
A Learning-Based Approach to Reduce JPEG Artifacts in Image Matting

Inchang Choi1 Sunyeong Kim1 Michael S. Brown2 Yu-Wing Tai1

Korea Advanced Institute of Science and Technology (KAIST)1

National University of Singapore (NUS)2

Abstract

Single image matting techniques assume high-quality in-
put images. The vast majority of images on the web and in
personal photo collections are encoded using JPEG com-
pression. JPEG images exhibit quantization artifacts that
adversely affect the performance of matting algorithms.

To address this situation, we propose a learning-based
post-processing method to improve the alpha mattes ex-
tracted from JPEG images. Our approach learns a set of
sparse dictionaries from training examples that are used
to transfer details from high-quality alpha mattes to alpha
mattes corrupted by JPEG compression. Three different
dictionaries are defined to accommodate different object
structure (long hair, short hair, and sharp boundaries). A
back-projection criteria combined within an MRF frame-
work is used to automatically select the best dictionary
to apply on the object’s local boundary. We demonstrate
that our method can produces superior results over existing
state-of-the-art matting algorithms on a variety of inputs
and compression levels.

1. Introduction

Single image matting is a problem that has been exten-
sively studied in computer vision and graphics. The goal is
to segment a foreground object from the background, where
each foreground pixel is assigned a value between [0, 1].
Virtually all image matting techniques assume that the in-
put image is free of notable compression artifacts. This as-
sumption, however, is no longer valid as image editing is
becoming a common tool for everyday users who now wish
to edit internet images, web albums, and photos captured
from cell phone cameras. The vast majority of these images
are encoded using JPEG compression that exhibits com-
pression artifacts that adversely affect the quality of the ex-
tracted alpha matte. Figure 1 demonstrates how various lev-
els of JPEG compression (expressed as quality levels) affect
the performance of several state-of-the-art matting methods.

1The 1-12 quality scale is common for photo editing software (e.g.
Photoshop), however, other schemes use a finer scale from 0-100.
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Figure 1. The RMSE of alpha mattes extracted from several state-
of-the-art methods are plotted for different JPEG compression
qualities (1 = lowest; 12 = highest)1. Compared to the RMSE
of the pixel values, the RMSE of the corresponding alpha mattes
increases dramatically as the compression ratio increases.

Note that the root mean square error (RMSE) of the alpha
mattes suffers worse than the RMSE of the compressed im-
age itself. Even “high quality” JPEG images (e.g quality
92), which represent common compression level used on
camera phones and social media sites, have subtle artifacts
that can adversely affect the resulting alpha mattes.

The contribution of this paper is to propose a learning-
based post-processing method for improving alpha mattes
in the face of JPEG compression artifacts. Specifically, we
propose a technique that learns a set of sparse dictionaries to
transfer high-quality details to low-quality alpha mattes ex-
tracted from compressed images. Because matting bound-
aries are far more complicated than natural image bound-
aries, our methods uses three different dictionaries (i.e. long
hair, short hair, and sharp boundaries) for various types of
object structure and selects the best one locally about the
object’s boundary. While our approach cannot compete
with mattes extracted from uncompressed input images, it
is useful in improving the quality of alpha mattes over the

2Photoshop categorized quality 10-12 to be maximum quality, 8-9 to be
high quality, 5-7 to be medium quality, and 1-4 to be it low quality.
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state-of-the-art in the likely event that the input images have
been compressed. We tested our approach extensively on
a variety of inputs and compression levels which demon-
strates superior remedy results over state-of-the-art matting
algorithms in comparisons with their initial corrupted alpha
mattes.

2. Related Work

Works related to JPEG compression, image matting, and
image super resolution are discussed. Since each of these
represent well-studied areas on their own, only relevant and
representative works are discussed.

