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Abstract

In this work, we address the problem of human pars-
ing, namely partitioning the human body into semantic re-
gions, by using the novel Parselet representation. Previous
works often consider solving the problem of human pose
estimation as the prerequisite of human parsing. We ar-
gue that these approaches cannot obtain optimal pixel level
parsing due to the inconsistent targets between these tasks.
In this paper, we propose to use Parselets as the build-
ing blocks of our parsing model. Parselets are a group of
parsable segments which can generally be obtained by low-
level over-segmentation algorithms and bear strong seman-
tic meaning. We then build a Deformable Mixture Pars-
ing Model (DMPM) for human parsing to simultaneously
handle the deformation and multi-modalities of Parselets.
The proposed model has two unique characteristics: (1) the
possible numerous modalities of Parselet ensembles are ex-
hibited as the “And-Or” structure of sub-trees; (2) to fur-
ther solve the practical problem of Parselet occlusion or
absence, we directly model the visibility property at some
leaf nodes. The DMPM thus directly solves the problem of
human parsing by searching for the best graph configura-
tion from a pool of Parselet hypotheses without intermediate
tasks. Comprehensive evaluations demonstrate the encour-
aging performance of the proposed approach.

1. Introduction
Human parsing [31] has drawn much attention recently

for its wide applications in human-centric analysis, such as

person identification [16] and clothing analysis [7, 21]. The

success of human parsing relies on the seamless coopera-

tion of human pose estimation [32], segmentation [2], and

region labeling [31]. However, previous works often con-

sider solving the problem of human pose estimation as the

prerequisite of human parsing [31]. We argue that these ap-

proaches cannot obtain optimal pixel level parsing due to

the inconsistent targets of these tasks.

In this paper we aim to develop a unified framework for

human parsing. To this end, we reconsider the basic level
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Figure 1: Parselets are image segments that can generally

be obtained by low-level segmentation techniques and bear

strong semantic meaning. The instantiated Parselets, which

are activated by our Deformable Mixture Parsing Model,

provide accurate semantic labeling for human parsing.

representation. Although the key points [33] or rigid tem-

plates [32, 12] representation can facilitate the localization

of human parts, leading to great success in human detec-

tion and pose estimation [32], it fails to provide accurate

pixel-level labeling. This limitation hinders key points or

templates to be the ideal building blocks for human parsing.

On the other hand, there exists exciting progress of bottom-

up region hypotheses based segmentation methods [5, 10],

which have achieved the state-of-the-art performance [11].

More specifically, region hypotheses based segmentation

is performed by first generating extensive object hypothe-

ses based on bottom-up information and then ranking them,

with the critical assumption that the object has a large prob-

ability to be tightly covered by at least one of the generated

hypotheses. This assumption usually holds well for objects

with homogeneous appearance. However, for objects with

large appearance variance, finding a single region hypothe-

sis to tightly cover the whole object is very difficult.

Based on the above observation, we propose to use

Parselets as the building blocks for human parsing as

shown in Fig. 1. The Parselets are a group of semantic im-

age segments with the following characteristics: (1) they

can generally be obtained by low-level over-segmentation
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algorithms [3, 1], i.e. they are parsable by bottom-up tech-

niques; (2) they have strong and consistent semantic mean-

ing, i.e. they are parsable by the human knowledge. An

object consisting of parts with large variance usually can-

not be well segmented out by the low-level segmentation

methods, e.g. a human body cannot be perfectly segmented

by edge-based segmentation [3]. However, we argue that

the localized semantic regions, e.g. the skirt or hair area of

human in Fig. 1, often show homogeneous appearance and

can be segmented out as segments. Such image segments,

denoted as Parselets, explicitly encode segmentation and se-

mantic level information.

With the Parselet representation, we propose the De-

formable Mixture Parsing Model (DMPM) for human pars-

ing. DMPM is represented as an “And-Or” graph [33] based

hierarchical model to simultaneously handle the deforma-

tion and multi-modalities of Parselets. The joint learning

and inference of best configuration for both appearance and

structure in our DMPM guarantee the overall performance.

