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Abstract

Kinship verification from facial appearance is a difficult
problem. This paper explores the possibility of employing
facial expression dynamics in this problem. By using fea-
tures that describe facial dynamics and spatio-temporal ap-
pearance over smile expressions, we show that it is possible
to improve the state of the art in this problem, and verify that
it is indeed possible to recognize kinship by resemblance of
facial expressions. The proposed method is tested on differ-
ent kin relationships. On the average, 72.89% verification
accuracy is achieved on spontaneous smiles.

1. Introduction

Automatic detection of kinship from facial appearance
is a difficult problem with several applications, includ-
ing social media analysis [20, 21], finding missing chil-
dren and children adoptions [9], and coaching for imitation
and personification. Kinship is a genetic relationship be-
tween two family members, including parent-child, sibling-
sibling, and grandparent-grandchild relations. Since a ge-
netic test may not always be available for checking kinship,
an unobtrusive and rapid computer vision solution is po-
tentially very useful. This paper proposes such a novel ap-
proach for kinship detection.

Kinship may be verified between people that have dif-
ferent sex and different ages (e.g. father-daughter), which
makes this problem especially challenging. Humans use
an aggregate of different features to judge kinship from
facial images [1]. Furthermore, depending on the age of
the person assessed for kinship, humans use different sets
of features consistent with the expected aging-related form
changes in faces. For example, upper face cues are more
prominently used for kids, as the lower face does not fully
form until adulthood [13]. Automatic kinship detection
methods also employ aggregate sets of features including
color, geometry, and appearance. In Section 2 we summa-
rize the recent related work in this area.

All the methods proposed so far to verify kinship work
with images. In contrast to all published material, in this
paper, we propose a method using facial dynamics to verify
kinship from videos. Our approach intuitively makes sense:
we all know people who do not look like their parents, un-
til they smile. Furthermore, findings of [14] show that the
appearance of spontaneous facial expressions of born-blind
people and their sighted relatives are similar. However, the
resemblance between facial expressions depends not only
on the appearance of the expression but also on its dynam-
ics, as each expression is created by a combination of vol-
untary and involuntary muscle movements. This is the key
insight behind this paper. In this paper, we verify this in-
sight empirically, and show that dynamic features obtained
during facial expressions have discriminatory power for the
kinship verification. This is the first work that uses dynamic
features for kinship detection. By combining dynamic and
spatio-temporal features, we approach the problem of au-
tomatic kinship verification. We use the recently collected
UvA-NEMO Smile Database [3] in our experiments, com-
pare our method with three recent approaches from the lit-
erature [8, 9, 21], and report state-of-the-art results.

2. Related work

In one of the first works on kinship verification, Fang
et al. used the skin, hair and eye color, facial geometry
measures, as well as holistic texture features computed on
texture gradients of the whole face [8]. They have selected
the most discriminative inherited features. Color based fea-
tures performed better than the other features in general,
since a good registration between individual face images
was largely lacking in their approach. In the present study,
we use their approach as a baseline under controlled regis-
tration conditions.

Different feature descriptors are evaluated for the kinship
verification problem in the literature. In [9], eyes, mouth
and nose parts are matched via DAISY descriptors. During
matching, it is not expected to have good matches on all fea-
tures, but on some features. Therefore, typically, the top few
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matching features are used for verification. In [21], Gabor-
based Gradient Orientation Pyramid (GGOP) descriptors
are proposed and used to model facial appearance for kin-
ship verification. Support vector machines (SVM) with ra-
dial basis function kernels are used as the classifier. A mean
accuracy of around 70% is reported on 800 image pairs.
This is well within human kinship estimation range. In [11],
the Self Similarity Representation of Weber face (SSRW)
algorithm is proposed. Each face is represented by only its
reflectance and difference of Gaussian filters are used to se-
lect keypoints to represent each face. SVM classifiers with
different kernel functions are contrasted, and a linear kernel
is found to be the most suitable. While SVM seems to be the
classifier of choice for kinship verification, in [12], a metric
learning approach is adopted. Samples that have the kin-
ship relation are pulled close, and other samples are pushed
apart. In this space, the transformation is complemented by
defining a margin for kinship.

