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Abstract

We introduce a computationally efficient algorithm for
multi-object tracking by detection that addresses four main
challenges: appearance similarity among targets, missing
data due to targets being out of the field of view or oc-
cluded behind other objects, crossing trajectories, and cam-
era motion. The proposed method uses motion dynamics as
a cue to distinguish targets with similar appearance, min-
imize target mis-identification and recover missing data.
Computational efficiency is achieved by using a General-
ized Linear Assignment (GLA) coupled with efficient proce-
dures to recover missing data and estimate the complexity
of the underlying dynamics. The proposed approach works
with tracklets of arbitrary length and does not assume a
dynamical model a priori, yet it captures the overall mo-
tion dynamics of the targets. Experiments using challenging
videos show that this framework can handle complex target
motions, non-stationary cameras and long occlusions, on
scenarios where appearance cues are not available or poor.

1. Introduction
Recent advances in the accuracy and efficiency of object

detectors [13, 16], particularly pedestrian detectors, have in-

spired and fueled multi-target tracking approaches by de-

tection. These techniques proceed by detecting the targets

frame by frame using a high quality object detector and

then associating these detections by using online or offline

trackers [6, 31, 33]. Often, these associations are based on

appearance and location similarity, while the start and end

of the tracks are handled using “source” and “sink” nodes.

These approaches achieve very good results for scenarios,

such as pedestrian tracking, where the appearance of the

targets is discriminative, the targets display simple motion
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Figure 1. It is hard to say which ball is which. Their appearance

does not help, but their motion aids to disambiguate them.

patterns, and source and sink nodes can be naturally placed

at the boundaries of the field of view. [6, 11, 21, 33]. How-

ever, these algorithms do not perform as well when targets

have similar appearance, do not move with the assumed dy-

namics, or come out in the middle of the field of view as

in the example shown in Figure 1. While there are trackers

that rely less on appearance [3, 8, 9, 12, 30], they often re-

quire tuning of a large number of parameters and expertise

to adapt the algorithms to these more challenging scenarios.

It is also possible to track solely based on dynamics us-

ing Kalman [20] or particle [19] filters to predict the target

location and associate the closest detection to this predic-

tion. However, these approaches must assume a dynamic

model a priori and have trouble distinguishing close to each

other targets. Alternatively, Ding et al. [14] showed that it

is possible to use dynamics to compare tracks and disam-

biguate between targets without assuming a motion model

a priori. Instead, comparisons are based on the complexity

of the underlying dynamics which is estimated by minimiz-

ing the rank of a Hankel matrix constructed directly from

the available data, potentially fragmented and corrupted by

noise. Since rank minimization is an NP hard problem [14]

used a convex relaxation and a generic interior point (IP)

method to first complete the matrix such that it has mini-

mum nuclear norm (a surrogate for low rank), followed by

a singular value decomposition (SVD) and singular value

thresholding to minimize rank. However, the computational

and memory complexity of IP methods is O(l6) and O(l4),
respectively, where l is the length of the trajectory. Thus,

until now this approach has been limited to stitching short

trajectories of a few targets.
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In this paper we propose a framework to use motion dy-

namics for multi-target tracking by detection that can effi-

ciently handle large numbers of targets, long trajectories,

missing data, and arbitrary motions. This is accomplished

by i) formulating the problem as a generalized linear assign-

ment (GLA) of tracklets which are incrementally associated

into longer trajectories based on their dynamics-based sim-

ilarity, and ii) using efficient algorithms to estimate these

similarity measures.

1.1. Contributions

The benefit of using a GLA approach is that it avoids

the need to make an a priori commitment about the start

and termination nodes for location or time of the considered

trajectories.

