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Abstract

In this paper, we propose an adaptation and transcrip-
tion of the mean curvature level set equation on a general
discrete domain (weighted graphs with arbitrary topology).
We introduce the perimeters on graph using difference oper-
ators and define the curvature as the first variation of these
perimeters. Our proposed approach of mean curvature uni-
fies both local and non local notions of mean curvature on
Euclidean domains. Furthermore, it allows the extension to
the processing of manifolds and data which can be repre-
sented by graphs.

1. Introduction

The mean curvature flow level set equation and its gener-

alization have numerous applications in boundary problem

in material sciences, computational fluid dynamics, image

processing, computer vision and many other fields, see

[1, 7] and references therein. Many papers have been

devoted to numerical algorithms for mean curvature flow.

These algorithms are related to finite difference methods

on uniform grids, threshold dynamics and mathematical

morphology using Min/Max operators on game theoretical

approach, see [5, 6] for more details.

Recently, there has been a growing interest in the math-

ematical study of the motion of nonlocal or fractional

curvature on Euclidean domains [11, 12].

The main goal of this paper is to propose an adaptation of

mean curvature flow level set equation on weighted graphs,

using the framework of Partial difference Equations (PdEs)

[8]. Our first motivation is to extend the notion of mean cur-

vature to discrete settings and to show the relation between

this mean curvature and local and nonlocal forms of cur-

vature in Euclidean domains. The second motivation con-

cerns extending applications of such equation to any dis-

crete data that can be represented by a graph to solve many

problems in image and manifold processing. Indeed, many

contemporary applications have to deal with large data sets

of different types and collected in the form of graphs and

networks such as images, videos, meshes, point clouds and

images on 3D surfaces. In such situations, any processing

and analysis of these data depends on the ability to perform

signal or data processing on graphs and networks. There-

fore, there is a growing interest in the transposition of sig-

nal and image processing tools to process functions defined

on graphs. One can quote the recent works on the exten-

sion of wavelet on graphs [9]. Similarly, there are many

interesting works that aim to mimic and to transpose Partial

Differential Equations (PDEs) and variational methods on

graphs with applications in image and manifold processing

or in machine learning. See [8, 10] and references therein

for more details.

Short background on PDE level set mean curvature .
The level set formulation of the mean curvature flow prob-

lem was suggested by Osher and Sethian in [1]. It arises

from the front propagation equation and its implementation

on the PDEs level set.

Consider the following front propagation problem : we

want to find a family (Ω)t≥0 of open subsets of RN such

that every point u of the boundary Γt = ∂Ωt (called the

front) evolves with a prescribed normal velocity F (which

can depend on local or global characteristics). The idea of

Osher-Sethian for the level set to analyze moving front is to

introduce an auxiliary function f : Ω × [0, T ], Ω ⊂ Rn

whose 0-level set represents the front Γt. We therefore

define u such that, for all t ≥ 0, f(u, t) = 0 on Γt,

f(u, t) > 0 in Ωt and f(u, t) < 0 outside Ωt. Straight-

forward calculations give the level set PDE on the form

ft(u, t) = F.|∇f(u, t)|. This PDE is complemented with

an initial data φ0 which represents the initial front. One can

recover Γt = {f(u, t) = 0}, ∀t � 0. Of course, the spe-

cific nature of the level set equation depends on the form

of the normal velocity function F . For the simple function

F = F (u, t), for example, we obtain the Hamilton-Jacobi

problem ft(u, t) = F (u, t).|∇f(u, t)| and more general

Hamilton-Jacobi equations arise for velocity functions of

the form F = F (n, u, t), where n = n(u, t) = ∇f
|∇f | is the
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unit normal to the front at the point u at time t. When the

normal velocity F also depends on the spatial derivative of

the normal vector, we obtain the mean curvature equation:

ft(u, t) = ∇.
( ∇f(u, t)

|∇f(u, t)|
)
|∇f(u, t)|, (1)

where f(u, t) is an unknown level set function. The quan-

tity |∇f(u, t)| is the module of gradient. The level set

equation is accompanied by an initial condition f(u, 0) =
f0(u), u ∈ Ω. In the context of image processing, f0 corre-

sponds to the given noisy image or to an implicit represen-

tation of a front (surface).