JPEG compression The Joint Photographic Experts Group
(JPEG) compression standard developed over two decades
ago is the most widely adopted image compression method
to date (for further details see [25]). Because JPEG is lossy,
the uncompressed image contains errors that are in the form
of frequency domain ringing and blocking artifacts that are
collectively referred to as compression artifacts. For natural
images it is often difficult to perceptually see these errors
even for images with medium compression qualities around
5-7. While the compressed images may be perceptually ac-
ceptable, the resulting compression artifacts are well known
to adversely affect low-level image processing routines. As
shown in Figure 1, image matting is no exception.

There are several post-processing methods (e.g. [28, 1,
2, 6]) aimed at reducing JPEG artifacts. These approaches
target low-quality compressed images and perform various
types of filtering to reduce blocking and ringing artifacts.
While such approaches can improve the visual quality of
the input image, they tend to smooth out high frequency
details. As shown in our results, we achieve better results
than deblocking applied either as pre-processing to the input
image or as post-processing to the alpha matte.

Image matting Image matting approaches (for a nice
overview see [26]) can be roughly classified into two cat-
egories: affinity-based methods and sampling-based meth-
ods. Affinity-based methods (e.g. [19, 12, 11, 3]) esti-
mated alpha values for the unknown region by propagat-
ing the known alpha values in accordance with the pixel
affinities. Affinity-based approaches propagate alpha val-
ues well in uncompressed and maximum-quality JPEG im-
ages (e.g. quality level 12). However, these methods fail
to effectively propagate the alpha values across block arti-
facts when an image is compressed. Sampling-based meth-
ods (e.g. [4, 27, 7, 8]) estimate alpha mattes by sampling
the foreground and background color. For each pixel with
an unassigned alpha value, these approaches find the most
plausible pair of the foreground and the background pixels
around it and solve the matting compositing equation with
the sampled color pairs. As with affinity-based methods,
sample-based methods are adversely affected by the ring-

ing artifacts and quantization across different blocks. For
both approaches, obtaining mattes with detailed structure is
difficult due to the blurring effect introduced by the DCT
quantization.

Learning-based super resolution Our work is closely re-
lated to learning-based image super resolution (SR) meth-
ods (for a nice overview see [20]). These approaches
use a training-set to learn the relationship between high-
resolution image patches and their corresponding down-
sampled (i.e. low-resolution) image patches [29, 9]. These
learning-based super resolution methods can be applied to
first to enhance a JPEG image. However, we found that
these tend to produce smoothed results. This is often be-
cause these methods first apply a smoothing to the input
image to reduce ringing and blocking artifacts (e.g. as done
in Kwon et al. [9]) which can remove high-frequency in-
formation before the matting is applied. Moreover, these
approaches target natural images. Our work, however, di-
rectly operates on alpha mattes instead of pixel intensity.
Since matte boundaries are more complicated than natural
image boundaries (e.g. mostly sharp boundaries), we find it
necessary to learn different dictionary for different bound-
ary structures. As a result, our methods requires an addi-
tional step to select the correct dictionary to use in a local
manner.

3. Matting for JPEG images

As previously discussed, we adopt a learning-based ap-
proach used in single image super-resolution for our mat-
ting problem. Our input is a low-quality alpha matte ex-
tracted from conventional matting algorithms, e.g. [12, 8,
3, 30]. Our goal is to estimate a high-quality alpha matte
by transferring details via a dictionary learned from high-
quality and low-quality alpha matte patch pairs.

In the following, we denote y be the input low-quality
alpha matte, x be the output high-quality alpha matte.

3.1. Problem definition and overview

Following the work from [29], we assume the alpha
matte within each 8 × 8 block can be sparsely represented
as a linear combination of a set of basis functions:

y = Dlφ, (1)

where φ ∈ R
k is a vector of sparse coefficients, e.g.

‖φ‖0 � k, and Dl is a dictionary containing basis func-
tions learned from low-quality alpha mattes extracted from
JPEG compressed images.