We explore two algorithms that differ on the method they

use to estimate dynamics similarity. The first method re-

places the IP optimization step used in [14] with an alter-

nating direction method of multipliers (ADMM) [4] with

computational complexity O(l3) and low memory require-

ments. Similarly to IP methods, this approach solves a re-

laxation instead of the original problem and requires set-

ting a parameter weighting the noise penalty and a singular

value threshold to estimate the rank which are both diffi-

cult to choose. The second method IHTLS (iterative Han-

kel Total Least Squares) is a new algorithm that we propose

to directly estimate the rank of incomplete, noisy Hankel

matrices. The algorithm is based on a noise cleaning algo-

rithm for Hankel matrices introduced in [24] that we mod-

ified to handle missing data and estimate rank. The advan-

tages of IHTLS is that it solves the original problem instead

of a convex relaxation, it does not require choosing a sin-

gular values threshold and it has computational complexity

O((l−n)n3), where n < l is the rank of the Hankel matrix.

The disadvantage of this approach is that it uses a Newton’s

method to solve a non-convex problem and hence can be

trapped in local minima. However, experimental evidence

shows that in practice it converges to the true optimum.

These algorithms were tested and compared against

state-of-the-art approaches [7, 12] on a set of videos with

challenging scenarios where targets are difficult to discrim-

inate based on appearance alone. The dataset, annotated

with ground truth target locations, is available for public

use at our website. The experiments show that multi-target

tracking using IHTLS performs faster and more accurately

than when using ADMM and that both techniques perform

significantly better and faster than the state of the art, where

performance is measured using the MOTA metric.

Finally, it should be noted that the proposed methods are

complementary to appearance-based methods: they can im-

prove the performance of appearance-based methods when

visual discrimination is possible, yet retain target identities

when such information is not available.

Figure 2. The method of [7] fails due to complex dynamics and

unexpected start and ending locations for the targets trajectories.

1.2. Other Related Work

Often, multi-target tracking is formulated as a network

flow problem [33] or variations of it [5, 7, 25, 26, 30]. Most

methods rely to a large degree on target appearance and as-

sume simple motion models a priori that work well in set-

tings where the targets are pedestrians or vehicles. How-

ever, their performance deteriorates in more challenging

scenarios as shown in Figure 2 where the algorithm from

[7] fails to track the balls shown in Figure 1.

A drawback of using a network flow formulation is that

it requires setting up beginning and ending locations and/or

times of the targets which, depending on the scenario, may

be hard to pinpoint in advance1. An alternative to net-

work flow are max-clique type formulations. Brendel et
al. [11] used a maximum weighted set formulation but they

only consider two-frames relations. Recently, Zamir et al.
[32] proposed using a General Maximum Clique Partition-

ing formulation picking one-best candidate from each track-

let to achieve global association. The GLA formulation

used here is similar to the Linear Assignment formulation

of [12, 7, 33], but it has the advantage that allows tracks to

start and terminate anywhere in position and time. In spirit,

we are also similar to [18] and [32] since we also solve the

associations iteratively from easy to hard. Like [32] our al-

gorithm can operate at the tracklet level, but we use all the

data on a tracklet rather than a selected portion. In addi-

tion, we do not assume any priors for the target motion as

in [12, 30]. This allows our algorithm to capture long term

dynamics as targets may change their motion behavior over

time. Lastly, the dynamics based similarity measure used by

our algorithm can deal with different types of scenes, target

and camera dynamics (including zooming) while providing

a natural way to “inpaint” missing data.

There are few multi-target trackers for non-human tar-

gets, and they either rely on appearance [11] or prior mo-

tion models [8]. One of the goals of our work is to ease

these requirements. More recently, [12] and [3] formulate

the multi-target tracking problem using higher order mo-

tion models which are one-step better than models previ-

ously used but still limited. The computational complexity

of [12] is O(d2.5) where d is the number of detections and

1For example, a person coming out of a car in the middle of the field of

view.
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the algorithm in [3] requires a large set of parameters. In

contrast, our method can handle arbitrarily high order mo-

tions with a run time O(N2), where N << d is the number

of tracklets and requires only two parameters.