Contributions. Our main contributions are as fol-

lows. We propose to define the notion of discrete weighted

perimeters using a family of discrete gradients on graphs.

As in the continuous settings, we introduce the notion

of nonlocal curvature as the first variation of the discrete

perimeters. We show that our formulation unifies both local

and nonlocal notions of the curvature. We also show that

our approach can deal with different types of applications

including image filtering, images on meshes filtering and

3D surface smoothing.

The transcription of the level set equation on graphs by

replacing curvature and gradient leads to a Partial differ-

ence Equation. Our proposed numerical scheme leads to

a morphological approach alternating dilation and erosion

processes.

Paper organization. The rest of this paper is orga-

nized as follows. Section 2 presents a general definition of

Partial difference Equations on weighted graph. Section 3

presents our new formalism of the Mean Curvature. Section

4 presents some experiments. Finally, Section 5 concludes

this paper.

2. Partial difference Equation on Graphs.

2.1. Notations and Definitions.

We begin briefly by reviewing some basic definitions

and operators on weighted graphs. See [2] and references

therein for more details.

Let us consider the general situation where any discrete

domain can be viewed as a weighted graph. A weighted

graph G = (V,E,w) consists in a finite set V of N ver-

tices and in a finite set E ⊆ V × V of edges. Let (u, v)
be the edge that connects vertices u and v. An undirected

graph is weighted if it is associated with a weight function

w : V × V → [0, 1]. The weight function represents a

similarity measure between two vertices of the graph. Ac-

cording to the weight function, the set of edges is defined

as : E = {(u, v)|w(u, v) > 0}. The degree of a vertex

u is defined as μ(u) =
∑

v∼u w(u, v) where notation v ∼

u means that the vertex v is adjacent to u. The neighbor-

hood of a vertex u (i.e., the set of vertices adjacent to u) is

denoted N(u). Let H(V ) be the Hilbert space of real val-

ued functions on the vertices of the graph. Each function

f : V → IR of H(V ) assigns a real value f(u) to each ver-

tex u ∈ V . Similarly, let H(E) be the Hilbert space of real

valued functions defined on the edges of the graph. These

two spaces are endowed with the following inner prod-

ucts: 〈f, h〉H(V ) =
∑

u∈V f(u)g(u) with f, g ∈ H(V ),
and 〈F,H〉H(E) =

∑
u∈V

∑
v∈V F (u, v)G(u, v) where

F,G ∈ H(E).
Given a function f : V → IR, the integral of f is defined

as: ∫
V

f =
∑
u∈V

f(u),

and its Lp norm is given by:

‖f‖p =
(∑
u∈V

|f(u)|p
)1/p

, 1 � p <∞.

‖f‖∞ = max
u∈V

(|f(u)|), p =∞.

2.2. Difference, Divergence and Discrete Gradients
on Graphs

Let us fix a weighted graph G = (V,E,w).
The difference operator Gw : H(V ) → H(E)
is given for all f ∈ H(V ) and (u, v) ∈ E by:

(Gwf)(u, v) = γ(u, v)(f(v)− f(u)), with γ : IR+ → IR+

and γ(u, v) = γ(w(u, v)) with γ(0) = 0.

The directional derivative (or edge derivative) of a

function f at a vertex v along an edge e = uv, is defined as

∂vfu = (Gwf)(u, v) = γ(u, v)(f(v)− f(u)) .

The adjoint operator of the difference operator,

denoted by G∗w : H(E) → H(V ), is defined by

〈Gwf,H〉H(E) = 〈f,G∗wH〉H(V ), with f ∈ H(V )
and H ∈ H(E). Using the definitions of the inner

products in H(V ) and H(E) and the definition of the

difference operator, we obtain easily the expression G∗w at a

vertex u : (G∗wH)(u) =
∑

v∼u γ(u, v)(H(v, u)−H(u, v)).