In a similar context, we define the high-quality alpha
matte patch as:

x = Dhφ, (2)

where Dh is a dictionary learned from high-quality alpha
mattes extracted from images without any compression.
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Figure 2. The learned dictionaries computed from different train-
ing examples group as long hair, short hair, and sharp bound-
ary. Basis from each dictionary adopts to the different structures
of training examples.

The two dictionaries, Dl and Dh, are co-trained using a
set of alpha matte pairs. Where each pair contains an alpha
matte extracted from the high-quality input image (either
uncompressed or compressed at a high-quality, e.g. JPEG
quality 12) and the alpha matte extracted from the same
image with lower-quality compression, e.g. JPEG quality
7. Consequently, Dl and Dh have one-to-one correspon-
dences and share the same sparse coefficients φ. Hence, for
a given low-quality alpha matte input, we can first estimate
the sparse coefficients φ and then replace the low-quality
dictionary Dl with the high-quality dictionary Dh to recon-
struct a high-quality matte.

3.2. Joint dictionary training

Sparse coding is used to learn the dictionary as follows:

Dc = arg min
Dc,Z

= ‖Xc −DcZ‖
2
2 + λ‖Z‖1, (3)

where Dc is the target dictionary with l2-norm to measure
the fidelity to represent training data Xc, Z is the linear
combination coefficients with l1-norm to enforce sparsity,
and λ is the parameter to balance the two terms.

In our case, we follow [29] to substitute:

Xc =

[
Xh

Y l

]
, Dc =

[
Dh

Dl

]
, (4)

where Xh = {x1, x2, . . . , xn} is the set of high-quality 8×
8 alpha mattes and Y l = {y1, y2, . . . , yn} is the set of the
corresponding low-quality 8×8 alpha mattes. Since the size
of the high- and low-quality alpha matte pairs are the same,

JPEG input Low-quality alpha matte

Our matte w/o overlapped patch Our matte w/ overlapped patch

Figure 3. Example of the improvement gained by imposing a
neighborhood consistency by using overlapping patches.

we can use the same normalization factor to learn Dl and
Dh. Thus, we have:

{Dh, Dl} = arg min
{Dh,Dl,Z}

‖Xc −DcZ‖
2
2 + λ‖Z‖1. (5)

Equation (5) can be minimized using an iterative scheme
that minimizes Dc and Z alternatively. For details see [15,
14, 10, 29]. Training images are grouped into three cate-
gories that best describe their object boundaries: long hair,
short hair, and sharp boundary. Figure 2 shows examples
of the trained dictionaries.

3.3. Matte reconstruction from dictionary

Our next step is to reconstruct a high-quality alpha matte
given a low-quality alpha matte input. For each 8× 8 block
in the input alpha matte, we estimate the sparse coefficients
by minimizing:

φ∗ = argmin
φ
‖Dlφ− y‖22 + λ‖φ‖1, (6)

whereDl is the dictionary learned from Equation (5). Equa-
tion (6) is solved using linear regression regularized with
l1-norm on the coefficients [23].

In order to guarantee compatibility between neighboring
blocks, we follow [29] and use an overlapping window in
the reconstructed high-quality alpha matte to constrain the
coefficients estimation in Equation (6). This is formulated
as:

φ∗ = argmin
φ
‖D̃φ− ỹ‖22 + λ‖φ‖1, (7)

where

D̃ =

[
Dl

PDh

]
, ỹ =

[
y
w

]
, (8)

where P is a matrix that extracts the overlapping region be-
tween the current patch and the previous patches, and w
is the alpha values of the previously reconstructed alpha
mattes in the overlapping areas. Figure 3 shows the com-
parisons with and without the neighborhood compatibility
constraint.
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Input JPEG Initial Selection After MRF Optimization

Figure 4. Optimal dictionary selection for different regions along
matting boundary. Red: Long hair dictionary; Green: Short hair
dictionary; Blue: Sharp boundary dictionary.

3.4. Implementation: dictionary selection

As previously mentioned, we found that using a single
dictionary learned from generic images did not produce the
best quality results. We instead trained three separate dictio-
naries to adopt to different structures on the object’s bound-
ary. In the following, we describe how to select the optimal
dictionary for different boundary structures.