The evaluation protocols used for the kinship verifica-
tion problem typically make use of pairs of photographs,
where each pair is either a positive sample (i.e. kin) or
a negative one. In [9], 100 face pairs with kinship and
100 pairs without are selected from family photos. There
was no decomposition of results into specific kinship cate-
gories. In [8], [21], and [20] photos of celebrities have been
downloaded from the Internet. In these studies, as well as
in [12], four kinship relations (Father-Son, Father-Daughter,
Mother-Son and Mother-Daughter) are analyzed separately.
The largest database reported in the literature so far is the
KinFaceW-II image database, with 250 pairs of kinship re-
lations for each of these four categories.

In [14], Peleg et al. analyze the spontaneous facial ex-
pressions of born-blind people and their sighted relatives.
They show that such expressions carry a unique family sig-
nature. Occurrences of a set of facial movements are used
to classify families of blind subjects. Results show 64%
correct classification on the average, with 60% in joy ex-
pressions. These results justify our motivation. Although
[14] has focused on the facial movements for the task, they
did not analyze the dynamics of expressions in terms of du-
ration, intensity, speed, and acceleration, which is an empir-
ical contribution of this paper.

3. Method

In this paper, we propose to combine spatio-temporal fa-
cial features and facial expression dynamics for the kinship
verification. To this end, videos of enjoyment smiles are
used. Our system analyzes the entire duration of a smile,
starting from a moderately frontal and neutral face, the un-
folding of the smile, and the return to the neutral face. Un-
like other approaches proposed in the literature, our method
works with videos of faces, rather than images. This is the
first approach using videos for kinship verification.

 
 

 

  

 

(a) (b)
Figure 1. (a) The facial feature points used in this study with their
indices, (b) the 3D mesh model and visualization of the ampli-
tude signals, which are defined as the mean of left/right amplitude
signals on the face. For simplicity, visualizations are shown on a
single side of the face

We summarize the proposed method here. Our approach
starts with face detection in the first frame and the localiza-
tion of 17 facial landmarks, which are subsequently tracked
during the rest of the video. Using the tracked landmarks,
displacement signals of eyebrows, eyelids, cheeks, and lip
corners are computed. Afterwards, the mean displacement
signal of the lip corners is analyzed and the three main tem-
poral phases (i.e. onset, apex, and offset, respectively) of
the smile are estimated. Then, facial expression dynamics
on eyebrows, eyelids, cheeks, and lip corners are extracted
from each phase separately. To describe the change in ap-
pearance between the neutral and the expressive face (i.e.
the apex of the expression), temporal Completed Local Bi-
nary Pattern (CLBP) descriptors are computed from the eye,
cheek, and lip regions. After a feature selection step, the
most informative dynamic features are identified and com-
bined with temporal CLBP features. Finally, resulting fea-
tures are classified using SVMs. In the rest of the section we
provide more detailed information for each of these steps.

3.1. Landmark detection and tracking

Both the correct detection and accurate tracking of facial
landmarks are crucial for normalizing and aligning faces,
and for extracting consistent dynamic features. In the first
frame of the input video, 17 facial landmarks (i.e. centers
of eyebrows, eyebrow corners, eye corners, centers of upper
eyelids, cheek centers, nose tip, and lip corners) are detected
using a recent landmarking approach [4] (see Fig. 1(a)).
This method models Gabor wavelet features of a neighbor-
hood of the landmarks using incremental mixtures of factor
analyzers and enables a shape prior to ensure the integrity of
the landmark constellation. It follows a coarse-to-fine strat-
egy; landmarks are initially detected on a coarse level and
then fine-tuned for higher resolution. Then, these points are
tracked by a piecewise Bézier volume deformation (PBVD)
tracker [18] during the rest of the video.
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Initially, the PBVD tracker warps a generic 3D mesh
model of the face (see Fig. 1(b)) to fit the facial landmarks
in the first frame of the image sequence. 16 surface patches
form the generic face model. These patches are embedded
in Bézier volumes to guarantee the continuity and smooth-
ness of the model. Points in the Bézier volume, x(u, v, w)
can be defined as:

x(u, v, w) =

n∑
i=0

m∑
j=0

l∑
k=0

bi,j,kB
n
i (u)B

m
j (v)Bl

k(w), (1)

where the control points denoted with bi,j,k and mesh vari-
ables 0 < {u, v, w} < 1 control the shape of the volume.
Bn

i (u) denotes a Bernstein polynomial, and can be written
as:

Bn
i (u) =

(
n
i

)
ui(1− u)

n−i. (2)

Once the face model is fitted, the 3D motion of the head,
as well as individual motions of facial landmarks can be
tracked based on the movements of mesh points. 2D move-
ments on the face (estimated by template matching between
frames, at different resolutions) are modeled as a projection
of the 3D movement onto the image plane. Then, the 3D
movement is calculated using projective motion of several
points.

3.2. Registration

Faces in each frame need to be aligned before the feature
extraction step. To this end, 3D pose of the faces are es-
timated and normalized using the tracked 3D landmarks �i
(see Fig. 1(a)). Since a plane can be constructed by three
non-collinear points, three stable landmarks (eye centers
and nose tip) are used to define a normalizing plane P . Eye
centers c1 = �7+�9

2 and c1 = �10+�12
2 are the middle points

between the inner and outer eye corners. Then, angles be-
tween the positive normal vector P and unit vectors on X
(horizontal), Y (vertical), and Z (perpendicular) axes give
the relative head pose. Computed angles (θz) and (θy) give
the exact roll and yaw angles of the face with respect to the
camera, respectively. Nevertheless, the estimated pitch (θx)
angle is a subject-dependent measure, since it depends on
the constellation of the eye corners and the nose tip. If the
face in the first frame is assumed as approximately frontal,
then the actual pitch angles (θ′x) can be calculated by sub-
tracting the initial value. After estimating the pose of the
head, tracked landmarks are normalized with respect to ro-
tation, scale, and translation. Aligned points �′i can be de-
fined as follows:

�′i =
[
�i − c1 + c2

2

]
R(−θ′x,−θy,−θz)

100

ρ(c1, c2)
, (3)

R(θx, θy, θz) = Rx(θx)Ry(θy)Rz(θz), (4)

and Rx, Ry , and Rz are the 3D rotation matrices for the
given angles. ρ denotes the Euclidean distance between the
given points. On the normalized face, the middle point be-
tween eye centers is located at the origin and the inter-ocular
distance (distance between eye centers) is set to 100 pixels.
Since the normalized face is approximately frontal with re-
spect to the camera, we ignore the depth (Z) values of the
normalized feature points �′i, and denote them as li.

3.3. Temporal segmentation

In the proposed method, dynamic and spatio-temporal
features are extracted from videos of smiling persons. We
choose to use the smile expression, since it is the most fre-
quently performed facial expression, for showing several
different meanings such as enjoyment, politeness, fear, em-
barrassment, etc. [5]. A smile can be defined as the upward
movement of the lip corners, which corresponds to Ac-
tion Unit 12 in the facial action coding system (FACS) [6].
Anatomically, the zygomatic major muscle contracts and
raises the corners of the lips during a smile [7].

Most facial expressions are composed of three non-
overlapping phases, namely: the onset, apex, and offset, re-
spectively. Onset is the initial phase of a facial expression
and it defines the duration from neutral to expressive state.
Apex phase is the stable peak period (may also be very
short) of the expression between onset and offset. Likewise,
offset is the final phase from expressive to neutral state. Fol-
lowing the normalization step, we detect these three tempo-
ral phases of the smiles.