The divergence operator, defined by divw = −G∗w,

measures the net outflow of a function in H(E) at each

vertex of V .

Two weighted directional difference operators can be de-

fined. The weighted directional external and internal differ-

ence operators are respectively:

(∂+
v f)(u) = γ(u, v)(f(v)− f(u))+and

(∂−v f)(u) = γ(u, v)(f(v)− f(u))−,
(2)
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with (x)+ = max(0, x) and (x)− = −min(0, x).

The weighted gradient of a function f ∈ H(V) at vertex

u is the vector of all edge directional derivatives:

(∇wf)(u) = (∂vf(u))
T
v∈V . (3)

Two discrete formulations of weighted morphological

gradients on graphs are defined. The weighted external∇+
w

and the internal ∇−w gradient operators are respectively:

(∇+
wf)(u) =

(
∂+
v f(u)

)T
v∈V , (4)

(∇−wf)(u) =
(
∂−v f(u)

)T
v∈V . (5)

To define a notion of regularity of a function f around

a vertex u, we can consider different norms of gradients as

follows:

‖(∇±wf)(u)‖p =
[∑
v∼u

γ(u, v)p
(
(f(v)− f(u))±

)p ]1/p
.

(6)

‖(∇±wf)(u)‖∞ = max
v∼u

(
γ(u, v)|(f(v)− f(u))±|)). (7)

∇±w refers to both external and internal gradient (with re-

spect to the sign). These gradients have the following prop-

erty:

‖(∇wf)(u)‖pp = ‖(∇+
wf)(u)‖pp + ‖(∇−wf)(u)‖pp. (8)

Moreover, with a constant weight function and p = ∞,

equation (8) recovers the usual expression of algebraic

morphological external and internal gradients.

These gradients are used in [2] to adapt the well-known

Eikonal equation on discrete domains defined as:

∂f
∂t
(u, t) = μ(u)‖(∇f)(u, t)‖p, μ(u) ∈ IR, (9)

in their settings, this adaptation is given by:

∂f
∂t
(u, t) = μ+(u)‖(∇+

wf)(u)‖p − μ−(u)‖(∇−wf)(u)‖p.
(10)

This equation summarizes the dilation and erosion

processes. When μ > 0, then the external gradient is used

and this equation corresponds to a dilation. When μ < 0,

this equation corresponds to an erosion.

3. Mean Curvature on Graph

In this section, we present our new definition of mean

curvature on graph by introducing nonlocal perimeters on

graph. We define the mean curvature as the first variation

of these perimeters. We will show that the transcription of

the mean curvature equation (1) using our definition and

the morphological gradients leads to a difference equation

solved by a simple and iterative digital algorithm involving

morphological erosion and dilatation on graph.

3.1. Nonlocal Perimeters and Co-Area Formula on
Graph

Let A be a set of connected vertices with A ⊂ V . We

denote ∂+A = {u ∈ Ac|∃v ∈ A, v ∼ u} be the outer

vertex boundary, let ∂−A = {u ∈ A|∃v ∈ Ac, v ∼ u}
be the inner vertex boundary where Ac is the complement

of A. Let ∂vA = ∂+A ∪ ∂−A be the symmetric vertex

boundary. Note that ∂+A = ∂−(Ac), ∂−(A) = ∂+(Ac)
and ∂(A) = ∂(Ac). We define the edge boundary ∂EA =
{(u, v) ∈ E, u ∈ A, v ∈ Ac}. Let χ be an indicator func-

tion with :

χA(u) =
{

1 if u ∈ A
0 otherwise.

Proposition. Let 1 ≤ p <∞ and A ⊂ V .

‖∇+
wχA(u)‖p =

( ∑
v∈A

(γ(u, v))p
)1/p

χ∂+A(u). (11)

‖∇−wχA(u)‖p =
( ∑

v∈Ac

(γ(u, v))p
)1/p

χ∂−A(u). (12)

‖∇wχA(u)‖p = ‖∇+
wχA(u)‖p + ‖∇−wχA(u)‖p. (13)

The above equations were obtained by replacing the

different variables (f by χA) in equations (6)(8).