2. Dynamics-based Multi-tracklet Association
Given a set of short tracklets, possibly of different

lengths and with no appearance information, we want to as-

sociate together those that belong to the same trajectory.

There are four challenges that makes this association

task difficult: 1. Lack of appearance information, 2. Ob-

ject crossings, 3. Object occlusions, and 4. Camera mo-

tion. To address these challenges, we formulate the multi-

target tracking problem as a Generalized Linear Assignment

(GLA) using a dynamics-based similarity measure.

2.1. Generalized Linear Assignment Problem

Given N tracklets {α1, . . . , αN}, the Linear Assignment

(LA) Problem is stated as the optimization problem:

max
X

N∑
i=1

N∑
j=1

PijXij (1)

st.
N∑

i=1

Xij = 1 ;
N∑

j=1

Xij = 1 ;Xij ∈ {0, 1}

where Pij is a suitable similarity measure between αi and

αj , such that P is a predecessor-successor matrix, i.e. Pij

is −∞ if αj cannot follow αi in time. The optimization

variable Xij indicates that αi is the predecessor of αj when

Xij = 1 and that they will be merged considering their gap.

Equation (1) is the max-flow formulation used by [7, 33]

where the constraints enforce that each tracklet has to be

assigned to one predecessor and one successor. In general,

the problem is augmented with source and sink nodes to

simulate the entrance and termination of the tracklets. To

avoid this requirement, we use the Generalized Linear As-

signment (GLA) [27, 28] formulation (2):

max
X

N∑
i=1

N∑
j=1

PijXij (2)

st.
N∑

i=1

Xij ≤ 1 ;
N∑

j=1

Xij ≤ 1 ; Xij ∈ {0, 1}

The main difference between LA and GLA, is that in the

latter, tracklets are not forced to begin, terminate or asso-

ciate with any other tracklet. While at a first glance, this

seems to be a small change, it has two important conse-

quences: 1. avoids setting up sink source nodes and learn-

ing tracklet entrance and termination probabilities; and 2.

GLA is an NP-Complete problem which is harder to solve

than the LA problem. However, under very mild constraints

it can be approximately solved using the deterministic an-

nealing “softassign” algorithm [17]. In our experiments, it

was observed that the dynamics-based similarity measure

we use reduces possible ambiguities and leads softassign to

fast and accurate convergence (on average converges in 10

iterations and never takes more than 100 iterations).

2.2. Tracklet Dynamics and Similarity Measure

A tracklet α consists of an ordered sequence of measure-

ments yk, s ≤ k ≤ e, where s and e are the starting and

ending times, respectively. The underlying dynamics of the

tracklet can be represented using a linear regressor, since

linear regressors are universal approximators [10]:

yk =
n∑

i=1

aiyk−i , k ≥ s + n (3)

for a high enough value of n. The order of the regressor n
measures the “complexity” of the underlying dynamics and

in the absence of noise, n = rank(H(m)
α ) where H

(m)
α is

the Hankel matrix with m ≥ n columns:

H(m)
α =̇

⎡
⎢⎢⎢⎣

ys ys+1 . . . ys+m−1

ys+1 ys+2 . . . ys+m

...
...

...
...

ye−m+1 ye−m . . . ye

⎤
⎥⎥⎥⎦ (4)

Then, the dynamics-based similarity Pij between two

tracklets αi, αj is defined [14] as:

Pij=̇

⎧⎨
⎩
−∞ if αi and αj conflict
rank(Hαi

)+rank(Hαj
)

min
β

j
i

rank(Hαij
) − 1 otherwise

(5)

where αij = [αi βj
i αj ] is the joint tracklet padded with

tracklet βj
i at the gap between αi and αj values.

The intuition behind the above similarity measure is that

if two tracklets are portions of the same trajectory they can

be approximated by a single, relatively low order regressor.

On the other hand, if two tracklets belong to different tra-

jectories, explaining a merged/joined trajectory requires a

higher order regressor than the regressors of each tracklet2.

