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Abstract

This paper proposes a novel approach for sparse coding
that further improves upon the sparse representation-based
classification (SRC) framework. The proposed framework,
Affine-Constrained Group Sparse Coding (ACGSC), ex-
tends the current SRC framework to classification problems
with multiple input samples. Geometrically, the affine-
constrained group sparse coding essentially searches for
the vector in the convex hull spanned by the input vectors
that can best be sparse coded using the given dictionary.
The resulting objective function is still convex and can be ef-
ficiently optimized using iterative block-coordinate descent
scheme that is guaranteed to converge. Furthermore, we
provide a form of sparse recovery result that guarantees,
at least theoretically, that the classification performance
of the constrained group sparse coding should be at least
as good as the group sparse coding. We have evaluated
the proposed approach using three different recognition ex-
periments that involve illumination variation of faces and
textures, and face recognition under occlusions. Prelimi-
nary experiments have demonstrated the effectiveness of the
proposed approach, and in particular, the results from the
recognition/occlusion experiment are surprisingly accurate
and robust.

1. Introduction
Sparse representation-based classification (SRC) has been

investigated in several notable recent work (e.g., [5, 26]),

and despite the simplicity of the framework, the reported

recognition results are quite impressive. The geometric mo-

tivation behind this approach is the assumption that data

from each class resides on a low-dimensional linear sub-

space spanned by the training images belonging to the given

class. The dictionary is obtained virtually without cost by

simply stacking the training samples into a matrix D. Dur-

∗These two authors have equal contribution to this paper.

ing testing, a test image x is sparse coded with respect to

the dictionary by optimizing a (convex) objective function

E(c;D) of the sparse coefficient c that is usually a sum of

an �2-data fidelity term and a sparse-inducing regularizer:

E(c;x,D) = ‖x−Dc‖2 + λΨ(c). (1)

A plethora of sparse-inducing regularizers have been

proposed in the literature (e.g., [25, 1, 20, 10]), and many of

them are based on the sparse-promoting property of the �1-

norm [3]. The block structure of the dictionary D together

with the sparse coding of x allow one to infer the class la-

bel of x by examining the corresponding block components

of c, and SRC essentially looks for the sparsest represen-

tation of a test image with the hope that such a represen-

tation selects a few columns of D from the correct block

(class). However, for many image classification problems

in computer vision, the current SRC as embodied by Eq. (1)

has several inherent shortcomings. The proposed affine-

constrained group sparse coding (ACGSC) model aims to

further improve the effectiveness of SRC by addressing two

of these shortcomings: its generalizability and its extension

for multiple input images.

In the information age, data are plentiful and in many

applications, test data do not come in singles but in groups.

For example, in video surveillance, a duration of merely one

second would provide about 30 frames of images. There-

fore, there is a need to properly generalize SRC for clas-

sification problems that require decision on a group of test

data x1, ...,xk. On the other hand, for most computer vi-

sion applications, there does not exist a classifier that can

correctly anticipate every possible variation of the test sam-

ples. For image-based face recognition in particular, these

include variation in illumination, pose, expression and im-

age alignment. In particular, subspace-based classification,

for which SRC is a special case, is known to be sensitive

to image misalignment [26]. Even for a small degree, mis-

alignment can be detrimental and cause temperamental be-

havior of the classifier with unpredictable outcomes.

Multiple inputs, [x1, ...,xk], provides a new and differ-

2013 IEEE International Conference on Computer Vision

1550-5499/13 $31.00 © 2013 IEEE

DOI 10.1109/ICCV.2013.90

681

2013 IEEE International Conference on Computer Vision

1550-5499/13 $31.00 © 2013 IEEE

DOI 10.1109/ICCV.2013.90

681



Figure 1: Illustration of the proposed approach. Left: The convex hull formed by columns of test samples X. The image corresponding
to each column of X are shown and x∗(= X · a∗) is the solution of our proposed approach. x̄ is the mean of X. The magnitude of each
component ai of a is shown as the white bar in the corresponding image. Right: Illustration of the selected atoms from D and the sparse
coefficients c of x∗ shown on the right. Images of the same color are in the same block (class). (Figure best viewed in color)

