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Abstract

Age invariant face recognition has received increasing
attention due to its great potential in real world applica-
tions. In spite of the great progress in face recognition tech-
niques, reliably recognizing faces across ages remains a dif-
ficult task. The facial appearance of a person changes sub-
stantially over time, resulting in significant intra-class vari-
ations. Hence, the key to tackle this problem is to separate
the variation caused by aging from the person-specific fea-
tures that are stable. Specifically, we propose a newmethod,
called Hidden Factor Analysis (HFA). This method captures
the intuition above through a probabilistic model with two
latent factors: an identity factor that is age-invariant and
an age factor affected by the aging process. Then, the ob-
served appearance can be modeled as a combination of the
components generated based on these factors. We also de-
velop a learning algorithm that jointly estimates the latent
factors and the model parameters using an EM procedure.
Extensive experiments on two well-known public domain
face aging datasets: MORPH (the largest public face ag-
ing database) and FGNET, clearly show that the proposed
method achieves notable improvement over state-of-the-art
algorithms.

1. Introduction
As an emerging research topic, age invariant face recog-

nition has many practical applications. For example, in law
enforcement, finding missing children or identifying crimi-
nals based on their mug shots on identity requires recogniz-
ing photos across ages [3,29]. In spite of the great advance-
ment in face recognition in the past decades, age invariant

Figure 1. Example images showing the large intra-class variations
due to facial aging for one of the subjects in the FG-NET database
[2].

face recognition remains as a major challenge. The diffi-
culty of this problem, to a great extent, arises from the fact
that the face appearance of a person is subject to remarkable
change caused by the aging process over time, as shown in
Figure 1.
The research on age related face image analysis has only

been studied in recent years. Most existing works focus on
age estimation [8, 10–12, 17, 18, 24, 28, 37, 40, 41] and ag-
ing simulation [7, 19, 27, 30, 31, 35]. However, work that
explicitly tackles age invariant face recognition is limited.
Existing methods on age invariant face recognition roughly
fall into two categories: generative approaches and the dis-
criminative approaches. Generative methods try to synthe-
sis face images that match the target age before recogni-
tion [7, 10, 19, 27]. They try to construct a 2-D or 3-D gen-
erative model to compensate for the aging process in face
matching. These methods, however, typically suffer from

2013 IEEE International Conference on Computer Vision

1550-5499/13 $31.00 © 2013 IEEE

DOI 10.1109/ICCV.2013.357

2872



difficulties in several aspects: strong parametric assump-
tions that lead to unrealistic synthesis results, high complex-
ity in computation, and reliance on accurate age estimation
(which is often not reliable). Recently, discriminative meth-
ods are proposed [14, 21, 22, 26]. The method in [22] uses
gradient orientation pyramid (GOP) as feature and the sup-
port vector machine (SVM) as classifier for face recogni-
tion. In [21], SIFT [9] and Local Binary Pattern (LBP) [25]
are used as features and a variation of random subspace
LDA approach (RS-LDA) [38] is used for classification.
Some variants of RS-LDA have also been used in [14, 26]
for age invariant face recognition. These methods have been
shown to be effective in certain cases. However, the lack of
an underlying mechanism to capture facial structure across
different ages may limit their generalizing performance.
In this paper, we consider a new approach to age-

invariant face recognition. This approach is motivated by
the belief that the facial image of a person can be expressed
as combination of two components: an identity-specific
component that is stable over the aging process, and the
other component that reflects the aging effect. In particu-
lar, we introduce two latent factors: an identity factor and
an age factor, which respectively govern the generation of
these two components. Intuitively, each person is associ-
ated with a distinct identity factor, which is largely invari-
ant over the aging process and thus can be used as a stable
feature for face recognition; while the age factor changes as
the person grows. For computational simplicity, we assume
a linear model, where the identity components and the age
components lie on two different subspaces. In this way, the
problem of separating identity and age factors naturally re-
duces to a problem of learning the basis of these subspaces.
As both the subspaces and the latent factors are unknown in
the training stage, we derive an algorithm that can jointly
estimate both from a set of training image, based on an
Expectation-Maximization process. In this process, the la-
tent factors and the model parameters are iteratively updated
to maximize a unified objective. In the testing, given a pair
of face images with unknown ages, we compute the match
score between them by inferring and comparing the poste-
rior mean of their identity factors.
The rest of the paper is organized as follows. Section 2

introduces the proposed HFA model. Section 3 presents the
HFA-based age invariant face recognition framework. The
experiments are presented in Section 4. Finally, Section 5
concludes this paper.