For this purpose, the amplitude signal of the smile S is
estimated as the mean distance (Euclidean) of the lip cor-
ners to the lip center during the smile. Then, the com-
puted amplitude signal is normalized by the length of the
lip. Since the faces are normalized, center and length of the
lip is calculated only once in the first frame. Afterwards,
the longest continuous increase in S is defined as the onset
phase. Similarly, the offset phase is detected as the longest
continuous decrease in S. The phase between the last frame
of the onset and the first frame of the offset defines the apex.

3.4. Features

We extract two types of features from the faces. What we
call dynamic features are based on the movement of land-
mark points in the registered faces over the expression dura-
tion. These do not contain appearance information. In con-
trast, what we call spatio-temporal features denotes appear-
ance features obtained from multiple frames jointly, thus
contain both spatial and temporal appearance information.
These features are explained in detail next.
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3.4.1 Extraction of dynamic features

To describe the smile dynamics, we use horizontal and verti-
cal movements of tracked landmarks and extract a set of dy-
namic features separately from different face regions. Verti-
cal and horizontal amplitude signals are computed from the
movements of eyebrows, eyelids, cheeks, and lip corners.
The (normalized) eye aperture Deyelid, and displacements of
eyebrow Deyebrow, cheek Dcheek and lip corner Dlip, are esti-
mated as follows:

Deyelid(t) =
lt7+lt9

2 − lt8
2ρ(lt7, l

t
9)

+
lt10+lt12

2 − lt11
2ρ(lt10, l

t
12)

, (5)

Deyebrow(t) =
l11+l12+l13

3 − lt2
2ρ(l11, l

1
3)

+
l14+l15+l16

3 − lt5
2ρ(l14, l

1
6)

, (6)

Dcheek(t) =

∣∣∣ l113+l114
2 − lt13

∣∣∣+
∣∣∣ l113+l114

2 − lt14

∣∣∣
2ρ(l113, l

1
14)

, (7)

Dlip(t) =

∣∣∣ l116+l117
2 − lt16

∣∣∣+
∣∣∣ l116+l117

2 − lt17

∣∣∣
2ρ(l116, l

1
17)

, (8)

where lti denotes the 2D location of the ith point in frame
t. Then, vertical (y) components of Deyebrow, Deyelid, Dcheek,
Dlip, and horizontal (x) components of Dcheek, Dlip are ex-
tracted (see Fig. 1(b)). Extracted sequences are smoothed
by a 4253H-twice method [19]. These estimates are here-
after referred to as amplitude signals. Finally, amplitude
signals are split into three phases as onset, apex, and offset,
which have been previously defined using the smile ampli-
tude S.

Proposed dynamic features and their definitions are
given in Table 1. It is important to note that the defined fea-
tures are extracted separately from each phase of the smile.
As a result, we obtain three feature sets for each of the
six amplitude signals (see Fig. 1(b)). For a more detailed
analysis, corresponding speed V(t) = dD

dt and acceleration

A(t) = d2D
dt2 signals are computed in addition to amplitudes.

In Table 1, signals marked with superindex (+) and (−)
denote the increasing and decreasing segments of the re-
lated signal, respectively. For example, D+ pools the in-
creasing segments in D. η defines the length (number of
frames) of a given signal, and ω is the frame rate of the
video. For each phase of the amplitude signal, three 15-
dimensional feature vectors are generated by concatenating
these features. Combination of all the feature vectors forms
the joint dynamic feature vector. In some cases, features
cannot be calculated. For example, if we extract features
from the amplitude signal of the lip corners Dlip using the
onset phase, then decreasing segments will be an empty set

Table 1. Definitions of the extracted features.

Feature Definition

Duration:
[

η(D+)
ω

, η(D−)
ω

, η(D)
ω

]

Duration Ratio:
[

η(D+)
η(D)

, η(D−)
η(D)

]

Maximum Amplitude: max(D)

Mean Amplitude:
∑D
η(D)

Maximum Speed:
[
max(V+) , max(|V−|) ]

Mean Speed:
[ ∑V+

η(V+)
,
∑ |V−|
η(V−)

]

Maximum Acceleration:
[
max(A+) , max(|A−|) ]

Mean Acceleration:
[ ∑A+

η(A+)
,
∑ |A−|
η(A−)

]

(η (D−) = 0). For such exceptions, all the features describ-
ing the related segments are set to zero. This is done to have
a generic feature vector format which has the same features
for different phases of each amplitude signal.