A reconstruction constraint is used to select the optimal
dictionary for each 8 × 8 block as follows. First, a high-
quality alpha matte is first reconstructed using all three dic-
tionaries individually. The foreground and background col-
ors are then estimated within each 8× 8 block using a color
smoothness assumption [12]. This allows us to reconstruct a
high-quality image patch using the matting composite equa-
tion [16]. The reconstructed image patches are then com-
pressed to the same quality factor of the input JPEG image.
Finally, the appropriateness of each dictionary is evaluated
by measuring the RMSE between the compressed recon-
structed patch and the original input patch. A Markov Ran-
dom Field(MRF) is used to encode the neighboring compat-
ibility [21, 22]:

E(L) = argmin
L

∑
i∈V

ED(li) + λ
∑

(i,j)∈E

ES(li, lj), (9)

where ED(li) is the data term which is evaluated by the
RMSE between the reconstructed image patch with differ-
ent dictionary label and the input image:

ED(li = long) = RMSElong(i)/W,

ED(li = short) = RMSEshort(i)/W, (10)

ED(li = sharp) = RMSEsharp(i)/W,

where W = RMSElong(i) + RMSEshort(i) +
RMSEsharp(i) is the normalization factor, and ES(li, lj)
is the neighboring term. We empirically set:

Long Short Sharp
Long 0 0.35 0.8
Short 0.35 0 0.65
Sharp 0.8 0.65 0

(11)

Input Images

Repaired mattes with Single dictionary

Reparied mattes with Multiple dictionaries

Initial alpha mattes from [11]

Ground Truth alpha mattes

Figure 5. Comparisons between single dictionary and multiple dic-
tionaries. With our multiple dictionaries approach, hairy structures
of matte can be better reconstructed.

Equation (9) can be solved using any standard MRF
solver [21]. Figure 4 shows two examples of the dictio-
nary selection results. Interestingly, although we do not
explicitly model the statistics of different boundary struc-
tures, the reconstruction constraint selects the dictionary
that agrees with the local structures of the image patch.
Figure 5 shows the comparisons of the reconstructed alpha
matte between single dictionary approach and multiple dic-
tionaries approach.

4. Experimental results

Our approach is tested extensively using the follow-
ing matting algorithms: closed-form matting [12], KNN
matting [3], global sampling matting [8], and learning-
based matting [30]. The implementation of [12, 3, 30]
were provided by the authors. We implemented [8] to
produce results of sampling based method. Due to space
limitation, only representative results are shown; addi-
tional results are provided in the supplemental materi-
als. Training and testing examples are downloaded from
www.alphamatting.com [18] with ground truth alpha mat-
tes available. Closed-form matting [12] was applied to the
uncompressed image and compressed image to produce the
training example pairs3. Different dictionaries were learnt
for different level of compression level. Examples were sep-
arated such that there was no overlap between training and
testing examples.

Figure 6 shows several results using different quality fac-
tors and matting methods. In each example, the initial ex-
tracted matte is used as input in our method. Details are
then transferred based on our method. For each example, a
composite is shown on a green background as well as the ex-
tracted matte. Selected zoomed-in regions are also shown,
with the original result on top and our result on bottom.
Zoomed-in regions show different object boundary struc-
ture, including sharp boundaries, and long and short hairs.
The initial mattes all suffer from blurriness and blocky ar-
tifacts due to the input’s JPEG compression. Applying our

3We found little difference among the results when using other matting
methods to prepare the training examples.
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GT02 GT04 GT05 GT07 GT08 GT11 GT13 GT18 GT20 GT21 GT25 GT26

CFM 7.153 10.136 1.285 0.960 5.239 1.803 13.223 1.491 0.448 7.970 10.699 16.801
OUR 7.068 10.322 1.249 0.928 5.475 1.689 12.705 1.372 0.451 7.756 10.608 16.173