2. Hidden Factor Analysis
In this section, we propose a new model, called Hidden

Factor Analysis (HFA), to address the problem of age in-
variant face recognition. We also develop an Expectation
Maximization (EM) algorithm to estimate model parame-
ters from data.

2.1. Problem Modeling
Matching facial images across ages is often necessary

in real world applications. This is a challenging problem.
As shown in Figure 1, faces of the same person can exhibit
substantially different appearance at different ages, thus ag-
gravating the difficulties. To address this problem, we con-
sider a new approach, described below. This approach is
primarily motivated by the observation that facial images
(of different persons) usually share characteristics in com-
mon (e.g. skin and wrinkles). On the other hand, facial im-
ages of the same person also contain intrinsic features that
are relatively stable across ages.
From a modeling standpoint, both age-specific and

person-specific aspects can be respectively captured
through latent factors, which we assume as statistically in-
dependent. Specifically, we use vectors to represent these
latent factors, and call them age factor and identity factor
throughout the remaining part of the paper. For simplic-
ity and robustness, we consider a linear generative model,
which expresses a facial image as a linear combination of
three components: (1) age component, (2) identity compo-
nent, and (3) a noise term which would allow actual obser-
vations to deviate from model space. In particular, the age
component and identify component are respectively gen-
erated from the underlying age factor and identity factor
through linear transformation. Overall, the joint model can
be written as

−→
t =

−→
β + U−→x + V−→y +−→ε . (1)

We explain the terms of the model as follows.

1. −→t is a d × 1 vector representing the observed facial
features.

2.
−→
β is a d× 1 vector representing the feature mean over
the population.

3. −→x is a p × 1 vector that represents the latent identity
factor with prior distribution of N (0, I).

4. −→y is a q× 1 vector that represents the latent age factor
with prior distribution of N (0, I).

5. −→ε is a d × 1 vector that represents the additive noise,
which follows an isotropic Gaussian where −→ε ∼
N

(
0, σ2I

)
.

6. U is a d× pmatrix, whose columns span the subspace
of cross-identity variation.

7. V is a d× q matrix, whose columns span the subspace
of cross-age variation.

The basic idea of our approach is to decompose fa-
cial features into identity components and age components
based on this model, which are respectively generated from
the identity factors and age factors. Below, we reiterate two
properties of this model that are useful in our later discus-
sion:
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1. Any face feature −→t consists of three components: the
identity component U−→x , age component V−→y , and
noise component−→ε representing noise and other vari-
ations in addition to age variations.

2. Through the decomposition based on this model, we
can simultaneously attain two goals: U−→x depends
only on the subject’s identity, with which we can per-
form age invariant face recognition, while V−→y de-
pends only on the subject’s age, with which we can
perform age estimation. However, pursuing this direc-
tion is beyond the scope of this paper. Instead, we fo-
cus on leveraging this decomposition to improve face
recognition.

2.2. Model Adaptation
The model proposed in (1) has some parameters θ ={−→
β , U, V, σ2

}
. One can learn these parameters from data

through maximum likelihood estimation, that is, to pursue
a set of parameters that maximizes the following objective
function:

Lc =
∑

i,k
ln pθ

(−→
t k
i ,
−→x i,

−→y k

)
. (2)

−→
t k
i is the feature of the i-th subject at k-th age group.

−→x i

and −→y k are the corresponding identity and age factors, re-
spectively. The summation is over all the available samples
from different subjects at different age groups.
Note that this problem involves two latent variables −→x i

and −→y k, which are not directly observable. Here, we adopt
the coordinate ascent approach, alternately updating model
parameters and latent factors with the other fixed. In partic-
ular, with the model parameter θ, we can estimate the pos-
terior distribution of the latent variables pθ0 (

−→x i,
−→y k|T ).