3.4.2 Extraction of spatio-temporal features

To describe the temporal changes in the appearance of
faces, we employ a recently proposed spatio-temporal lo-
cal texture descriptor, namely, the Completed Local Binary
Patterns from Three Orthogonal Planes (CLBP-TOP) [16].
CLBP-TOP is a straightforward extension of Completed
Local Binary Patterns (CLBP) operator [10] to describe dy-
namic textures (image sequences), which is calculated by
extracting CLBP histograms from Three Orthogonal Planes
XY, XT, and YT, individually, and by concatenating them
as a single feature vector. Here, X and Y refer to the spa-
tial extent of the image, and T denotes time. CLBP-TOP
regards the face sequence as a volume, and the neighbor-
hood of each pixel is defined in a three dimensional space,
whereas CLBP uses only X and Y dimensions of a single
image. Difference of the CLBP from the original LBP op-
erator is that in addition to the sign of the local difference, it
includes the center pixel of the local neighborhood and the
magnitude of the difference.

We extract CLBP-TOP features from the previously de-
tected smile onsets, since the onset phase shows the change
from neutral to expressive face. On the selected frames,
faces are normalized with respect to roll rotation using
the eye centers c1 and c2. Then, each face is resized
and cropped as shown in Fig. 2(a). For scaling and nor-
malization, the inter-ocular distance dio is set to 50 pix-
els. Resulting normalized face images have a resolution of
125 × 100 pixels. To provide more comparable onset du-
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(a) (b)
Figure 2. (a) Scaling/cropping of a face image, and (b) the defined
patches on eye, cheek, and mouth regions

rations for more reliable feature extraction, all smile onsets
are temporally interpolated using bicubic interpolation on
each YT plane. Then, six patches are cropped from each
face (mouth, cheek, and eye regions) as shown in Fig. 2(b).

Each patch sequence is split into X = 2×Y = 2×T = 3
non-overlapping (equally-sized) blocks. Finally, CLBP-
TOP features are extracted from these blocks using three
neighborhood pixels (on a circle with a radius of a sin-
gle pixel). All these features are concatenated to form the
spatio-temporal feature vector.

3.5. Feature selection and classification

In kinship verification, the system is given pairs of sam-
ples, and the task is to verify whether the pair has the kin-
ship relation or not. Essentially, a binary classification prob-
lem is solved. For this purpose, differences between fea-
ture vectors of the corresponding subjects are calculated.
In our system, these differences are fed to individual sup-
port vector machine (SVM) classifiers trained with either
dynamic features or spatio-temporal features. Afterwards,
a weighted SUM rule is used to fuse the computed posterior
probabilities for the target classes of these classifiers. To es-
timate these posterior probabilities, sigmoids of SVM out-
put distances are used. Before classification, we employ the
Min-Redundancy Max-Relevance (mRMR) algorithm [15]
to select the discriminative dynamic features by eliminating
feature redundancy. mRMR is an incremental method for
minimizing the redundancy while selecting the most rele-
vant information as follows:

max
fj∈F−Sm−1

⎡
⎣I (fj , c)− 1

m− 1

∑
fi∈Sm−1

I (fj , fi)

⎤
⎦ , (9)

where I shows the mutual information function and c indi-
cates the target class. F and Sm−1 denote the feature set,
and the set of m− 1 features, respectively.

In our evaluation methodology, extreme care is taken to
prevent overlearning of parameters. A separate validation
set is used to determine the most discriminative dynamic

features. Similarly, in order to optimize the SVM configu-
ration, different kernels (linear, polynomial, and radial basis
function (RBF)) with different parameters (size of RBF ker-
nel, degree of polynomial kernel) are tested on the valida-
tion set and the configuration with the minimum validation
error is selected. The test partition of the dataset is not used
for parameter optimization.