ent setting for SRC, and a straightforward application of

SRC would be to apply SRC individually to each xi and

generate the final classification decision by pooling or vot-

ing among the individual classification results. This ap-

proach is unsatisfactory because by treating xi indepen-

dently, it completely ignores the (hidden) commonality

shared by these obviously related data. Group sparse cod-

ing [1] (GSC) offers a solution that takes into account the

potential relation among [x1, ...,xk] by sparse coding all

data simultaneously using the objective function

min
C

E(C;X,D) = ‖X−DC‖2 + λΨ(C), (2)

where X is a matrix formed by horizontally stacking to-

gether xi, and Ψ(C) is an appropriate �1/�2-based regular-

izer. The matrix C of sparse coefficients can be used as in

SRC to generate classification decision by applying voting

or pooling across its rows. However, the effect of Ψ on the

matrix C (and its pooling and subsequent classification) is

difficult to predict and ascertain.

For classification problems in computer vision, this pa-

per argues that a generalization of the group sparse coding,

affine-constrained group sparse coding, using the follow-

ing objective function, offers a more principled and flexible

approach:

E(a, c;X,D) = ‖Xa−Dc‖2 + λΨ(c), (3)

where a = [a1 ...,ak]
�, is a k-dimensional vector with non-

negative components satisfying the affine constraint a1 +
... + ak = 1. Comparing with GSC as in Eq. (2), the

ACGSC enlarges its feasible domain by including a k-

dimensional vector a. However, the feature vector c used

in classification is in fact a vector not a matrix, and compar-

ing with GSC, the classification decision based on Eq. (3)

does not require pooling or voting.

Geometrically, ACGSC is easy to explain as it simply

searches for the vector in the convex hull S generated by

x1, ...xk that can best be sparse coded using the dictionary

D. From classification viewpoint, ACGSC benefits from

multiple inputs by using a linear generative model to “align”

the test images with the dictionary elements. For example,

if the test (face) images were taken under illumination con-

ditions that are very different from the ones for the dictio-

nary elements, sparse coding test images individually or in

group can be expected to provide poor classification results.

Heuristically, this can be explained as a kind of generalized

misalignment (in terms of illumination effects) between the

training and test images. For ACGSC, the coefficient a
is used to “align” the test images with the dictionary el-

ements, and it is precisely this online “alignment” of the

input images xi that provides ACGSC with an edge over

other SRC methods. The necessity of the affine constraint

can be reasoned in two ways. First, without it, Eq. 3 admits

a trivial uninformative solution. Second, in most applica-

tions, the linear generative model given by Xa is valid only

for restricted a, and the nonnegative affine constraint pro-

posed here is sufficiently general to provide a bounded and

tractable domain for efficient optimization. We remark that

for image-based applications, the test images xi have non-

negative intensity values, and therefore, their convex hull

would never contain the zero vector (i.e., c cannot be triv-

ial). Likewise, for a typical group of data xi, their convex

hull will not contain the zero vector. Finally, the framework

embodied in Eq. 3 is sufficiently flexible to permit several

interesting and useful variations, some of which will be dis-

cussed later in the paper.

The argument in favor of affine-constrained group sparse

coding relies mainly on a form of sparse recovery guaran-

tee presented in Theorem 1 below. As will be made more

precise later, this will allow us to argue that, at least in the-

ory, the classification performance of ACGSC should be

at least as good as the one based on GSC or on Eq. (1).

We conclude the introduction by summarizing the three

main contributions of this paper:

1. We propose a novel sparse representation-based classi-

fication framework based on affine-constrained group

sparse coding, and it provides a principled extension

of the current SRC framework to classification prob-

lems with multiple input samples. The resulting op-

timization problem can be shown to be convex and can

be solved efficiently using iterative algorithms.

2. We provide theoretical analysis of the proposed frame-
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work in the form of a sparse recovery result. Based on

this result, we argue that in theory, the classification

performance of the proposed framework is equal to or

better than other existing SRC frameworks.

3. We evaluate the proposed framework using three clas-

sification experiments. The results suggest that the

proposed framework does provide noticeable improve-

ments over existing methods, particularly for difficult

classification problems such as recognition with occlu-

sions.

2. Theory and Method

Let x1, · · · ,xk denote a group of input test data, and D
is the given dictionary. We further let X denote the ma-

trix X = [x1 x2 · · · xk]. Our proposed affine-constrained

group sparse coding seeks to minimize the objective func-

tion:

ECGSC(a, c;X,D) = ‖Xa−Dc‖2 + λΨ(c) (4)

subject to the nonnegative affine constraint on the group co-
efficient a (

∑k
i=1 ai = 1, and a1,a2, ...,ak ≥ 0). Note that

in group sparse coding [1] (GSC), there are no group coef-

ficients a and the sparse coefficients c are given as a matrix.