We perform human parsing by generating extensive hy-

potheses for Parselets and subsequently assembling them by

DMPM. The major contributions of this work can be sum-

marized as follows:

• We propose the novel Parselet representation. By ex-

plicitly encoding segmentation and semantic informa-

tion, Parselets serve as ideal building blocks for hu-

man parsing models. Human parsing is then performed

with the Parselet representation, rather than with the

key point [33] or rigid template [32, 12] representa-

tion. The instantiated Parselets directly provide accu-

rate pixel-level semantic information. In practice, sev-

eral over-segmentation techniques are utilized to en-

sure the high recall rate of Parselets.

• We build a novel Deformable Mixture Parsing

Model (DMPM) for human parsing. The “co-

occurrence” and “exclusive” modalities of Parselets

are exhibited as the “And-Or” structure of sub-trees.

To further solve the problem of Parselet occlusion or

absence, we directly add the “visibility” property at

the corresponding nodes. Joint learning and inference

of appearance and structure parameters guarantee the

overall performance. In addition, the tree structure of

our DMPM allows efficient inference.

• In order to verify the effectiveness of the proposed

framework, we construct a high resolution human

parsing dataset consisting of 2,500 images. All the

pixels in the images are thoroughly annotated with 18

types of Parselets. As far as we know, this is the largest

human dataset with full parsing labels. It could serve

as the benchmark for segmentation-based human anal-

ysis in the research community.

2. Related Work
Selective Search for Recognition: Selective search ap-

proaches for object recognition have achieved great success

in the past few years [24, 10, 27, 5, 2, 4]. This line of works

first generate a set of object hypotheses based on bottom-up

information and then convert the recognition problem into

a ranking problem. Compared with exhaustive sliding win-

dow scanning [9, 12], selective search usually enables more

expensive and potentially more powerful recognition tech-

niques [28, 27]. Our work differs from the above works sig-

nificantly as we focus on parts instead of whole objects. We

claim that region hypotheses are better hypotheses for parts

than for objects toward categories with heterogeneous ap-

pearance. Gu et al. [17] also addressed the problem of seg-

menting and recognizing objects based on their parts. They

generated part hypotheses and then formulated the problem

in the generalized Hough transformation framework. Our

work differs from this work significantly as their work fo-

cuses on the segmentation and is unable to exploit the hier-

archical structure of the object.

Part Based Model: Hierarchical part based models can

better grasp the complicated structure than rigid models

and thus usually achieve better performance for articulated

objects [12, 32, 34]. Pictorial Structure (PS) based meth-

ods [13, 12, 32] are the most common approaches for pose

estimation and object recognition. However, unlike our

DMPM, part templates are usually spread in all nodes of PS

based models, which makes it inconvenient to model com-

plicated composite relation. The stochastic image grammar

model [33, 8] is also effective for modeling the hierarchical

structure. However, these models rely on complex learning

and inference procedures which can only be made tractable

using approximate algorithms [25]. On the contrary, de-

spite the sophisticated structure of DMPM, we show that a

tractable and exact inference algorithm exists.

Human Parsing: Human parsing, namely partitioning

the human body into semantic regions, plays an important

role in many human-centric applications [7, 21, 22, 30, 20].

Torr and Zisserman proposed an approach for simultane-

ous human pose estimation and body part labeling under

the CRF framework [26], which can be regarded as a con-

tinuation of combining segmentation and human pose esti-

mation [19]. Yamaguchi et al. [31] performed human pose

estimation and attribute labeling sequentially for clothing

parsing. Our method differs from these methods as previ-

ous research on human parsing tends to first align human

parts [32] due to the large pose variations or the complexity

of the models. However, such sequential approaches may

fail to capture the correlations between human appearance

and structure, leading to unsatisfactory results. The pro-

posed DMPM, which can solve human parsing in a unified

framework, significantly distinguishes our work from oth-

ers.
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Figure 2: Human decomposition based on different basic el-

ements. The original image, Parselet based decomposition

and joint based decomposition are shown sequentially.

3. Parselets
Parselets lie at the heart of our human parsing frame-

work. In this section, we first give the definition of human

Parselets. Then we present the details of hypothesis gener-

ation and feature representation for Parselets. And finally,

we briefly introduce the modalities of Parselet ensembles.