Vice versa, we can update θ given this distribution by max-
imizing the expectation of L. Given initial estimation θ0 ,
our aim is to take a new estimation θ to maximize:

〈Lc〉 =∑
i,k

∫
pθ0 (

−→x i,
−→y k|T ) ln pθ

(−→
t k
i ,
−→x i,

−→y k

)
d−→x id

−→y k.

(3)
Throughout the rest of this section, we present the detailed
ExpectationMaximization (EM) algorithm to iteratively up-
date the model parameters.

2.2.1 Optimization for �β

According to equation (1), �β is the mean of the samples,
which can be easily estimated by:

−→
β =

1

N

∑
i,k

−→
t k
i , (4)

whereN is the total number of training samples.

2.2.2 Optimization for U , V , and σ2

To simplify the mathematical presentation, we will only
give our conclusions in the following. The detailed proofs
of them are attached in supplemental materials.
To optimize equation (3), we need to first obtain an

estimation for joint distribution of the latent variables given
model parameters θ0. The sufficient statistics of them are
given as follows:

Proposition 1*1: Given model parameter θ0 and training
data T =

{−→
t k
i |i = 1, ..., N ; j = 1, ...,M

}
, the first and

second conditional moments of pθ0 (
−→x i|T ), pθ0 (−→y k|T )

and pθ0 (
−→x i,

−→y k|T ) are given by:

〈−→x i〉 = UT
∑
−1

Ni

Ni∑
k=1

(−→
t k
i −

−→
β
)

(5)

〈−→y k〉 =
V T

∑
−1

Mk

Mk∑
i=1

(−→
t k
i −

−→
β
)

(6)

〈−→x i
−→x i

T
〉
=

I − UT
∑
−1

U

Ni

+ 〈−→x i〉 〈−→x i〉T (7)

〈−→y k
−→y k

T
〉
=

I − V T
∑
−1

V

Mk

+ 〈−→y k〉 〈−→y k〉T (8)

〈−→y k
−→x T

i

〉
= −V TΣ−1U√

NiMk

+ 〈−→y k〉 〈−→x i〉T (9)

〈−→x i
−→y T

k

〉
= −UTΣ−1V√

NiMk

+ 〈−→x i〉 〈−→y k〉T (10)

where Σ = σ2I + UUT + V V T , Ni and Mk are the
numbers of training samples for the i-th subject and the
k-th age group, respectively (e.g. if we have 100 training
samples fall into the k-th age group, thenMk is 100).

In the Expectation step, we compute the sufficient statis-
tics according to Propositional 1, and in the Maximization
step, we update the model parameters to maximize equation
(3), as described in the following:

Proposition 2*2: Given initial model parameter θ0,
the new parameter θ maximizes the expectation of the
log-likelihood defined in equation (3) if:

U =
(
C −DB−1E

) (
A− FB−1E

)
−1 (11)

V =
(
D − CA−1F

) (
B − EA−1F

)
−1 (12)

σ2 =
1

Nd

∑
i,k

{(−→
t k
i −

−→
β − U 〈−→x i〉 − V 〈−→y k〉

)T (−→
t k
i −

−→
β
)}

(13)
1Proof for Proposition 1 is attached in supplemental materials
2Proof for Proposition 2 is attached in supplemental materials
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where
A =

∑
i,k

〈−→x i
−→x i

T
〉
B =

∑
i,k

〈−→y k
−→y k

T
〉

C =
∑

i,k

(−→
t k
i −

−→
β
)
〈−→x i〉

T

D =
∑

i,k

(−→
t k
i −

−→
β
)
〈−→y k〉

T

E =
∑

i,k

〈−→y k
−→x T

i

〉
F =

∑
i,k

〈−→x i
−→y T

k

〉
N is the total number of training samples, and d is the
dimension of �β as above.

Equations (11)-(13) indicate that the latent variables en-
ter into the EM formulation only through sufficient statis-
tics, as expected. The EM algorithm jointly estimates the
distribution of both the identity and age components (which
are believed to be associated to both the identity factors and
age factors controlling the generation of facial appearance),
and then adapts the model parameters such that the expec-
tation of the log-likelihood that these training samples are
generated from these latent factors through the model is
maximized. The convergence proof for this algorithm is at-
tached in the supplemental materials. Algorithm 1 summa-
rizes the procedure of the EM algorithm for the HFA model
adaptation. The computationally intensive part lies in step
2) and 3). Each iteration involves one matrix inversion of
size dxd, two inversions of pxp and qxq (see Table 3 for de-
tailed settings). The algorithm converges quickly within 10
iteration steps in our experiments.

