaluation of parametric max-flow algorithms. In 6th
Int’l conference on Experimental Algorithms (WEA), pages 256–269,

2007. 6

[3] Y. Boykov and V. Kolmogorov. An experimental comparison of min-

cut/max-flow algorithms for energy minimization in vision. PAMI,
26(9), September 2004. 5

[4] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy mini-

mization via graph cuts. PAMI, 23(11), 2001. 1

[5] A. Chambolle. Total variation minimization and a class of binary

MRF models. In EMMCVPR, pages 136–152, November 2005. 2, 4

[6] J. Darbon and M. Sigelle. Image restoration with discrete constrained

total variation part I: Fast and exact optimization. J. of Math. Imaging
and Vision, 26(3):261–276, 2006. 2, 4

[7] P. Felzenszwalb, G. Pap, E. Tardos, and R. Zabih. Globally optimal

pixel labeling algorithms for tree metrics. In CVPR, 2010. 1, 2, 3

[8] G. Gallo, M. D. Grigoriadis, and R. E. Tarjan. A fast parametric max-

imum flow algorithm and applications. SIAM J. Computing, 18:30–

55, 1989. 4, 6

[9] I. Gridchyn and V. Kolmogorov. Potts model, parametric maxflow

and k-submodular functions. CoRR, abs/1310.1771, 2013. 4, 5, 7, 8

[10] P. L. Hammer, P. Hansen, and B. Simeone. Roof duality, comple-

mentation and persistency in quadratic 0-1 optimization. Math. Pro-
gramming, 28:121–155, 1984. 6

[11] H. Hirschmüller. Evaluation of cost functions for stereo matching.

In CVPR, 2007. 7

[12] D. S. Hochbaum. An efficient algorithm for image segmentation,

Markov Random Fields and related problems. J. ACM, 48:2:686–

701, July 2001. 2, 4

[13] A. Huber and V. Kolmogorov. Towards minimizing k-submodular

functions. In International Symposium on Combinatorial Optimiza-
tion (ISCO), Apr. 2012. 6

[14] P. Kohli and P. H. S. Torr. Efficiently solving dynamic Markov ran-

dom fields using graph cuts. In ICCV, 2005. 5

[15] A. J. W. Kolen. Tree Network and Planar Rectilinear Location The-
ory. Vol. 25 of CWI Tracts. CWI, 1986. 2, 3

[16] V. Kolmogorov. Submodularity on a tree: Unifying L�-convex and

bisubmodular functions. In 36th Int’l Symposium on Math. Founda-
tions of Comp. Science, Aug. 2011. 6

[17] V. Kolmogorov. Generalized roof duality and bisubmodular func-

tions. Discrete Applied Mathematics, 160(4-5):416–426, March

2012. 6

[18] N. Komodakis and G. Tziritas. Approximate labeling via graph cuts

based on linear programming. PAMI, 29(8):1436–1453, 2007. 1, 7

[19] N. Komodakis, G. Tziritas, and N. Paragios. Performance vs compu-

tational efficiency for optimizing single and dynamic MRFs: Setting

the state of the art with primal-dual strategies. CVIU, 112(1):14 – 29,

2008. 1, 7

[20] I. Kovtun. Partial optimal labeling search for a NP-hard subclass of

(max,+) problems. In DAGM, pages 402–409, 2003. 1, 2

[21] I. V. Kovtun. Image segmentation based on sufficient conditions of
optimality in NP-complete classes of structural labelling problems.

PhD thesis, IRTC ITS National Academy of Sciences, Ukraine, 2004.

(In Ukranian). 1, 2

[22] D. Scharstein and R. Szeliski. A taxonomy and evaluation of dense

two-frame stereo correspondence algorithms. IJCV, 47(1-3):7–42,

Apr. 2002. 7

[23] D. Scharstein and R. Szeliski. High-accuracy stereo depth maps us-

ing structured light. In CVPR, pages 195–202, 2003. 7

[24] A. Shekhovtsov. Efficient graph-based energy minimization methods
in computer vision. PhD thesis, Czech Technical University, CMP,

Prague, 2013. 1

[25] A. Shekhovtsov and V. Hlavac. On partial opimality by auxiliary

submodular problems. Control Systems and Computers, 2:71–78,

2012. 1, 2

[26] J. Thapper and S. Živný. The power of linear programming for val-

ued CSPs. In FOCS, 2012. 6

[27] T. Werner. A linear programming approach to max-sum problem: A

review. PAMI, 29(7):1165–1179, 2007. 6

[28] B. A. Zalesky. Network flow optimization for restoration of images.

J. Appl. Math., 2(4):199–218, 2002. 4

23272327