We see that for u ∈ A, ‖∇+
wχA(u)‖p is just the weighted

number of neighbors of the vertices u that belongs to Ac

(equivalently the weighted numbers of the out-boundary

edges between u and Ac), while ‖∇−wχA(u)‖p is the

weighted number of in-boundary edges between neighbors

of the vertices u that belongs to Ac, and ‖∇wχA(u)‖p
is the weighted number of in-boundary and out-boundary

edges.

Based on the previous definitions, let us define a family

of perimeters on graph.
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Definition. For 0 < p < ∞ and A ⊂ V , the perimeter

of A is defined as:

Per+w,p(A) = 1/2p
∑
u∈V

‖∇+
wχA(u)‖p = J+

w,p(χA(u)).

(14)

Per−w,p(A) = 1/2p
∑
u∈V

‖∇−wχA(u)‖p = J−w,p(χA(u)).

(15)

Perw,p(A) = 1/p
∑
u∈V

‖∇wχA(u)‖p = Jw,p(χA(u)).

(16)

Where Jw,p is a regularization functional and defined as:

J+
w,pf(u) = 1/2p

∑
u∈V

‖(∇+
wf)(u)‖p. (17)

J−w,pf(u) = 1/2p
∑
u∈V

‖(∇−wf)(u)‖p. (18)

Jw,pf(u) = 1/p
∑
u∈V

‖(∇wf)(u)‖p. (19)

Remark. If we consider the case where p = 1, it is easy

to show that

Per+w,1(A) = Per−w,1(A) and Perw,1(A) =

2Per+w,1(A) =
∑

u∈V ‖∇wχA‖1,

and

Per+w,1(A) =
∑
u∈Ac

∑
v∈A

γ(u, v), (20)

which is the definition of the graph cut formulation.

As in the continuous case where the perimeter is linked

to the total variation via co-area formula, we will show that

our proposed perimeters cover this property.

A key property of the gradient in this case is called

co-area formula. This is an extension of some properties of

the total variation on graph.

Proposition. For any function f : V → R

Df =

∫ +∞

−∞
Dχ{f>t}dt, (21)

where D denotes either one of |∇w|1, |∇w|±1 ,|∇w|±∞.

D are the functions of the form
∑
u∈V

γ(u, v)(f(v) −
f(u))± and

∑
u∈V

(γ(u, v)|f(v) − f(u)| , where the weights

γ(u, v) are non negative.

Proof. This proposition just follows easily from |a−b| =∫ +∞
−∞ |χ{a>t}−χ{b>t}|dt, and (a− b)± =

∫ +∞
−∞ (χ{a>t}−

χ{b>t})±dt, where a and b ∈ R.

The above proposition allows to recover the following

definitions which can be used to relax many problem of op-

timization involving the discrete perimeters:

J+
w,1(f) =

∫ +∞

−∞
J+
w,1(χ{f(u)>t})dt

=

∫ +∞

−∞
Per+w,1(χ{f(u)>t})dt.

(22)

J−w,1(f) =

∫ +∞

−∞
J−w,1(χ{f(u)>t})dt

=

∫ +∞

−∞
Per−w,1(χ{f(u)>t})dt.

(23)

Jw,1(f) =

∫ +∞

−∞
Jw,1(χ{f(u)>t})dt

=

∫ +∞

−∞
Perw,1(χ{f(u)>t})dt.

(24)

As in the continuous domain, we will define the mean

curvature as the first variation of the perimeters that we just

defined.

Definition. Let u0 ∈ ∂A = ∂+A ∪ ∂−A.