Thus, intuitively, if rank(Hαi
) = ri and rank(Hαj

) = rj ,

then rank(Hαij
) = rij ≤ (ri + rj). Accordingly, if αi and

αj belong to the same trajectory, then ri = rj = rij and

Pij = 1, but if αi and αj are not related Pij ≈ 0.

2.3. Dynamics-based Similarity Computation

A major challenge in computing (5) is that one has to

estimate the rank of noisy and incomplete structured matri-

ces. [14] addressed this problem by using IP methods to

2This assumes that the object does not drastically change dynamics be-

tween tracklets. This is a fair assumption for tracklets that are close to each

other in time and akin to assume that appearance will stay similar over-time

and change slowly in appearance-based target tracking [6, 11, 18].
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solve the convex relaxation: minβj
i
‖Hαij‖∗ with the addi-

tional Hankel structural constraints3: H ∈ SH where SH
is the set of Hankel matrices and ‖‖∗ denotes the nuclear

norm, and then estimating the rank of Hαij
by thresholding

its singular values. However, this minimization has compu-

tational complexity O(l6) and O(l4) memory requirements,

due to the need to store the Hessian. Hence, it does not scale

well for long trajectories.

Recently, Li et al. [22] introduced a different similar-

ity score, based on the subspace angle between the column

spaces of the Hankel matrices, that is efficient to compute

and does not require estimating rank. However, since the

subspace angle is invariant to the initial conditions of the

trajectories, it cannot be used to distinguish two targets with

the same dynamics and hence is not suitable for this appli-

cation. We propose two alternatives to address these issues:

Rank estimation using ADMM An alternative to using

IP methods is to solve a similar convex relaxation using

ADMM [4]:

min
βj

i

‖Aαij
‖∗ + λ‖Eαij

‖1

such that H = A + E ∈ SH. In contrast to IP methods,

ADMM does not require computing the Hessian, and it is

solved by computing a number of SVDs. The procedure has

very modest memory requirements and computational cost

O(l3) at each iteration. Thus, it scales well as the length of

the trajectories increase.

Rank estimation using IHTLS We propose as a second

alternative a new algorithm to estimate the rank of an in-

complete Hankel matrix corrupted with additive noise. The

algorithm is based on two simple modifications of the Han-

kel Total Least Squares (HTLS) algorithm [24] which allow

us to handle missing data and to estimate rank.

The first modification is the introduction of an “indi-

cator” binary vector to flag missing data and allow its re-

covery while performing inpainting to stitch tracklets with

gaps. The second modification is to run this algorithm, iter-

atively, for increasing rank values to find the optimal rank.

Thus, like the approaches in [14] and in [4] the algorithm,

described in detail below, does not only estimate the rank,

but also cleans and completes the data while respecting the

structural constraint that H ∈ SH. However, it does so

without relaxing the original problem, at the lower compu-

tational cost of O((l − n)n3), where l is the length of the

tracklet and n < l is the rank of the matrix [29].

More formally, consider a trajectory of length l, α =
{ys, . . . , ye}, with known dynamics complexity n < l.
Let α̂ = {ŷs, . . . , ŷe} and η = {ηs, . . . , ηe} be the

3That is, the matrices must have block-constant off-diagonals.

noiseless measurements and the noise, respectively. Let

ω be a binary “indicator” l-length vector where 1s and

0s indicate available and missing measurements, respec-

tively. For simplicity of notation, let [A|b] = [H(n)
α |b] and

[E|f ] = [−H
(n)
η |f ], where b =

[
yT

s+n . . . yT
e

]T
and

f = − [
ηT

s+n . . . ηT
e

]T
Then, from (3) and (4) there ex-

ist a regressor x such that: (A + E)x = (b + f) and α can

be estimated by solving the following modified Total Least

Squares (TLS) problem [24],

min
x,E,f

||Ω ◦ [E|f ]||2F (6)

st. (A + E)x = b + f ; [A|b], [E|f ] ∈ SH
where ◦ is the Hadamard product and Ω = H

(n+1)
ω is in-

troduced to recover the missing data. It should be noted

that the general TLS problem (6) without missing data has

a closed form solution for general matrices which can be

found by computing the SVD of [A|b] [23]. However,

adding the structural constraints precludes a close form so-

lution since SVDs do not preserve the Hankel structure.