A schematic illustration of the difference between the group

sparse coding and our constrained version is shown in Fig.

2. The GSC-based classification scheme sparse codes the

input feature vectors xi simultaneously. While some group

sparsity can be claimed for this approach based on the ap-

propriate regularizer Ψ, it is generally difficult to provide

any guarantee on the behavior of the sparse coefficient ma-

trix C. On the other hand, for our constrained version, the

discrete set of the input vectors has been completed to form

a convex set S, and our approach is designed to capture any

vector in this convex set that can best be sparse coded by

the dictionary D. The situation here shares some similar-

ity with the LP-relaxation of integer programming [24] or

the convexification of a non- convex program [18], in which

one enlarges the feasible domain in order to achieve convex-

ity and thereby, efficiently compute approximate solution.

We remark that the affine constraint is quite necessary in

Eq. (4), and without it, there is always the trivial solution

a = 0, c = 0. It is clear that the optimization problem is

indeed convex and it is completely tractable as the feasible

domain and objective function are both convex. We iter-

atively solve for a and c using gradient descent, and this

scheme is guaranteed to converge. The only complication

is the projection onto the simplex defined by the group co-

efficient constraint a1 + ... + ak = 1, and this step can be

efficiently managed using an iterative scheme described in

the supplemental material.

Figure 2: Illustration of the difference between group sparse cod-
ing and constrained group sparse coding, and its effect on clas-
sification results. The cone represents the subspace spanned by
a block of the dictionary D. Shaded areas represent the convex
hull spanned columns in X. None of the xi lie within the sub-
space; however some of the points on the convex hull do and the
proposed algorithm is designed to capture these points.

2.1. Theoretical Guarantee

Given a dictionary D, a vector x has sparsity s if it can

be written exactly as a linear combination of s columns of

D. An important result that underlies all SRC frameworks

is the guarantee provided by the sparse recovery result that

for a feature vector x with sparsity bounded from above by

a constant depending on D [4, 6], x can be recovered by

minimizing the �1 cost-function:

(P1) min
c
‖c‖1 subject to Dc = x. (5)

In actual application, the above �1-program is often modi-

fied as

(Pλ
1 ) min

c
‖x−Dc‖22 + λ‖c‖1, (6)

for a suitably chosen constant λ > 0. We remark that

the two programs, while related, are in fact different, with

most sparse recovery results given by minimizing (P1).
Let x be a noiseless test vector to be classified. A typi-

cal SRC method will determine its classification based on

its sparse coefficients obtained by minimizing the program

(Pλ
1 ). Compared to them, our proposed framework enlarges

the optimization domain by introducing the group coeffi-

cients a, and it is possible that with larger domain, spurious

and incorrect solutions could arise. The following theorem

rules out this possibility, at least when the sparse vector x
can be exactly recovered by a typical SRC method and clas-

sified correctly:

Theorem 1. Let x be a feature vector with sparsity s such
that it can be exactly recovered by minimizing Pλ

1 for some
λ. We assume that x is in the convex hull S. Furthermore,
we assume that the global minimum of ECGSC, given a
group of input data X, is unique. Then, x is the global mini-
mum of ECGSC with the same λ and D (and Ψ(c) = ‖c‖1).

Proof. The proof is straightforward and it consists of check-

ing the sparse vector x also corresponds to the global

minimum of ECGSC(a, c). Since x ∈ S, we have
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x = Xa for some feasible a. Since x is a sparse vec-

tor that can be recovered exactly by minimizing (Pλ
1 ) in

Eq. (6), we let c be its sparse coefficients, and we have

x = Dc. We claim that (a, c) is a global minimum

of ECGSC(a,x) by showing that the (sub-)gradient van-

ishes at (a, c). First, since c is the global minimum for

(Pλ
1 ) with x = Xa, and the two c-subgradients coincide:

∇c(Pλ
1 ) = ∇cECGSC(a, c). Therefore the c-component

∇c of the (sub-)gradient ∇ECGSC contains zero:

0 ∈ ∇cECGSC(a, c).