For u0 ∈ ∂+A, the mean curvature of u0 is defined as:

K+
w(u0,A) =

Per+w,1(A ∪ {u0})− Per+w,1(A)
μ(u0)

, (25)

where μ(u0) define the degree of a vertex u0. And for u0 ∈
∂−A, the mean curvature of u0 is defined as:

K−w(u0,A) =
Per−w,1(A)− Per−w,1(A− {u0})

μ(u0)
. (26)

By replacing the variables (A by A ∪ {u0}) in equation

(14), it can be rewritten as:

Per+w,1(A ∪ {u0}) =
∑

v∈({A∪{u0})c

∑
v∈({A∪{u0})

γ(u, v)

=
∑

v∈(Ac−{u0})

∑
v∈(A∪{u0})

γ(u, v).

(27)
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It is easy to show that:

Per+w,1(A ∪ {u0})− Per+w,1(A) =∑
v∈Ac

γ(u0, v)−
∑
v∈A

γ(u0, v),
(28)

then the mean curvature K+
w of u0 is rewritten as:

K+
w(u0,A) =

∑
v∈Ac γ(u0, v)−

∑
v∈A γ(u0, v)

μ(u0)
. (29)

Similarly, the mean curvature K−w of u0 is rewritten as:

K−w(u0,A) =
∑

v∈Ac γ(u0, v)−
∑

v∈A γ(u0, v)

μ(u0)
. (30)

Then, for u0 ∈ ∂A, the mean curvature is defined as:

Kw(u0,A) =
∑

v∈Ac γ(u0, v)−
∑

v∈A γ(u0, v)

μ(u0)
. (31)

Based on this definitions, we can extend the notion of

curvature to any function f defined on a graph.

Let f : V → IR and u ∈ V . The mean curvature kw of f

at u on a graph is defined as:

Kw(u, f) = Kw(u, {f(v) ≥ f(u)}) = (32)∑
f(v)−f(u)≥0 γ(u, v)−

∑
f(v)−f(u)<0 γ(u, v)

μ(u)
(33)

=

∑
u∈V γ(u, v)sign(f(v)− f(u))

μ(u)
, (34)

with sign(r) =

{
1 if r ≥ 0
−1 otherwise.

3.2. Connection with Nonlocal Mean Curvature and
Euclidean Graph

We will show that our definition of mean curvature is

linked to the notion of fractional mean curvature introduced

in [11]. The notion of the fractional perimeter (s-perimeter)

and the corresponding minimization problem were intro-

duced in [12]. The s-perimeter of A ⊂ IRn is defined as:

Pers(A) = cn

∫
A

∫
Ac

1

|x− y|n+s
dxdy, (35)

where x and y ∈ A and cn is a normalization constant and

|.| is the euclidean norm on IRn.

The main idea of the s-perimeter is that any point inside

A interact with any point outside A. The continuous frac-

tional curvature is defined formally as the first variation of

these s-perimeter as follow:

K(x,A) = cn

∫
A

χA(y)− χAc(y)

|x− y|n+s
dy =

cn

∫
A

1

|x− y|n+s
dy − cn

∫
Ac

1

|x− y|n+s
dy.

(36)

The above equation can be interpreted as a continuous

version of our proposed definition. Let us consider an eu-

clidean graph G = (V,E,w) with V = IRn, A ⊂ V ,

E = {(x, y) ∈ V × V/ w(x, y) > 0}, A ⊂ IRn.

For w(x, y) =

{ 1
|x−y|n+s with 0 < s < 1

0 otherwise,

our mean curvature is defined as:

Kw(x,A) =
∑

y∈Ac w(x, y)−∑
y∈A w(x, y)

μ(x)
. (37)

One can see that the above equation corresponds to the

continuous version of equation (36).

3.3. Numerical Scheme

Based on the definition of our mean curvature and the

transcription of equation (1), our formulation can be ex-

pressed for the case of L∞ norm as follow:

{
∂f
∂t (u) = K+

w(f(u))‖(∇+
wf)(u)‖∞ −K−w(f(u))‖(∇−wf)(u)‖∞

f(u, 0) = f0(u).

(38)

where K+
w(x) = (Kw(x))

+ and K−w(x) = (Kw(x))
−.