Algorithm 1 EM algorithm for Hidden Factor Analysis.

Input: feature set of training images D =
{−→
t k
i

}
, with

identity labels and age group information.
Output: model parameter θ =

{−→
β , U, V, σ2

}
Initialization:

σ2 ← 0.1

U ← rand (−0.1, 0.1)
V ← rand (−0.1, 0.1)

1) Compute
−→
β with equation (4).

2) Compute the sufficient statistics with the equations (5)-
(10).

3) Update the model parameters with the equations (11)-
(13).

4) Go to step (2) until convergence.

2.3. Discussion

1. Our approach differs significantly from the prior sub-
space factoring works [16] [23] [4]. The supervised ap-
proach in learning the optimal factor spaces distinguishes
our work from [16] [23] [4] that mostly use unsupervised

way in factor analysis.
2. Our approach can generalize to other face recogni-

tion scenarios. The proposed model in (1) decomposes the
original face feature into three components: the common
feature component, the variation component, and the noise
component. By retrieving the common component, we can
reduce the variations containedwithin subspaceV as well as
noise component. For general applications, such as match-
ing faces in the wild, we can replace the aging variations
with other kinds of variations.

3. HFA based Age invariant Face Recognition
Framework
In this section, we present our age invariant face recogni-

tion framework based on the proposed HFA model in Sec-
tion 2. The organization of this framework is illustrated in
Figure 2. We describe each framework component in the
following subsections.

3.1. Local Feature Representation

Local facial features have been shown to be more effec-
tive than the global facial features in representing face im-
ages at various scales and orientations. Among all the exit-
ing local feature descriptors, Histograms of Oriented Gradi-
ents (HOG) [6] is one of the most successful ones. Thus, in
our experimentwe will apply HOG as the feature descriptor.
For any face image, we first divide it into a set of overlap-
ping patches, and then apply the HOG descriptor on each
patch to extract the HOG features. The extracted HOG fea-
tures from all the patches are concatenated together to form
a long feature vector for further analysis. The details of our
setting are listed in Table 1.

Table 1. Parameter settings for local feature representation.

Overlapping
Factor Patch Size #Orientations Scales1

0.5 12 12 1.0, 1.5, 2.0

Prior to applying the HOG feature extractor, we prepro-
cess all the face images through the following steps:

1) Rotate the face images to align them to the vertical ori-
entation;

2) Scale the face images so that the distances between the
two eyes are the same for all images;

3) Crop the face images to remove the background and hair
region;

4) Apply histogram equalization to the cropped face im-
ages for photometric normalization.

1Scales: sampling distance in pixel, with bilinear interpolation.
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Figure 2. Illustration of the HFA based age-invariant face recognition system. At the training stage, the training faces are first grouped
according to their identities and ages (corresponding to index i and k in Algorithm 1, respectively), followed by feature extraction (section
3.1) on each image. With each training face represented by HOG feature, we reduce the dimension of these features with slicing (three
slices are shown in the figure), PCA and LDA (section 3.2). Finally, HFA models are adapted independently on each of the sliced features
of the dataset (section 2.2), obtaining a set of model parameters for each slice. At the testing stage, the matching score of the given face
pair (one from probe and the other one from gallery) is computed by first going through feature extraction and dimension reduction steps
the same as training, then estimating the identity latent variables for each slice of the two face features. The final matching score is given
by the cosine distance of the concatenated identity features (section 3.3).

3.2. Dimension Reduction
Due to the use of the multi-scale and densely sampling

techniques in local feature representation stage, the ex-
tracted feature vector is of very high dimension (e.g. up to
106 in our experiment). Such a high dimensionality presents
huge demands on computer memory and significantly slows
down the processing speed. It is desirable to perform di-
mension reduction prior to applying our HFA model. We
use two simple yet effective techniques for this purpose:
feature slicing and subspace analysis. Inspired by the multi-
level subspace analysis techniques in [32] [33] [34] [20]
[15], we first divide the long feature vector into several
slices equally, and then apply PCA [36] + LDA [5] [39]
(which is a widely used dimension reduction technique in
face recognition) on each slice to obtain a compressed slice
of smaller feature vector for subsequent analysis.