Thus, as shown below, we will follow [24] and solve the

HTLS problem by using Newton’s method which converges

in a few iterations.

In the sequel, for the sake of simplicity, we present the

solution for the one scalar measurements. Generalization to

the multi-dimensional case is straight forward.

Since [E|f ] and [A|b] are Hankel matrices with constant

off-diagonals, we can rewrite (6) as,

min
η,x

||WDη||22 st. r(η, x)=̇b + f − (A + E)x = 0 (7)

where D is a diagonal matrix with the number of times each

ηi appears in the Hankel matrix H
(n+1)
η and W = diag(ω).

Then, following the method of [24] we can combine the

constraint with the minimization problem:

min
η,x

∣∣∣∣
∣∣∣∣
(

πr(η, x)
WDη

)∣∣∣∣
∣∣∣∣
2

2

(8)

where π is a large penalty constant. Next, write r(η, x)

r(η, x) = b + P1η − (A + E)x (9)

where P1 = [0m×n Im×m] and m = l − n. Linearizing

r(η, x) we have,

r(η + δη, x + δx) ≈ r(η, x) + P1δη − (A + E)δx− δEx

Next, let X ∈ Rm×(m+n−1) be a matrix such that,

Ex = XP0η (10)

where P0 = [I(m+n−1)×(m+n−1) 0(m+n−1)×1]. Finally,

combining (9) and (10), (8) can be rewritten as,

min
δη,δx

∣∣∣∣
∣∣∣∣
(

π(P1 −XP0) −π(A + E)
WD 0

) (
δη
δx

)
+

(
πr

WDη

)∣∣∣∣
∣∣∣∣
2

2
(11)
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which can be solved by least squares, leading to the proce-

dure shown in Algorithm 1. Finally, Algorithm 2 summa-

rizes the rank estimation procedure.

Algorithm 1: HTLS with Missing Data

Input: α sequence of length l, ω sampling sequence of length l,
desired rank n

Output: α̂ inpainted and cleaned sequence, η noise/perturbation, x
AR coefficients

Form [A|b](l−n+1)×(n+1)

Solve min ||Ax− b||22 for x
Form P1 and WD from ω
η = 0

while
˛̨
˛̨
˛̨
˛̨„δη

δx

«˛̨̨
˛
˛̨̨
˛ > θ do

Form XP0 from x and form [E|f ](l−n+1)×(n+1)

Compute r = b + f − (A + E)x

Form M =

„
π(P1 −XP0) −π(A + E)

WD 0

«

Solve min

˛̨̨
˛
˛̨̨
˛M

„
δη
δx

«
+

„
πr

WDη

«˛̨̨
˛
˛̨̨
˛
2

2

for δη, δx

Update x = x + δx,η = η + δη

Algorithm 2: Iterative Hankel Total Least Squares

Input: α sequence of length l, ηmax maximum average error, ω
sampling sequence

Output: α̂ inpainted and cleaned sequence, n estimated rank for the

sequence

n = 0 , μη = huge

Form Ω(l−n)×(n+1) = H
(n+1)
ω

while μη > ηmax do
n = n + 1;

Solve HTLS problem, min||Ω ◦ [E|f ]||F st.

(A + E)x = b + f
Form [E|f ](l−n)×(n+1) = H(η)

Compute average error, μη =
||Ω◦[E|f ]||F
||Ω||1

3. Implementation Details

We used a simple heuristic to generate short tracklets of

length 3 or longer by stitching non-conflicting detections.