3.1. Parselet Definition
We notice that the classical part-based models [13, 32]

usually divide body into parts based on joints. However,

such decomposition is unsuitable for segment hypotheses

because joint-based parts usually do not correspond to the

segments from bottom-up cues. Considering the left im-

age in Fig. 2, the whole dress is likely to be captured by

a single segment from the bottom-up techniques. But for

the right image, the upper clothes, coat and pants should in-

tuitively correspond to three separate segments. This dif-

ference is hard to be grasped by joint based decomposi-

tion. To overcome this limitation, we propose the Parse-

lets to serve as the building elements for our parsing model.

Formally, the Parselets are a group of semantic image seg-

ments which have the following characteristics: (1) they

can generally be obtained by low-level segmentation algo-

rithms [3, 1, 5], i.e. they are parsable by the bottom-up tech-

niques. This characteristic guarantees that Parselets can be

retrieved with high possibility by the bottom-up hypothesis

generation schemes. (2) They bear strong and consistent se-

mantic meaning, i.e. they are parsable by the human knowl-

edge. Since our ultimate goal is to perform human parsing,

the basic elements of the parsing model should have clear

semantic meaning.

We now decompose human body into homogeneous re-

gions based on low-level cues. The homogeneous regions,

which have clear semantic meaning and appear in many dif-

ferent images, are defined as Parselets. Through careful

design, each defined Parselet will have high probability to

form a single segment. Specifically, we define 18 types of

Parselets as described in Table 1. These Parselets are repre-

sentative and can properly cover most of human body. They

engage about 98.4% of human body in our labeled datasets

and can be obtained with high recall rate using the method

introduced in Section 3.2. Detailed statistics are shown in

the experiment section. It is worth noting that the Parse-

let definition is flexible to be redesigned for different appli-

cations. The only assumption here is that those semantic

Table 1: 18 types of Parselets for human

Parselets

Head hat hair sunglasses

Body upper clothes coat full body clothes

skirt pants

Foot left/right shoe

Skin face left/right arm left/right leg

Accessory bag scarf belt

regions can be segmented out with high probability.

3.2. Hypothesis Generation for Parselets
In order to obtain the Parselet hypotheses with high re-

call rate, we combine several low-level segmentation meth-

ods. As Parselets usually appear in different scales, the hier-

archical segmentation algorithm should be a natural way to

generate hypotheses. Here, we choose Ultrametric Contour

Map (UCM) [3], which works well to preserve the bound-

ary information. However, the merging scheme of UCM

proceeds by removing the edge with smallest probability

and thus only neighboring super-pixels can be merged. This

may prevent non-adjacent segments from merging as a sin-

gle segment and lead to unsatisfactory results for some

Parselets, which are separated by noise segments. For ex-

ample, the dress in the left image of Fig. 2 is split into

separate segments by the stripe pattern with strong edges.

Hence UCM fails to merge them in the early stage. In ad-

dition, some garments, such as a belt, may also divide a

Parselet into separate segments. To handle these difficul-

ties, we add another appearance based segmentation and

merging scheme. Specifically, we first use the fast appear-

ance based over-segmentation method [1] and sequentially

merge the nearby (not necessarily adjacent) regions with the

smallest similarity score in a similar manner as in [27]. We

define the similarity score S between segments a and b as

S(a, b) = Ssize(a, b) + Sappearance(a, b), both of which

are normalized to [0,1]. Ssize(a, b) is defined as the frac-

tion of the image that the region a and b jointly occupy.

This factor encourages small regions to be merged early.

Sappearance(a, b) is defined as the χ2 distance of the color

and SIFT [23] histogram of segments a and b [29]. Fi-

nally, we utilize another complementary scheme, namely

CPMC [5], which directly generates many segments of dif-

ferent scales. The segments from the above three methods

are combined into the final Parselet hypothesis.

3.3. Feature Representation
Compared with exhaustive sliding window scanning [9,

12], our Parselet based representation enables complex and

expensive feature design. It has been shown that the bag

of words feature performs better than the rigid template for

categories with large pose and view variance [28, 27, 5].

As our Parselet categorization is essentially a classification

problem, we follow the state-of-the-art feature extraction-

coding-pooling classification pipeline [15, 6, 4]. In this

work, we adopt the Fisher Kernel (FK) + average pool-
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ing [15] and enhanced feature + second order pooling [4],

which have been shown with the best performance among

current BoW encoding methods. In addition, as our algo-

rithm only employs the size and appearance features which

can be efficiently propagated throughout the hierarchical

structure embedded in the pools of segments, the feature

extraction is reasonably fast.