4. Database

To analyze the role of smile dynamics in kinship ver-
ification, we have obtained the kinship annotations of the
recently collected UvA-NEMO Smile Database [3]. By se-
lecting the spontaneous and posed enjoyment smiles of the
subjects who have kin relationships, we construct a kin-
ship database which has 95 kin relations from 152 sub-
jects. 15 of the subjects do not have spontaneous smile
videos. And there is no posed video for six subjects. Each
of the remaining subjects in the database has one or two
posed/spontaneous enjoyment smiles. By using different
video combinations of each kin relation, 228 pairs of spon-
taneous and 287 pairs of posed smile videos are included
in the database. These pairs consist of Sister-Sister (S-
S), Brother-Brother (B-B), Sister-Brother (S-B), Mother-
Daughter (M-D), Mother-Son (M-S), Father-Daughter (F-
D), and Father-Son (F-S) relationships. The relationship
groups will be referred to as subsets in the remainder of the
paper. Numbers of subjects and video pairs in each subset
are given in Table. 2.

Table 2. Distribution of subject and video pairs in the dynamic
kinship database.

Relation
Spontaneous Posed

Subject Video Subject Video

S-S 7 22 9 32
B-B 7 15 6 13
S-B 12 32 10 34
M-D 16 57 20 76
M-S 12 36 14 46
F-D 9 28 9 30
F-S 12 38 19 56
All 75 228 87 287

The kinship annotations in the database are obtained
from the forms filled by the database subjects, and not veri-
fied with DNA analysis. This may have an insignificant ef-
fect on the annotation veracity. Ages of subjects vary from
8 to 74 years. Videos have a resolution of 1920 × 1080
pixels at a rate of 50 frames per second. These videos are
publicly available1 for research purposes. We will make the

1http://www.uva-nemo.org
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collected kinship annotations available to the research com-
munity.

5. Experimental results

To evaluate our system, and to assess the reliability of
facial expression dynamics and spatio-temporal facial in-
formation for kinship verification problem, we employ the
above described database. Kinship relations in the database
are used as positive samples of the classification problem.
Negative samples are prepared using randomly selected
samples with no kinship relation. These negative pairs are
specifically constructed for each subset. For example, in the
negative sample for a father-son relationship we retain the
father, but replace the son with another male child.

In our experiments, the optimum number of selected dy-
namic features, fusion weights, kernel and parameters of
SVM classifiers are determined on a separate validation par-
tition. For this purpose, a two level leave-one-out cross-
validation scheme is used. Each time videos of a test pair
(subjects) are separated, the system is trained and parame-
ters are optimized using leave-one-out cross-validation on
the remaining pairs (without using the test partition). Sim-
ilar to the results reported in [11] linear SVM is found to
perform better than polynomial and RBF alternatives in our
experiments. The tracking is initialized using the automati-
cally annotated facial landmarks [4].

5.1. Dynamics versus spatio-temporal appearance

We train different systems using individual feature sets
to compare the discriminative power of facial expression
dynamics and spatio-temporal appearance. Then the out-
puts of these systems are fused with weighted SUM rule for
assessing combined usage of dynamic and spatio-temporal
features. Spontaneous smiles are used in this experiment.
Correct verification rates for different features on the sub-
sets and the whole set are given in Table 3.

Table 3. Correct verification rates for different features using spon-
taneous smiles.

Feature
Correct Ver. Rate (%)

Subsets (Mean) Whole Set

Dynamics 60.84 54.61
Spatio-temporal 64.51 60.31
Combined 72.89 67.11

Results show that dynamic features do not perform as
well as spatio-temporal appearance, but still provide dis-
criminative information for kinship verification. The mean
accuracy of the dynamic features on the subsets is only
60.84%, whereas the use of spatio-temporal appearance
provides 64.51% correct verification rate. However, the

output-level fusion of these two individual feature sets pro-
vide a statistically significant improvement on the verifi-
cation accuracy, as determined by t-test (with p < 0.01).
The higher accuracy of spatio-temporal features is expected,
since they describe both facial appearance and the change in
time, whereas the dynamic features can only define the du-
ration and the dynamics of change in facial geometry.