3.3. Face Matching
After local feature representation and dimension reduc-

tion, for each face image we have several compressed slices
of smaller feature vectors. Based on each slice, we con-
struct a HFA model. In the matching process, for each pair
of probe sample and gallery sample, we first compute the
predictive distribution of their identity variables, as follows:

P
(−→x |−→t ) =

∫
P

(−→x |−→t ,−→y )
P

(−→y |−→t )d−→y .

The predictive distribution is given by:

P
(−→x |−→t ) = N

(−→x |UTΣ−1

(−→
t −−→β

)
, I − UTΣ−1U

)
,

where Σ = σ2I + UUT + V V T as before. Then, we use
theU

〈−→x |−→t 〉with cosine distance for face matching. Note
that we concatenate the output of each HFA model to form
the final feature for classification. The matching process is
summarized as follows:

1. Apply the HFA model on each slice of data, and obtain
the output feature vector:

−→
f i = UUTΣ−1

(−→
t −−→β

)
from the i-th model.

2. Concatenate the feature vectors to form a long
vector:

−→
F =

[−→
f

1
...
−→
f K

]
.

3. Compute the matching score using the cosine distance.

Figure 2 illustrate the entire pipeline of our system. The
matching process of our HFA model does not need any age
information of the test images. So the HFA model can be
easily used in practical applications.

4. Experiments
4.1. Database
There are two well-known public domain databases for

age invariant face recognition: MORPH [13] and FGNET
[2]. The MORPH database has two separate datasets: Al-
bum 1 and Album 2. The MORPH Album 1 only contains
1690 face images from 625 different subjects. TheMORPH
Album 2 is the largest face aging dataset available in the
public domain. This dataset is composed of about 78,000
face images of 20,000 different subjects captured at dif-
ferent ages. Comparing to the MORPH Album 1 dataset,
the MORPH Album 2 dataset has two desired attributes: (i)
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very large number of subjects, and (ii) large number of face
images captured at different ages. So we use the MORPH
Album 2 dataset in this study. The FG-NET dataset consist
of 82 different individuals, with each one having multiple
images (13 on average) taken at different age levels. Figure
3 shows the age range distribution for these two datasets.
In this paper, we will use both the MORPH Album 2 and
FGENT for our experimental validation.

Figure 3. Age range distribution (%) of MORPH Album 2 and
FG-Net.

To train our HFA model, we first partition the training
data set into several age groups. To balance the number of
training samples in each age group, we partition the age into
8 groups such that each group has approximately the same
number of samples, as shown in Table 2.

Table 2. Age groups partition scheme. Ages are divided into eight
groups, with #samples shown.

Groups Age range #Samples
MORPH FG-NET MORPH FG-NET

1 15-19 0-2 5390 109
2 20-23 3-5 5829 124
3 24-26 6-8 4106 113
4 27-31 9-12 5343 135
5 32-36 13-16 5395 131
6 37-40 17-21 4013 134
7 41-46 22-30 5292 127
8 47-77 31-69 4632 129

4.2. Parameter Settings
The HFAmodel has some free parameters: d (the dimen-

sion of the feature vector fed into the model), p (the dimen-
sion the identity factor), and q (the dimension of the age fac-
tor). In addition to these parameters, there are some other
parameters for our systems: number of slices (see section
3.2), dimension of PCA [36] and LDA [5] [39] (see section
3.2), as well as the size of the normalized face images (see
section 3.1). The detailed parameter settings on the datasets
are shown in Table 3.