3.4. Parselet Ensemble
Parselets serve as the building blocks of our human pars-

ing model. The Parselets are low-level parts from the def-

inition. In practice, several Parselets are often grouped to-

gether in order to form the middle-level human body part,

e.g. head, body, etc. Those middle-level parts cannot be

represented by a single type of Parselets but can be mod-

eled by the ensembles of Parselets. More specifically, the

ensembles of Parselets show two kinds of modalities as fol-

lows: (1) Co-occurrence. The modality of co-occurrence

represents the relation that several types of Parselets co-

exist and are merged to form a larger middle-level human

part. This is the most typical modality of Parselet ensem-

bles. For example, the “hair” usually comes with “face” to

form the “head”. (2) Exclusivity. The modality of exclu-

sivity models the relationship of different types of Parselets

that cannot coexist logically. For example, for the “lower-

body” area, there are two possible Parselets, i.e. “skirts” and

“pants”. However, “skirts” and “pants” usually cannot co-

exist. The exclusivity for the middle-level concept “lower-

body” means that only one of the two exclusive Parselets,

i.e. “skirts” and “pants”, can exist for the “lower-body”.

The middle level concepts formed from Parselet ensem-

bles can be further merged with Parselet(s) or other middle

level concepts. They also exhibit co-occurrence or exclu-

sivity modalities to form an even higher level concept. This

higher level concept thus inherits all the information from

its sub-components. This inheritance property guarantees

that we can model complex objects (e.g. human) with mul-

tiple levels of concepts.

4. Human Parsing over Parselets
With the Parselets and their ensembles, we propose the

Deformable Mixture Parsing Model (DMPM) for human

parsing. Specifically, we propose to employ an “And-Or”

graph [33] based hierarchical model to simultaneously han-

dle the deformation and multi-modalities of Parselets. The

“co-occurrence” modality is modeled as the “And” relation

while “exclusivity” modality is modeled as the “Or” rela-

tion in the graph. The deformation is modeled as pair-

wise parent-child distance. We construct a hierarchical

model, as hierarchical models have been shown to be ef-

fective for grasping the structure of objects in part based

approaches [32, 33]. In addition, absence/occlusion is com-

mon for some Parselets. Hence we explicitly model this by

utilizing a special structure call virtual “Leaf” node. Fig. 3
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Figure 3: The subgraph from our human “And-Or” graph.

The diamonds, rectangles, eclipses and eclipses with

boundary represent “Or” nodes, “And” nodes, “Leaf” nodes

and virtual “Leaf” nodes, respectively.

shows a subgraph from our human graph, while the full

graph of our parsing model is listed in the supplemental file.

In the next subsections, we will introduce our DMPM fol-

lowed by the inference and learning algorithms.

4.1. Deformable Mixture Parsing Model
We first define the notations used in the following sec-

tion. P represents the Parselet hypothesis segments in an

image generated according to Section 3.2. For a hypothesis

segment with index i, its scale (the square root of its area)

and centroid are donated as si and ci = (xi, yi). Formally, a

DMPM model is represented as a graph G = (V,E) where

V is the set of nodes and E is the set of edges. The edges

are defined by the parent-child structure and kids(ν) de-

note the children of node ν. There are three basic types

of nodes, “And”,“Or” and “Leaf” nodes which specify dif-

ferent parent-child relationships as depicted in Fig. 3 by di-

amonds, rectangles and eclipses respectively. Each “Leaf”

node corresponds to one type of Parselets.

The state variables of the graph specify the graph con-

figuration. Specifically, the graph topology is instantiated

by a switch variable t at “Or” nodes, which indicates the

set of active nodes V (t). Starting from the top level, an ac-

tive “Or” node ν ∈ V O(t) selects a child tν ∈ kids(ν).
The active “And” or “Or” nodes have the state variables

gν = (sν , cν) which specify the virtual scale and centroid

of the node. The active “Leaf” nodes ν ∈ V L(t) have the

state variables dν which specify the index of the segments

for Parselets. In summary, we specify the configuration of

the graph by the states z = {(tν , gν) : ν ∈ V O(t)}⋃{gν :
ν ∈ V A(t)}⋃{dν : ν ∈ V L(t)} where the active nodes

V (t) are determined from the {tν : ν ∈ V O(t)}. We then

let zkids(ν) = {zμ : μ ∈ kids(ν)} denote the states of all the

child nodes of an “And” node ν ∈ V A and let ztν denote the

state of the selected child node of an “Or” node ν ∈ V O.