KNN 1.030 6.740 1.202 1.310 11.373 3.207 3.350 1.390 0.583 4.284 10.268 12.625
OUR 0.991 7.586 1.135 1.413 12.006 3.109 3.245 1.386 0.706 3.964 9.770 12.006

GSM 0.661 3.757 0.660 0.544 6.076 1.848 3.108 0.825 0.543 3.624 13.198 9.227
OUR 0.542 3.960 0.615 0.505 6.411 1.779 2.785 0.731 0.520 3.383 13.338 8.763

LBM 7.213 9.385 1.259 0.954 5.121 1.777 12.167 1.518 0.451 7.966 10.736 16.673
OUR 7.132 9.528 1.223 0.917 5.393 1.658 11.669 1.394 0.451 7.753 10.654 16.063

GT02 GT04 GT05 GT07 GT08 GT11 GT13 GT18 GT20 GT21 GT25 GT26

Table 1. We compared RMSE between results of matting algorithms and their reconstructed alpha mattes by our algorithm. The unit is
×10

−3. CFM, KNN, GSM, and LBM stand for closed-form matting [12], KNN matting [3], global sampling matting [8], and learning-
based matting [30], respectively. Results are from images compressed using JPEG quality 9.

method clearly produces better defined boundaries and no-
ticeably reduces the blocky artifacts.

In Figure 7, the results are also compared to those ob-
tained using a popular deblocking software, DeJPEG [24]
and a popular denoising method, BM3D [5]. These are ap-
plied in two ways: in one case, we deblocked the JPEG
image and then applied matting; in the other case, we ap-
plied matting to the JPEG image and applied deblocking
to the alpha matte. The alpha mattes extracted from the
pre-processed deblocked input images are blurry and have
poorly defined boundaries. Interestingly, post-processing
the extracted alpha mattes with the deblocking algorithm
gives better results. It preserves the shape well and suc-
ceeds in removing the blocky compression artifacts to some
degree. When compare the results quantitatively, our ap-
proach produces the best alpha mattes with the minimum
RMSE as compared to the ground truth alpha mattes. Not
only does our algorithm eliminates the JPEG compression
artifacts, but also results in well defined boundaries of the
target object.

We compute the RMSE from the initial alpha mattes and
those after applying our detail transfer. Table 1 shows that
our algorithm usually yields smaller RMSE than others ex-
cept for the test cases GT4 and GT8. Upon carefully in-
vestigation, we found that both GT4 and GT8 contains very
complicated long hair structures. Our results reconstructed
the hairs with sharper details but does not fully align with
the ground truth alpha mattes. Consequently, our results
have higher RMSE due to the misalignment of the recon-
structed details. This is not too surprising as RMSE does
not always correspond to the best subjective result.

Finally, we apply our algorithm to images captured
from cell phone cameras. A Samsung Galaxy S3 and an
iPhone4S are chosen due to their popularity. Images are
saved in the high quality using their default camera setting.
We compare the original file size with the file size of im-
ages saved from Photoshop using different quality setting.

Images from both cell phone cameras have compressions
quality between quality 10 and quality 11 but closer to qual-
ity 10. We therefore built the dictionaries using the quality
10 training examples. Figure 8 shows our results which ap-
ply to the alpha mattes extracted from the global sampling
matting [8] and closed-form matting [12] with the original
files from the cell phone cameras as input. Note that com-
pression artifacts show up in the estimated alpha mattes but
they are almost invisible in the original input images. Our
approach can successfully refines the alpha mattes with bet-
ter visual quality.

5. Discussion and conclusion

We have presented a method to refine alpha mattes from
JPEG compressed images. While there is a previous work
that targets matting for degraded image [13, 17], as far as
we are aware, this is the first work to seriously address the
problem of compression artifacts on image matting. Our
approach is akin to single image learning-based SR ap-
proaches that synthesize image detail based on a training set
of high-quality and low-quality images. Our method works
directly on the alpha mattes using three separate dictionar-
ies to accommodate various boundary structures as well as
a back-projection method to select the appropriate dictio-
nary for detail transfer. Our method is able to improve the
current state-of-the-art image matting results and preforms
better than applying JPEG deblocking to the input or ex-
tracted mattes.