On the other hand, since ECGSC is smooth in a and by

direct calculation, we have a-component of the gradient

∇ECGSC

∇aECGSC(a, c) = X�Xa−X�Dc = 0,

because Dc = x = Xa. This shows that (a, c) is the global

minimum of the convex function ECGSC(a, c), regardless

whether x is on the boundary of the convex hull S.

We can draw two important conclusions from the the-

orem. First, compared to GSC, our constrained version,

with an enlarged feasible domain, will indeed recover the

right solution if the (noiseless) solution is indeed among

the input feature vectors x1, ...xk. Therefore, our method

will not produce incorrect result in this case. However, the

behavior of GSC in this case is difficult to predict because

other (noisy) input feature vectors will affect the sparse cod-

ing of the (noiseless) input vector, and the result of the sub-

sequence pooling based on the matrix C can be uncertain.

Second, if there is a sparse vector x lying inside the convex

hull S spanned by x1, ...xk, our method will indeed recover

it (when the required conditions are satisfied).

2.2. Part-based ACGSC

The ACGSC framework based on Eq. (3) is versatile

enough to allow for several variations, and here we discuss

one example incorporating an image domain partition. In

the standard ACGSC, the online reconstructed image Xa
is simply the convex combination of the input images as the

columns of X. This model can be augmented using a known

image domain partition and define the reconstructed image

as a composite image that uses a different convex combina-

tion in each region of the partition. A schematic illustration

of this idea is shown in Fig. 3, and this part-based ACGSC
is particularly effective for detecting the presence of occlu-

sions. More specifically, this requires the modification of

Eq. (3)

E(A, c;X,D) = ‖
k∑
i

Aixi −Dc‖2 + λΨ(c), (7)

where A is the set of all Ai, Ai are diagonal matrices with

nonnegative elements, k is the number of input samples, and

(a) (b)

Figure 3: Comparison between the standard (a) and the part-
based ACGSC (b). (a): ai are the group coefficients correspond-
ing to the sample xi. The nonnegative affine constraint here is
a1 + a2 = 1. (b): The same input samples are split into 4 parts
in the part-based approach. There are 4 nonnegative affine con-
straints i.e. ap

1 + ap
2 = 1 for p = 1 · · · 4.

xi ∈ R
d is the i-th column in X. The affine constraints on

the Ai are
∑k

i A
j
i = 1 for j = 1 · · · d, where Aj is the j-th

diagonal element of A. The resulting vector
∑

i Aixi is the

element-wise affine combination1 of xi’s.

Although Eq. (7) provides an extension of Eq. (3), it is

severely under-constrained as there are d ·k unknowns in all

the Ai. To alleviate this problem, we can further reduce the

number of variables in Ai. For example, the equation below

gives only np different variables: aji are scalar variables,

and Ip are identity matrices of certain sizes,

Ai =

⎡
⎢⎢⎢⎢⎣

a1i · I1 0 · · · 0

0 a2i · I2 0
...

...
. . .

...

0 · · · 0 a
np

i · Inp

⎤
⎥⎥⎥⎥⎦ . (8)

This formulation of Ai is equivalent to splitting a sample

(xi) into np parts. Each part of xi corresponds to a scalar

variable api . The size of a part is equal to the size of the

corresponding Ip. Note that each Ip does not necessarily

have the same size. Let Ip denote the set of indices of the

rows in Ai corresponding to ap. Eq. (7) can be rewritten as:

‖

⎡
⎢⎢⎢⎣

X(I1) 0 · · · 0

0 X(I2)
.
.
.

.

.

.
. . . 0

0 · · · 0 X(Inp )

⎤
⎥⎥⎥⎦

⎡
⎢⎣

a1

a2

.

.

.

anp

⎤
⎥⎦−Dc‖2 +λΨ(c)

s. t.

k∑
i=1

api = 1 for p = 1 · · ·np and api ≥ 0, (9)

where ap = [ap1, a
p
2, · · · ,apk]ᵀ and X(Ip) are the rows in

X that correspond to the p-th part. Because the first part

of the data fidelity term is still a d-dimensional vector, op-

timization of c is the same as in Eq. (3). Although Eq. (9)

and Eq. (3) have a similar structure, the former has part-

structure defined on the components of a, and in practice,

the parts are specified by each individual application. For

1
∑

i Aixi =
∑

i diag(Ai) � xi, where � denotes element-wise

product.
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face recognition, we can define the parts according to the

image regions where the useful features such as eyes, nose

and mouth are to be found.