Now, let us show that this iterative equation corresponds

to alternate dilation and erosion (type filter) processes de-

pending on the sign of Kw. We introduce two operators,

nonlocal dilation (NLD) and nonlocal erosion (NLE) that

are defined respectively as:

NLD(f(u)) = f(u) + ‖(∇+
wf)(u)‖∞. (39)

NLE(f(u)) = f(u)− ‖(∇−wf)(u)‖∞. (40)

The time variable is discretized using the explicit Euler

method as:

∂f

∂t
(u) =

fn+1(u)− fn(u)

Δt
, (41)
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where fn(u) = f(u, nΔt) and equation (38) can be

rewritten as the following iterative equation:

fn+1(u) = fn(u)
(
1−Δt

[K+
w(f

n(u)) +K−w(fn(u))
])

+ΔtK+
w(f

n(u))NLD(fn(u))

+ ΔtK−w(fn(u))NLE(fn(u)).
(42)

To solve this dilation and erosion processes, in contrast

to the PDEs case, no spatial discretization is needed thanks

to derivatives directly expressed in a discrete form.

In the case whereKw ≥ 0, equation (42) summarizes the

averaging between the initial function and the NLD operator

and can be rewritten as:

fn+1(u) = fn(u)(1−ΔtK+
w(f

n(u)))

+ ΔtK+
w(f

n(u))NLD(fn(u)).
(43)

In the case where 1 −ΔtK+
w = 0, equation (43) can be

interpreted as an iterative nonlocal dilation (NLD) process.

Similarly, in the case whereKw < 0, equation (42) sum-

marizes the averaging between the initial function and NLE

operator, and can be interpreted as an iterative NLE process.

In the case whereKw �= 0 and 1−Δt|Kw| ≥ 0, equation

(43) summarizes an average filtering process.

At each step of this algorithm, the new value at vertex u
depends only on its value at step n and the existing values

in its neighborhood.

4. Applications
The proposed formulation of mean curvature flow equa-

tion can be used to process any function defined on vertices

of a graph or on any arbitrary discrete domain.

This section illustrates the potentialities of our formula-

tion through examples of image filtering, image on surface

filtering and 3D surfaces smoothing. Different graph struc-

tures and weight functions are also used to show the flexi-

bility of our approach. The objective of the following ex-

periments is not to solve a particular application, they only

illustrate the potential and the behavior of our mean curva-

ture definition formulation.

Weighted graph construction. Any discrete domain

can be represented by a weighted graph where functions of

H(V ) represents the data to process. In the general case, an

unorganized set of points V ⊂ IRn can be seen as a func-

tion f0 : V ⊂ Rn → Rn. Then, constructing a graph

from this data consists in defining the set of edges E by

modeling the neighborhood. It is based on a similarity re-

lationship between data with a pairwise distance measure

d : V ×V → R+ . In this paper, we focus on two particular

graphs: the grid graphs and the k-nearest neighbors graphs.

Grid graphs which are the natural structure to describe an

(a)

(b) (c)

(d) (e)

(f) (g)
Figure 1. Mean Curvature evolution of a zebra curve. (a) presents

the initial zebra image. (b, d, f) present the curve motion by mean

curvature on a local structure graph after 5 , 10 and 20 iterations.

(c, e, g) present the curve motion by mean curvature on a nonlocal

graph structure after 5 , 10 and 20 iterations.

image with a graph. Each pixel is connected by an edge

to its adjacent pixels.The k nearest neighbors graph, noted

k-NNG is a weighted graph where each vertex u ∈ V is

connected to its k nearest neighbors which have the small-

est distance measure towards u according to function d.

Then, the weight function w can be defined using usual

similarity functions depending on application and graph

topology (the weight function is defined as the Gaussian

kernel) , and satisfies:

w(u, v) =

{
g(u, v) if (u, v) ∈ E
0 otherwise.

where g is one of the following similarity functions:

g0(u, v) = 1.

g1(u, v) = e

(
−d(f0(u),f0(v))/σ2

)
with σ > 0.