A detection pair is non-conflicting if the ratio of their dis-

tance is smaller than 0.3 to the second closest detection. To

speed up the algorithm we processed the input sequences

with non-overlapping windows. We did three passes with

offset windows. A time window of (40−60) frames worked

well for all videos with a final pass twice the window size.

This scheme helped us to merge the trajectories from easiest

to hardest – i.e. we fill the gaps that are proportional to the

average tracklet length. As tracklets got larger, longer gaps

were filled iteratively. Lastly, before terminating the algo-

rithm all tracklets of length shorter than 5 were eliminated.

4. Experiments

In order to evaluate the proposed approach, we collected

a set of challenging videos with multiple targets with identi-

cal or very similar appearance to assemble the Similar Mul-
tiObject Tracking (SMOT) dataset, available at our website.

The SMOT dataset consists of eight videos four of which

were downloaded from YouTube while the remaining ones

are from [1], [7] and [2]. In order to decouple the perfor-

mance of the trackers from the performance of the detectors,

all detections were hand labeled using the video labeling

tool from [15], and then during the experiments, detections

were randomly deleted and added in a controlled way.

4.1. SMOT Sequences

Slalom has three skiers racing down a slalom. They per-

form complex zig-zag motions and get close to each other

very frequently. One skier escapes out of the field of view

for a long time. It exhibits camera motion and zooming.

Juggling is a 3-ball juggling scene and is the hardest se-

quence in the dataset. The juggler adds artistic motions to

the performance with alternating tricks. The motion of the

balls, juggler and the camera combined makes this sequence

exceedingly hard even for a human to keep track of the balls.

Acrobats is a short sequence from Cirque De Soleil ac-

robats from the 2012 Academy Awards. In this sequence all

the acrobats are dressed the same; they lineup in the air and

get occluded several times.

Seagulls shows a flock of seagulls taking off at sea. This

is another extremely difficult sequence where seagulls fly

close to each other and get occluded very frequently.

TUD-Campus and TUD-Crossing are from [2] and are

often used to evaluate pedestrian tracking algorithms. They

have long occlusions and closely moving pedestrians.

Crowd is from the crowd UCF dataset [1]. It is an over-

crowded surveillance scene where the detections are the

heads of the people. Due to the density of the crowd, there

are frequent occlusions among the closely moving targets.

Balls is from [7]. These are a approximately 50 ran-

domly bouncing identical ping pong balls.

4.2. Performance Evaluation

Methods. We compared the performance of the tracking

algorithms using dynamics based similarity measures esti-

mated using IP [14], ADMM [4], and IHTLS methods and

the algorithm proposed in [7] (We will refer to this algo-

rithm as KSP). IP was implemented in CVX as described

in [14] and we used the code provided by the authors for

ADMM and KSP. The code for IHTLS was implemented

using Matlab. Additionally, we ran experiments to compare

against [12]. However, since the code for this algorithm is

not available, we could only compare by running our algo-

rithms on their data. Furthermore, since this data does not
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Figure 3. Tracking results for crowd, slalom, juggling, and TUD-crossing sequences using IHTLS. Dashed bounding boxes indicate that

the algorithm performed inpainting to recover missing data.

Figure 4. Results for MOTA, MMR, FNR and FPR Top: with 20% outliers. Bottom: with 12% missing data.

provide information about the image boundaries, it was not

possible to test KSP in this experiment.

Parameters. For ADMM, λ was set to 0.1. The singular

value threshold ηmax was set between (0.3−3) for different

videos but kept constant across algorithms. For KSP, we

used a 64 × 64 grid and set the borders of the image as

source and sink locations as it is required by the algorithm.

Finally, a maximum depth of {1, 2, 3} was used whichever

performed best for the sequence.