Since the first matrix in Eq. (9) is block-diagonal, Eq. (9)

can be rewritten as:
np∑
p=1

‖X(Ip)ap −D(Ip)c‖2 + λΨ(c), (10)

where D(Ip) are the rows of D corresponding to rows of

X(Ip). The vector ap can then be optimized individually

under the nonnegative affine constraints given in Eq. (9).

Note that the indices corresponding to ap in A, as shown

in Eq. (9), do not have to be contiguous. This provides us

more flexibility for determining and specifying useful parts,

depending on the intended application.

3. Related Work
To the best of our knowledge, a similar framework and

algorithm to the one proposed in this paper has not been

reported in the computer vision literature. Due to limited

space, we will only summarize the major differences be-

tween our work and some of the more representative work

in SRC that have appeared in the past few years. Sparse rep-

resentations have been successfully applied to many vision

problems such as face recognition [12], [17], [22], image

classification [23], [5], [7], denoising and inpainting [14],

and other areas [25]. Interestingly, one of the original mo-

tivations for using sparse representations in solving vision

problems is the realization that sparse representations of vi-

sual signals are produced in the first stage of visual process-

ing by human brain [15]. In many cases, simply replacing

the original features with their sparse representations leads

to surprisingly better recognition/classification results [25].

Group sparse coding was first proposed in [1] and its

extension to block-structured dictionaries has been studied

in [2, 19]. In these methods, group sparsity was promoted

using a matrix norm that encourages features in the same

group to share the same atoms in the dictionary. From clas-

sification viewpoint, [1] has two undesirable features: First,

the classification is based on matrices (multiple vectors) and

this increase in dimension complicates the process. Second,

while promoting group sparsity, [1] does not go beyond the

test data xi themselves to search for potentially more use-

ful features that are better-aligned with the dictionary. Our

proposed framework addresses both shortcomings by intro-

ducing the group coefficients a in Eq. (3).

4. Experiments
4.1. Face Recognition with Lighting Variation

SRC-based face recognition methods have been exten-

sively studied and the state-of-the-art results have been re-

ported in the past few years [26, 5]. However, none of the

cited work has investigated face recognition under more re-

alistic scenario when there are large differences between

the illumination conditions of the training and test im-

ages. In this experiment, we used the cropped Extended
Yale Face Database B [11] to simulate such scenario. This

database contains aligned images of 38 persons under dif-

ferent laboratory-controlled illumination conditions. For

each subject, we chose the images with the azimuth and el-

evation angles of the light source ≤ 35o as the training im-

ages. The rest of the images in the database, which contain

significant shadows due to non-frontal illumination, were

used as test images. The training images were used to sim-

ulate the well-lit images such as passport photos, and the

test images were used to simulate images (e.g. from surveil-

lance camera) that are quite different from the training im-

age. Fig. 4 demonstrates the large differences between the

training (top row) and test (bottom row) images. Unlike as

in the earlier work, this experiment uses ”easier” images for

training and ”harder” images for testing, and the result will

demonstrate unequivocally the superior generalization ca-

pacity of our method, an important feature for classification

and recognition applications.

Figure 4: Selected training (top) and test (bottom) images from
Yale Face Database. Numbers in the parenthesis are, respectively,
the azimuth and elevation angles of the illumination source.

We used the training images directly as atoms of the dic-

tionary D [5, 26]. Therefore, there are 38 blocks in D, and

each block contains 24 or 23 atoms2. The number of test

images for each person is around 40. The experiment was

performed as follows:

1. Reduce dimensionality of the data to 600 using PCA.

Normalize the samples to have unit �2 norms.

2. Use the training images directly as atoms in D.

3. For each subject, randomly select ng ∈ {2, 3, · · · , 7}
number of test images (X).

4. Initialize a = [ 1
ng

, · · · , 1
ng

]ᵀ and c = 0.

5. Iteratively update a and c until convergence. Deter-

mine the class label by

label(X) = min
i
‖Xa−Dici‖2, (11)

where Di and ci are the i-th block of D and c, respec-

tively.