Invisibility Modeling: Some Parselets, such as bags

and scarfs, have high probability to be absent or occluded,

namely invisible. In other words, these “Leaf” nodes should

be with the visibility property. We explicitly model these

notes by using a special structure, denoted as virtual “Leaf”
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node. More specifically, we introduce an auxiliary “Invis-

ible” type of nodes which have no appearance representa-

tion. Then the virtual “Leaf” node is represented as a struc-

ture consisting of an “Or” node, an ordinary “Leaf” node

and an “Invisible” node, as shown in Fig. 3. The activated

nodes in the virtual “Leaf” node structure thus explicitly

suggest whether the corresponding “Leaf” node (Parselet)

is visible or not. For standard “Leaf” node μ, the cor-

responding score is wL
μ · ΦL(P, zμ), where ΦL(P, zμ) is

the feature vector extracted from the segment dμ as de-

scribed in Section 3.3. For the virtual “Leaf” node with

“Or” node ν, “Leaf” node μ and “Invisible” node ρ, the

score iswL
μ ·ΦL(P, zμ)+w

O
ν,μ orwO

ν,ρ depending on the vis-

ibility of the corresponding Parselet. wO
ν,μ and wO

ν,ρ are the

learned weights for the visibility property, which are em-

bedded in the “Or” node of the virtual “Leaf” node. It is

worth noting that the state of the “Invisible” node fully de-

pends on its weight in the “Or” node and its own score is

always 0.

We can now write the full score associated with a state

variable z:

S(P, z) =
∑

μ∈V L(t)

wL
μ · ΦL(P, zμ) +

∑

μ∈V O(t)

wO
μ,tμ

+
∑

μ∈V A(t)

wA
μ · ΦA(zμ, zkids(μ)).

(1)

The first term in Eqn. (1) is an appearance model that com-

putes the local score of assigning the segment dμ as Parselet

μ. The last two terms are independent of the data and can be

considered as priors of occurrence and the spatial geometry.

Based on the graph structure, we can further decompose the

last term of Eqn. (1) as follows:

S(P, z) =
∑

μ∈V L(t)

wL
μ · ΦL(P, zμ) +

∑

μ∈V O(t)

wO
μ,tμ

+
∑

μ∈V A(t)

∑

ν∈kids(μ)
wA

μ,ν · ψ(dμ, dν).
(2)

ψ(dμ, dν) = [dx dx2 dy dy2 ds]T measures the geo-

metric difference between part μ and ν, where dx = (xν −
xμ)/

√
sν · sμ, dy = (yν − yμ)/

√
sν · sμ and ds = sν/sμ

are the relative location and scale of part ν with respect to

μ.
Compared with the most prevalent hierarchical modeling

approaches [32, 12], the proposed model has the following

distinctive characteristics:
• We use Parselets as the basic elements for our pars-

ing model. The parsing problem is now transferred

as searching the best configuration of the hierarchical

model. Once the maximization is obtained, we can di-

rectly get the accurate pixel-level segmentation and se-

mantic labels from the corresponding Parselets.

• The “And-Or” graph structure allows both co-

occurrence and exclusivity relations between different

parts. Unlike previous methods [32, 12], which often

use “Or” node to model the multi-view properties of

the same part, the “Or” node here plays the role of se-

lecting the best configuration among mixture of sub-

graphs, which is more flexible.
• We explicitly model the visibility property of the

“Leaf” node, which is practical and critical for some

Parselets. The introduction of a special node, i.e. the
Invisible node, brings the flexibility for the real-life sit-

uation without adding extra model complexity.