Set of experiments. We conducted two set of experi-

ments with increasing random false positives and increas-

ing random false negatives. Each test was run ten times and

the resulting performances were averaged. In the first set,

we increased the number of false positives by injecting uni-

formly distributed false detections. In the second set, we

introduced false negatives by uniformly removing true de-

tections. The input for all the algorithms was a set of (x, y)
detections for each time instant. We want to emphasize that

no other information was used in the tests. All methods

were tested against increasing false positives and false neg-
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Figure 5. Results for MOTA, MMR, FNR and FPR. Top: for increasing false positives. Bottom: for increasing missing data.

atives with the exception of IP. This method was tested only

for the zero false positive and zero false negative case due

to its very high computational cost (see Figure 6).

Evaluation. We report the performance of the algo-

rithms using four different measures. We use the standard

MOTA measure,

MOTA = 1−
∑

t(fnt + fpt + mmt)∑
t gtt

(12)

where fnt, fpt, mmt and gtt are false negatives(misses),

false positives, mismatches and ground truth at frame t. We

called a detection a “match” if an (x, y) hypothesis was

within the half width radius of the true object location.

In addition, we used three other measures to better eval-

uate the robustness of the algorithms to detection quality.

These measures are the False Negative Ratio(FNR), False

Positive Ratio(FPR) and MissMatch Ratio(MMR):

FNR =
∑

t fnt∑
t gtt

, FPR =
∑

t fpt∑
t ptt

, MMR =
∑

t fnt∑
t ttt

,

(13)

where ptt are the ttt number of false positives injected to

the frame t and the ground truth number of tracks at frame

t. Lastly, we report average run time performance for all the

algorithms.

4.3. Results

Figure 3 shows sample frames of the tracking results

using the IHTLS algorithm for four of the videos in the

dataset, where dashed boxes indicate that the algorithm in-

painted data due to occlusions.

ADMM, IHTLS and KSP were run 10 times on each

video, for each level of noise. The noise was varied from

0 to 50% input outliers and from 0 to 30% missing input

data. Figure 4 shows plots for MOTA, FNR, FPR and MMR

scores for all the videos for noise levels of 20% outliers and

12% missing data showing that juggling is the most difficult

Table 1. MOTA score comparison with [12]

MDA ADMM IHTLS
PSU-sparse 1.00 0.98 0.99

PSU-dense 0.87 0.94 0.97

video. Figure 5 shows plots of the average performances

across all videos and noise levels. For the MOTA measure,

IHTLS has the best overall performance, followed closely

by ADMM, and KSP performed the worst. By looking at

the other measures, it can be seen that the biggest differ-

ence in performance is due to mismatch errors. KSP has the

largest mismatch ratio as it often jumps from one trajectory

to another without doing inpainting. As a result, the tra-

jectories obtained by KSP tend to be shorter than the ones

found by ADMM and IHTLS. Table 1 gives MOTA scores

comparisons with [12]. Finally, the average execution times

are shown in Figure 6. Once again, IHTLS has the best per-

formance, with running times up to close 5 times faster than

KSP.

sec/frame sec/track
KSP 0.217 5.726

ADMM 0.120 3.986

IHTLS 0.048 1.396

IP 56.341 3891.341

Figure 6. Run time comparisons: The plots show the ratios of run-

ning times with respect to IHTLS run times. The results are the

average of 10 runs for each false positive rate across 8 videos.

5. Conclusion
Motion dynamics provide strong cues while tracking tar-

gets with identical or very similar appearance. We presented

two efficient tracking algorithms that measure the dynamic

similarity of tracklets and recover missing data due to long

occlusions. This measure, coupled with a GLA framework,
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can be used to successfully track multiple targets under ad-

verse conditions including lack of appearance cues, occlu-

sions, camera motion and complex dynamics. It should be

emphasized that the proposed method does not preclude the

use of appearance but rather complements it. Not surpris-

ingly, there are situations where the proposed framework

will fail to retain associations. One example is when two

bodies have an elastic collision, in which case one body

transfers its motion to the other. However, these type of

situations require a better understanding of the physics of

the scene and are beyond the scope of this paper.
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