(44)

Mean curvature for shape evolution. Let f0 be a level

set function that represents our initial data where f0 =
χΩO

− χΩc
0
, with χ : V → {0, 1} is the indicator func-

tion and Ωc
0 is the complement of Ω0. In other words,
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f0 equals 1 in Ω0 and −1 on its complementary. First in

figure 1, we show the evolution of the zebra curve under

the effect of mean curvature flow using local and nonlocal

graph structures. The first column presents the evolution

of the zebra curve using a local graph (i.e. 4-adjacency

grid graph) with a constant weight function w(u, v) = 1
at different steps. Second column presents the same results

but on a nonlocal graph. In this example, the graph is con-

structed as a 16-adjacency grid graph with the weight func-

tion w(u, v) = e

(
−‖u−v‖/σ2

)
and σ = 10 . One can see

that the motion of the curve with a nonlocal graph preserve

the global form of the initial zebra curve.

Mean curvature for image filtering. In this paragraph,

we illustrate the behavior of our approach to perform noisy

images filtering. Let f0 : V → IRn be a level function

set that represents initial data. Figure 2 presents a com-

parison between the effect of filtering of a noisy image us-

ing mean curvature flow on local and nonlocal graph struc-

tures. The first line presents results obtained on local graph.

The second line presents results obtained on nonlocal graph.

In this example, we construct a 16-adjacency grid graph

with w(u, v) = e

(
−d(F(u),F(v))/σ2

)
and σ = 20, where

F : V ⊂ IRn associates a patch of pixels to every ver-

tices (this to better describe texture informations). Both

lines presents results at different steps of mean curvature

flow. Similarly to the previous example, one can remark that

the nonlocal structure better preserve image details and tex-

tures. Figure 3 presents another filtering example on noisy

images using nonlocal graph structure.

Application to images on surfaces filtering. In this

paragraph, we illustrate the adaptivity of our approach to

perform noisy image on surfaces filtering. The approach is

the same that for image on regular grid, but with a different

graph topology. Figure 4 presents the filtering of a image

on a 3D surface (or mesh). The first line shows the initial

model and the second one shows the filtering result. In this

example, the graph was constructed using the mesh struc-

ture.

Application to 3D surface smoothing. Another appli-

cation that illustrates the adaptivity of our approach is the

3D surfaces smoothing. Figure 5 presents a 3D noisy sur-

faces smoothing using mean curvature flow and the fast

surface reconstruction method presented in [3]. In this

example, the graph is a k-NNG graph constructed from

the set of initial points and numerous additional points

as described in [3]. The weight function is given by

w(u, v) = e

(
−d(f0(u),f0(v))/σ2

)
with σ = 10. Similarly

to the first example, the level set function f0 is defined as :

f0 = χΩO
− χΩc

0
.

(a)

(b) (c) (d)

(e) (f) (g)
Figure 2. Noisy image filtering. (a) presents the initial image,

(b,c,d) present the filtering using mean curvature on a local graph

structure after 5 , 10 and 20 iterations.(e,f,g) present the filtering

using mean curvature on a nonlocal graph structure after 5, 10 and

20 iterations.

(a) (b)

(c) (d)
Figure 3. Noisy Image filtering. (a,b) present the GoldHill noisy

image and the filtered one after 30 iterations with σ = 20, (c,d)

present the noisy colored Lena image and the filtered one after 30

iterations with σ = 20.

5. Conclusion

In this paper, we have introduced an adaptation of the

mean curvature on weighted graphs as the first variation of

perimeters, based on PdEs and using a framework of dis-

crete operators. Experimental results have shown the poten-

tiality of the proposed formulation of mean curvature level
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(a) (b)

(c) (d)
Figure 4. Image on mesh filtering. (a) presents the initial noisy

image on surface, (b) presents a zoom on the point clouds of the

initial model, (c) presents the filtered model by mean curvature

after 30 iterations with σ = 20, (d) presents a zoom on the point

clouds of the filtered model.

sets and its adaptivity to graphs of arbitrary topology.
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