We observe that the correct verification rates on the
whole set are lower than the mean accuracies on the indi-
vidual subsets. Dynamic features cause a higher decrease
(6.23%) in accuracy on the whole set in comparison to that
of spatio-temporal features (4.20%). This can be explained
by the effect of age and gender on facial dynamics, since
group specific training leads to dynamic features with bet-
ter accuracy. We refer the reader to [3] and [2] for more
detailed analysis of facial dynamics.

5.2. Role of face regions

To assess the influence of different regions on kinship
verification accuracy, we train and test our system with
region-specific features. Since both facial dynamics and
spatio-temporal appearance features are extracted from re-
gions of eye (eyelid and eyebrow), cheek, and mouth, these
three regions and their combination are used in our tests.
Spontaneous smiles are used in this experiment.

Table 4. Correct verification rates for different regions using spon-
taneous smiles.

Region
Correct Ver. Rate (%)

Subsets (Mean) Whole Set

Eye 68.65 61.40
Cheek 64.48 55.70
Mouth 66.39 58.55
All 72.89 67.11

As shown in Table 4, features extracted from the eye re-
gion provide the highest verification accuracy on both group
specific data (68.65%) and the whole set (61.40%). Mouth
follows the eye region, and the cheek comes last. When
we use all regions, a higher accuracy is obtained on both
dataset settings. When we analyze the correct verification
rates on group specific subsets and the whole set, it is seen
that the decrease in the accuracy of using cheek region for
the whole set is 13.61% (relative), whereas the average de-
crease for eye and mouth regions is 11.18% (relative). This
result suggests that the cheek region is more sensitive to
changes between different kin relations. This can be ex-
plained by the fact that spatio-temporal features describe
the skin texture and the skin on the cheek surface can be
discriminative for changes in age.
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Table 5. Correct verification rates (%) for different methods.

Method
Spontaneous Smiles Posed Smiles

S-S B-B S-B M-D M-S F-D F-S
Subsets
(Mean)

Whole
Set

Subsets
(Mean)

Whole
Set

Proposed: Dynamics 63.64 70.00 57.81 58.77 61.11 55.36 59.21 60.84 54.61 58.16 54.01

Proposed: Spatio-temporal 63.64 73.33 65.63 65.79 61.11 58.93 63.16 64.51 60.31 62.37 57.84

Proposed: Combined 75.00 70.00 68.75 67.54 75.00 75.00 78.95 72.89 67.11 70.02 64.98

CLBP-TOP: Smile Onset 63.64 66.67 60.94 60.53 58.33 67.86 65.79 63.39 57.02 60.22 55.23

CLBP: Neutral face 72.73 56.67 62.50 58.77 63.89 60.71 59.21 62.07 56.80 58.98 53.66

CLBP: Expressive face 56.82 60.00 57.81 55.26 58.33 57.14 55.26 57.23 53.07 56.79 54.88

Fang et al. (2010) [8] 61.36 56.67 56.25 56.14 55.56 57.14 55.26 56.91 53.51 53.11 52.79

Guo & Wang (2012) [9] 65.91 56.67 60.94 58.77 62.50 67.86 55.26 61.13 56.14 58.32 54.18

Zhou et al. (2012) [21] 63.64 70.00 60.94 57.02 56.94 66.07 60.53 62.16 58.55 57.42 54.18

5.3. Comparisons with other methods

The proposed system is compared with three recent ap-
proaches from the literature [8, 9, 21]. In [8], Fang et al.
propose a system for kinship verification which uses shape
and texture based features such as colors of eyes and skin,
and distances between different facial locations, etc. The
difference of these features for kin pairs is calculated and
fed to a K-nearest neighbor classifier, with Euclidean dis-
tance. In [9], DAISY descriptors (fast local descriptor for
dense matching) are extracted from eye, nose, and mouth
patches for kinship analysis. The extracted features for
each patch are matched with a scheme similar to the modi-
fied Hausdorff distance. Best three of the computed match-
ing scores are used to verify the kinship between pairs us-
ing a Bayesian based voting. In [21], GGOP features are
extracted from image pairs. Then, cosines of the differ-
ence between pairs are modeled by SVMs using radial ba-
sis function kernels. We have implemented both methods,
and report results with the same experimental protocol (i.e.
same training, validation, and test partitions).