Our method focuses on DCT-based JPEG compression
due to its popularity. We are interested in extending
this scheme to the wavelet-based JPEG2000 compression
scheme, however, implementation details such as patch size
and patch overlap will need to be empirically evaluated. An-
other area of future work is to consider expanding the num-
ber of dictionaries to accommodate a wider variety of object
structures in effort to further improve the results.
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Groundtruth
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Ours

Groundtruth

Closed Form Matting

KNN matting

Ours

KNN matting

Ours

Groundtruth

Groundtruth

Ours

Groundtruth

Global sampling matting

Global sampling matting

Ours

Groundtruth

Ours

Groundtruth

Learning-based matting

Ours

Groundtruth

Learning-based matting

Ground truth Composition

Our Alpha Matte

Ground truth Composition

Ground truth Composition

Ground truth Composition

Ground truth Alpha Matte

Ground truth Alpha Matte

Ground truth Alpha Matte

Ground truth Alpha Matte

Our Alpha Matte

Our Alpha Matte

Our Alpha Matte

Our Compotision

Our Compotision

Our Compotision

Our Compotision

Closed-Form Matting(quality 9)

Closed-Form Matting(quality 9)

KNN Matting(quality 7)

KNN Matting(quality 7)

Global Sampling Matting(quality 5)

Global Sampling Matting(quality 5)

Learning-based Matting(quality 7)

Learning-based Matting(quality 7)

Figure 6. The first example is extracted by closed-form matting [12] (JPEG quality 9), the second example is extracted by KNN matting [3]
(JPEG quality 7), the third example is extracted by Global sampling matting [8] (quality 5), and the final example is extracted by learning-
based matting [30] (JPEG quality 7). In the zoomed-in areas, images on the top were produced using JPEG alpha mattes, and the middles
are our reconstructed alpha mattes. The bottoms are the ground truth.
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(a) (b) Closed-form (c) KNN (d) Global sampling (e) Learning-based

JPEG Input Image

Deblocked Input Image

Ground Truth Our reconstructed alpha mattes

DeJPEG - Alpha mattes from postprocessed JPEG input image

DeJPEG - Alpha mattes from preprocessed JPEG input image

Alpha mattes from JPEG input image

21.704 17.821 10.406 18.716

35.093 29.101 20.134 31.842

21.276 19.333 10.317 18.418

21.114 17.448 9.625 17.722

Deblocked Input Image

BM3D - Alpha mattes from postprocessed JPEG input image

BM3D - Alpha mattes from preprocessed JPEG input image
37.086 25.936 19.637 29.480

21.648 17.668 10.316 18.649

Figure 7. (a) JPEG (quality 7) input images, deblocked input images by DeJPEG [24] and BM3D [5], and ground truth alpha mattes.
(b) Closed-form matting [12], (c) KNN matting [3], (d) Global sampling matting [8], (e) learning-based matting [30]. In the example,
from the top, alpha mattes of JPEG input images (the first row), alpha mattes of deblocked input images and deblocked alpha mattes as
post-processing by DeJPEG (the second and third rows), and by BM3D (the fourth and fifth rows), and our reconstructed alpha mattes (the
final row). The RMSE (The unit is ×10

−3) are shown in the small boxes. Results with minimum RMSE are highlighted.
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Global Sampling Matting
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Global Sampling Matting
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Closed-Form Matting
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Closed-Form Matting
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Input Image Input Image

Closed Form Matting 
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Input Input 

Figure 8. Real world examples from common cell phone cameras. Zoomed-in regions show the input images, estimated alpha mattes, our
reconstructed alpha mattes and the corresponding composition respectively.
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