Table 3. The parameters used in our experiments.
Parameters MORPH FG-NET

HFA Model
d 1000 150
p 100 80
q 15 10

System

#Slice 6 3
PCA dim 1001 150
LDA dim 1000 N/A
Image size 200× 150 100× 75

4.3. Experiment on the MORPH Ablum 2 dataset

The MORPH Album 2 dataset is the largest publicly
available face aging dataset. It is very crucial to conduct
large-scale experimental validation to evaluate our HFA
model on this dataset. Following the configurations of train-
ing and testing split in [21], we use all the 20,000 per-
sons for this experiment. We partition the MORPH al-
bum 2 dataset into a training set and an independent test
set. The training data consists of 20,000 face images from
10,000 subjects, with each subject having two images with
the largest age gap. The test data is composed of a gallery
set and a probe set from the remaining 10,000 subjects. The
gallery set is composed of 10,000 face images correspond-
ing to the youngest age of these 10,000 subjects. The probe
set is composed of 10,000 face images corresponding to the
oldest age of these 10,000 subjects.
We compare our HFAmodel against several state-of-the-

art methods for age invariant face recognition on MORPH
Album 2. They include (i) FaceVACS, a leading commer-
cial face recognition engine [5], (ii) several newly devel-
oped generative methods [7, 27] for face aging, and (iii)
several newly developed discriminative methods [14,21,26]
for direct age invariant face recognition. The comparative
results are reported in Table 4. All the methods in Table
4 are tuned to the best settings according to their papers.
From these results, we have the following observations.
First, among the published methods in Table 4, the MFDA
method in [21] is the best-performing one. This shows the
effectiveness of the discriminative model. It is encourag-
ing to see that our approach significantly outperforms the
MFDA method by improving the rank-1 identification rate
from 83.90% to 91.14%. To our best knowledge, this is
the best identification rank-1 result on such a large-scale
matching scenario (using 10,000 face images as the gallery
set and another 10,000 face images as the probe set from
10,000 different persons) in the MORPH Album 2 dataset.
Finally, we show some examples of failed retrievals in

Figure 4. While the rank-1 retrievals are not correct in these
cases, the probe images appear to be more similar to the
incorrect rank-1 matched images than the true images.
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Table 4. Rank-1 identification rates on the MORPH Album 2
dataset.

Algorithms Recognition Rates
FaceVACS [1] 78.90%

Park et al. (2010) [27] 79.80%
Du et al. (2012) [7] 79.24%
Li et al. (2011) [21] 83.90%

Klare et. al. (2011) [14] 79.08%
Otto et al. (2012) [26] 81.27%

HFA 91.14%

Figure 4. Some examples of failed retrievals in MORPH Album 2.
The first row presents the probe faces, the second row is the incor-
rect rank-1 matching results using our approach, and the bottom
row shows the corresponding ground-truth faces for the probes.

4.4. Experiment on the FGNET dataset
The good performance of our HFA model in Table 4 is

particular interesting. It is desirable to investigate the gener-
alization ability of our HFA model across different datasets.
To this end, we conduct an additional experiment to com-
pare our HFA model with the state-of-the-art results on the
FGNET dataset. Following the training and testing split
scheme in [21], we use the leave-one-person-out scheme
for experimental validation. The comparative results are
reported in Table 5, from which we can also see the sig-
nificant performance improvement of our HFA model over
the state-of-the-art. This confirms the effectiveness of our
algorithm.

Table 5. Rank-1 identification rates on the FGENT dataset.
Algorithms Recognition Rates
FaceVACS [1] 26.4%

Park et al. (2010) [27] 37.4%
Li et al. (2011) [21] 47.5%

HFA 69.0%

Figure 5 shows some failed retrievals in the FGNET
dataset. These results confirm what we observed from Fig-

Figure 5. Some examples of failed retrievals in FGNET. The first
row presents the probe faces, the second row is the incorrect rank-
1 matching results using our approach, and the bottom row shows
the corresponding ground-truth faces for the probes.

ure 4: The rank-1 retrieved images appeared highly similar
to the probe images in the incorrect matchings.

5. Conclusion
In this paper, we have proposed a hidden factor analy-

sis (HFA) approach to address the challenging problem of
age invariant face recognition. The basic idea of the HFA
model is to separate the aging variations from the person-
specific features for pursuing the robust age-invariant face
features. Extensive experiments conducted on two public
domain face aging datasets (MORPHAlbum 2 and FGNET)
convincingly demonstrate the superiority of our HFA model
over the state-of-the-art algorithms.
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