4.2. Inference
Inference corresponds to maximizing S(P, z) from

Eqn. (2) over z. As graph G = (V, E) is a tree, inference

can be done efficiently with dynamic programming. More

specifically, we can simply iterate over all subparts starting

from the leaves and moving “upstream” to the root. The

message from children to their parent can be computed by

the following:
scoreIτ (zτ ) = 0, (3)

scoreLτ (zτ ) = wL
τ · ΦL(P, zτ ), (4)

scoreOν (zν) = max
ρ∈kids(ν)

[mρ(zν)], (5)

mρ(zν) = max
zρ

[scoreρ(zρ)] + wO
ν,ρ, (6)

scoreAμ (zμ) =
∑

ρ∈kids(μ)
nρ(zμ), (7)

nρ(zμ) = max
zρ

[scoreρ(zρ) + wA
μ,ρ · ψ(dμ, dρ)]. (8)

At the bottom level, the scores of “Invisible” nodes and

“Leaf” nodes are calculated as in Eqn. (3) and Eqn. (4).

“Or” node selects the maximal response from its children

for its score as in Eqn. (5) and Eqn. (6). The score of “And”

node is calculated by accumulating the scores of its chil-

dren plus the corresponding deformation as in Eqn. (7) and

Eqn. (8). The above equations suggest that we can express

the energy function recursively and hence find the optimal z
using dynamic programming. In addition, the maximization

over z can be partially accelerated by generalized distance

transformation, which makes the whole algorithm more ef-

ficient [14, 12].

4.3. Learning
Given the labeled examples {Pi, zi}, the max-margin

framework is arguably preferable to maximum-likelihood

estimation as our final goal is discrimination. Note that

the scoring function of Eqn. (2) is linear in model param-

eters w = (wL, wO, wA), and can be written compactly

as S(P, z) = w · Φ(P, z). Thus both appearance and

structure parameters can be learned in a unified framework,

which is critical for achieving the state-of-the-art perfor-

mance for many applications [12, 32]. Here, we formulate

the structured learning problem in a max-margin framework

as in [12]:
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Table 2: The best IoU scores for each type of Parselets on the FS and DP datasets.
dataset hat hair s-gls u-cloth coat f-cloth skirt pants belt l-shoe r-shoe face l-arm r-arm l-leg r-leg bag scarf

FS 84.0 78.2 56.6 84.1 null 90.8 91.6 92.8 65.7 72.4 71.9 83.4 79.8 79.8 79.2 79.9 81.8 76.1

DP 83.5 81.0 58.8 88.6 71.9 93.9 89.3 92.5 71.0 73.2 73.8 85.6 93.4 92.9 86.7 86.5 84.8 78.2

min
w

‖w‖2 + C
∑

i

ξi

s.t. w · (Φ(Pi, zi) − Φ(Pi, z)) ≥ Δ(zi, z) − ξi, ∀z;
(9)

where Δ(zi, zj) is a loss function which penalizes incor-

rect estimate of z. This loss function gives partial credit to

states which differ from the ground truth slightly. The loss

function is defined as follows:

Δ(zi, zj) =
∑

ν∈V L(ti)
⋃

V L(tj)

δ(zνi , z
ν
j ), (10)

where δ(zνi , z
ν
j ) = 1, if ν /∈ V L(ti)

⋂
V L(tj) or

sim(dνi , d
ν
j ) ≤ σ. sim(·, ·) is the intersection over union

ratio of two segments dνi and dνj , and σ is the threshold,

which is set as 0.8 in the experiments. This loss function

penalizes both configurations with “wrong” topology and

leaf nodes with wrong segments. The optimization problem

Eqn. (9) is known as a structural SVM, which can be effi-

ciently solved by the cutting plane solver of SVMStruct [18]

and the stochastic gradient descent solver in [12].

5. Experiments
5.1. Experimental Settings
Dataset: Our experiments are conducted on two

datasets. The first one is the Fashionista (FS) dataset [31],

which has 685 annotated samples with 56 different clothing

labels. This dataset is originally designed for fine-grained

clothing parsing. To adapt this dataset for our human pars-

ing, we merge their labels according to our Parselet def-

inition. As there is no direct link between their annota-

tion and our “coat” Parselet, we ignore the “coat” Parselet

and merge all upper body clothing into the “upper clothes”

Parselet. The second dataset, called Daily Photos (DP), con-

tains 2500 high resolution images, which are crawled fol-

lowing the same strategy as the FS dataset [31]. In order to

obtain quantitative evaluation results, we thoroughly anno-

tate the semantic labels at pixel-level. Compared with FS,

the DP dataset contains much more images and has consis-

tent labels with Parselet definition for human parsing.