We have also implemented a spatio-temporal baseline
using CLBP-TOP features [16]. Frames in the smile onset
portion of the videos (from neutral to expressive face) are
split into X = 8×Y = 8×T = 3 non-overlapping blocks,
and CLBP-TOP features are extracted from these blocks us-
ing three neighborhood pixels. Finally, we implemented
two more baselines using CLBP features [10] on neutral and
expressive faces. CLBP features are extracted from 8 × 8
non-overlapping blocks on the faces. All these baselines
employ SVM classifiers using differences between the ex-
tracted features. CLBP-TOP and CLBP were not used for
kinship verification before, but were successfully employed
for analysis of face dynamics, which makes them suitable
baseline approaches.

Both spontaneous and posed smiles are used for the com-

parisons. Table 5 shows the correct verification rates of
baseline methods in addition to the proposed approaches.
Because of the space constraints, individual accuracies of
subsets are given only for spontaneous smiles. The pro-
posed system that combines facial expression dynamics
and spatio-temporal appearance, outperforms all baselines
for each data setting. Moreover, even using only spatio-
temporal features provides more accurate verification than
the baseline methods. Proposed dynamic features cannot
perform as well as spatio-temporal appearance, however,
their combination with spatio-temporal features provides
higher accuracy for both spontaneous and posed smiles.
Results of CLBP based approaches show that expressive
faces are less reliable than neutral faces for kinship verifi-
cation. Based on the temporal appearance results, we can
say that using only eye, cheek, and mouth regions (Pro-
posed: Spatio-temporal) provides more reliable informa-
tion for CLBP-TOP feature extraction, in comparison to the
use of the whole face (CLBP-TOP: Smile Onset).

When we compare the average accuracy of all meth-
ods for spontaneous and posed smiles, it is seen that posed
smiles provide 4% and 3% (relative) less accurate verifica-
tion on the subsets and on the whole set, respectively. This
can be explained by the learned characteristics of the posed
expressions. However, the dynamics of posed smiles are
still informative for kinship verification. Additionally, we
have analyzed the average accuracy of all methods on each
of the kinship subsets. Our findings show that the most ac-
curate results are obtained for the sister-sister and brother-
brother pairs. This result can be explained by the resem-
blance in terms of age and gender.

6. Conclusions

We have proposed a first exploration of facial dynam-
ics for the difficult kinship verification problem, and ob-
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tained results that advance the state-of-the-art in this area.
While conducted on a database with fewer number of sub-
jects than related studies, our experiments were performed
on a high-resolution database with controlled conditions,
and precise age ground-truth annotations. We evaluate our
proposed method and contrast it with several baseline ap-
proaches from the literature. Our results show that incor-
porating facial expression dynamics allows the computer to
perform kinship verification at rates higher than reported for
humans.

Kinship verification is a relatively recent problem. An
interesting related work in the biometrics literature is the
studies on face recognition on identical twins. Jonathon
Phillips and colleagues looked at 126 twin pairs, and ver-
ified that under controlled environments and small time
differences between captured images, state-of-the-art face
recognition algorithms had no trouble separating identical
twins [17]. However, when one year passed between image
capturing sessions, the performance quickly degraded. The
implication is that the level of automatic analysis on faces is
advanced to the point that very small deviations can be de-
tected, but with time, these deviations accumulate, and the
threshold with which the system judges similarity becomes
difficult to tune. Kinship detection in a sense springs from
the exact opposite paradigm with twin biometrics: instead
of magnifying small differences, similarities are captured
and magnified. Research into this interesting problem will
advance both automatic face analysis, and our understand-
ing of how humans evaluate facial appearance.
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