Evaluation Criterion: The parsing result is evaluated

based on two complementary metrics. The first one is Av-

erage Pixel Accuracy (APA) [31], which is defined as the

proportion of correctly labeled pixels in the whole image.

This metric mainly measures the overall performance. The

second metric is Intersection over Union (IoU) [11], which

is widely used in evaluating segmentation and suitable for

measuring the performance of each Parselet separately. We

also devise two variants of IoU for Parselets to make Parse-

lets comparable with objects. The first one is the “Merging

IoU” (mIoU) which merges the hypothesis for each Parselet

Table 3: Comparison of Parselets versus objects in terms of

the best IoU score on FS and DP datasets.
dataset CPMC [27] SLIC [1] UCM [3] Combined

Obj IoU FS 0.830 0.559 0.430 0.831

Par mIoU FS 0.895 0.725 0.604 0.917
Par wIoU FS 0.844 0.621 0.546 0.860

Obj IoU DP 0.815 0.534 0.443 0.816

Par mIoU DP 0.896 0.722 0.638 0.928
Par wIoU DP 0.831 0.614 0.608 0.862

into an object hypothesis to obtain the object level IoU. The

second one is the “Weighted IoU” (wIoU) which is calcu-

lated by accumulating each Parselet’s IoU score weighted

by the ratio of its pixels occupying the whole object. Note

that generally mIoU is higher than wIoU.

Implementation Details: We extract dense SIFT [23],

HOG [9] and color moment as low-level features for Parse-

lets. The size of Gaussian Mixture Model in FK is set to

128. The training:testing ratio is 2:1 for both datasets. The

penalty parameter C is determined by 3-fold cross valida-

tion in the training set.

5.2. Hypotheses Comparison: Parselets vs. Objects
We first validate the assumption that segmentation can

provide better hypotheses for Parselets than for objects with

heterogeneous appearance (e.g. human) by comparing the

best IoU scores of Parselets and objects. The best IoU

score for a segmentation method is defined as the maximal

IoU score between the segments produced by that method

and the ground truth segments. The same hypothesis seg-

ments, which are generated through the methods introduced

in Section 3.2, are used for both Parselets and objects. We

calculate the best IoU of Parselets and objects for differ-

ent method on two datasets. The comparison results are

displayed in Table 3, from which it can be observed that

the best IoU of Parselets is much higher than that of ob-

jects. This trend is consistent among different algorithms

and datasets, which makes the usage of segments as Parse-

let hypotheses more convincing. In addition, combining all

three complementary algorithms leads to the best perfor-

mance and we use this setting thereafter. The detailed best

IoU for each type of Parselets based on combined hypothe-

ses are shown in Table 2 .

5.3. Evaluation for Human Parsing
Human Parsing: We now compare our proposed frame-

work with the work of Yamaguchi et al. [31] for human

parsing. This baseline works by first estimating the hu-

man pose and then labeling the super-pixel based on the

pose estimation results. We use the public available imple-

mentation of version 0.2 and carefully tune the parameter

according to [31]. The baseline method achieves 83% for

FS dataset and 82% for DP dataset in terms of APA, which
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Figure 4: Comparison of parsing results. Original images, our results and baseline’s results [31] are shown sequentially.

Figure 5: More exemplar results from our parsing framework.

are inferior to 86% and 87% of our framework. Though

APA is good at measuring the overall performance of hu-

man parsing, it fails to distinguish the performance of sep-

arate Parselets and has bias towards background. More

specifically, naively assigning all segments as background

results in a reasonably good APA of 78% for DP and 77%
for FS. Therefore, we further employ the more discrimina-

tive IoU criterion for comparison. The detailed compari-

son results on all types of Parselets are reported in Table 4.

It can be seen that our method performs much better than

the baseline method, especially for the Parselet level re-

sults. This mainly verifies the stability of our algorithm.

Unlike our method, the baseline method does not model the

exclusive relation of different labels, which leads to unsta-

ble results as shown in Fig. 4. Note that their method can

achieve good performance with the prior information speci-

fying what type of Parselets appears in the image. However,

such information is usually difficult to obtain for real-world

applications. In addition, it can be observed that the results

from our model are more robust to uncommon poses and ab-

sent/occluded parts. The baseline method estimates the hu-

man pose and labels the region separately. This non-unified

nature omits the strong correlation of appearance and struc-

ture for human. On the contrast, by employing the low-level

visual cues and high-level structure information in a unified

framework with explicit invisibility modeling, our model is

much more robust to these difficult examples. More exem-

plar results from our framework are shown in Fig. 5.

Parsing as Segmentation: As human parsing results in

pixel-level segment labeling, our framework implicitly pro-

vides human segmentation results. We thus further com-

pare the segmentation results between our human pars-

ing method and the state-of-the-art image segmentation

method [4], to demonstrate the effectiveness of our frame-

work. The baseline method [4] employs the bottom-up seg-

ments as the object hypotheses and only achieves the IoU

score of 73% for FS dataset and 70% for DP dataset, which

(a) (b) (c) (d) 
Figure 6: Comparison of human segmentation results. (a)-

(d) are input images, our human parsing results, segmenta-

tion results by merging (b) and results from the segmenta-

tion method [4], respectively

is much lower than the result of Merging IoU of 83.1% and

84.6% as shown in Table 4. Some exemplar results are

shown in Fig. 6, from which we can observe obvious de-

fects for the baseline segmentation results in column (d).

Such defects are avoidless for the baseline method as a sin-

gle segment from the bottom-up segmentation can hardly

cover the whole body tightly. On the contrary, our frame-

work can employ the top-down knowledge and assemble

several homogeneous segments into an object, which leads

to much more accurate segmentation.

5.4. Human Parsing for High Level Applications
Parselets provide a middle-level representation and well

bridge the gap between the low-level segments and the high-

level concepts. Hence, our Parselet based parsing frame-

work can serve as the basis for many high-level applica-

tions. Here, we build a prototype system to retrieve visually

similar person as a representative. More specifically, given

a query image, we first filter images in the database based

on the Parselet types. For each pair of corresponding Parse-

lets, the similarity is calculated based on the Euclidean dis-
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Table 4: Comparison of human parsing IoU scores on FS and DP datasets.
dataset hat hair s-gls u-cloth coat f-cloth skirt pants belt l-shoe r-shoe face l-arm r-arm l-leg r-leg bag scarf wIoU mIoU

Baseline [31] FS 2.5 47.2 0.8 36.4 null 23.2 21.6 19.1 8.9 27.6 25.2 59.3 33.0 30.5 32.6 24.1 9.5 0.9 29.9 77.6

DMPM FS 5.6 67.9 2.8 56.3 null 56.6 55.3 40.0 18.2 58.6 53.4 72.4 52.7 45.4 48.8 41.6 20.6 1.2 51.7 83.1

Baseline [31] DP 1.3 43.5 0.6 21.3 19.5 21.8 12.2 28.7 4.8 25.6 21.7 52.6 32.4 28.3 23.5 18.4 8.5 1.2 24.6 76.6

DMPM DP 28.9 74.8 9.6 42.5 39.4 61.0 50.3 66.3 16.6 57.0 51.8 78.1 62.7 59.3 52.6 35.5 12.7 9.3 53.0 84.6

Figure 7: Top retrieval results from our visually similar per-

son retrieval system. The retrieval results (right columns)

are visually similar to the query human for the highlighted

Parselets (the second column) independent of pose and un-

interested regions.

tance of the extracted features. Then the similarity between

images is defined as the sum of Parselet-level similarities

weighted by the faction of their pixels occupying the object.

Such a system can be extended for clothing retrieval, person

identification and many other human centric analysis. Fig. 7

shows some top retrieval results for Parselets such as upper

clothes + coat and pants, respectively. It can be observed

that the visually similar persons are successfully retrieved

independent of pose and uninterested regions. Here, we do

not pursue this further for the space limitation.

6. Conclusions and Future Work
In this paper, we proposed an effective framework for

human parsing. By reconsidering the human parsing prob-

lem, we utilized the novel Parselets as the basic elements.

A unique Deformable Mixture Parsing Model (DMPM) was

built to jointly learn and infer the best configuration for both

appearance and structure effectively. Extensive experimen-

tal results clearly demonstrated the effectiveness of the pro-

posed framework. In the future, we plan to further explore

how to adequately utilize the top-down information and in-

tegrate the fine-grained attribute into our framework.
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