2There are missing images for several individuals in the database.
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We repeated the above experiment ten times and the results

are plotted in Fig. 5. We have compared our result with the

result of simply using the mean of columns of X as input

vector (last column of Fig. 6). We have also compared with

two group-regularized sparse coding algorithms proposed

by [1] [2]. In [1], the energy function is (same as Eq. (2))

min
C
‖X−DC‖2F + λ

|D|∑
i

‖Ci‖2, (12)

where Ci is the i-th row of C. Their algorithm promotes

the data in a group (columns of X) to share same dictionary

atoms. In [2], block structure was added to D together with

the group structure on the data X. The objective function,

which is still in the same form as Eq. (2), is:

min
C
‖X−DC‖2F + λ

nb∑
b

‖Cb‖F, (13)

where Cb is a matrix containing the rows in C that corre-

sponds to the b-th block of D. Similar to the previous algo-

rithm, the method proposed in [2] promotes the encoding of

data in X using atoms from a few blocks of D.

We have also compared with the results using meth-

ods proposed by Wright et. al.[26] and by Elhamifar et.

al.[5]. We applied these two methods to every test sam-

ple since they do not utilize group structure on data and the

results are also shown in Fig. 53. The results show that

the proposed method significantly outperforms all compet-

ing methods. The clear reason, as shown in Fig. 2, is that

our method goes beyond the input test images and searches

for a more “aligned” image on a larger domain (the convex

hull spanned by X) while the group-regularized methods

can only rely on the input images that are poorly poorly

“aligned” with the dictionary.
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Figure 5: Comparison of our method with other SRC-based meth-
ods. The λ values used in the methods, in the order of the legend,
are 0.05, 0.2, 0.05, 0.1, 0.05, and 0.05, respectively.

Fig. 6 demonstrates four groups of test samples, the ac-

tual computed coefficients a (white bars), the image at op-

timality, Xa∗, (2nd column from the right) and the mean

image (last column). The images at optimality have the

3The results for these two methods shown in Fig. 5 are worse than what

were reported in the original papers ([26] and [5]). This is because, in their

experiments, they randomly chose half of the dataset as atoms of D and

the other half as test samples. Therefore their dictionaries are 50% larger

than ours and the variability between training and test samples are much

more limited due to the random selection of training images.

lighting conditions that are more similar to the atoms in

D (top row in Fig. 4) than the mean images if the con-
vex hull spanned by columns of X lies within the subspaces
spanned by the blocks in D. The first three rows demon-

strate successful examples by our methods. We were not

able to classify the 1st and 3rd correctly using the mean of X
because the overwhelming amount of shadow. The bottom

row shows a failed case where none of the images contains

any identifiable or distinguishable feature.

︸ ︷︷ ︸
X

︸ ︷︷ ︸
Xa∗

︸ ︷︷ ︸
mean(X)

Figure 6: Left: columns of X and the values of the computed a
(white bars). The last two columns are the results of X · a and the
mean of columns of X, respectively. The first three rows

4.2. Face Recognition with Occlusions

We have tested our proposed approach using the AR-

Face database[16]. This dataset contains face images of 100

individuals. There are 14 non-occluded and 12 occluded

images from each individual with different expressions and

illumination variations. The occluded images contains two

types of occlusions: sun-glasses and scarf covering the face

from the nose down. Each occlusion type contains 6 images

per person. To reduce the feature dimension, we down-

sampled the images to 55 × 40 and vectorized them. We

randomly selected 8 non-occluded images from each per-

son to form the dictionary D with a 100-block structure.

The experiment was performed as follows:

1. Randomly selected ng test samples (X) from the oc-

cluded images of person p. They must contain at least

one from each type of occlusion.

2. Split the test images into 6 uniformly-sized and non-

overlapping parts (Fig. 8(d)).

3. Initialize Ai = I/ng (ap = 1/ng), c = 0.

4. Iteratively optimize c and Ai (ap’s) using Eq. (9) and

Eq. (10), respectively.

5. Determine the class label by

label(X) = min
i

np∑
p=1

‖X(Ip)ap −D
(Ip)
i ci‖2, (14)

where Di and ci are the i-th block of D and c, respec-

tively. This equation is a modification of Eq. (11).
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Figure 7: Comparison of classification results. The λ
values used in the methods, in the order of legends, are
0.005, 0.005, 0.004, 0.002, 0.01, and 0.02, respectively.

We repeated the above procedure 20 times for each per-

son . We compared the results with that of using standard

ACGSC. We also compared our results with those of GSC
[1] and of Chi et. al. [2]. Lastly, we compared with the re-

sults from directly applying regular sparse coding (Wright

et. al. [26]) and block sparse coding (Elharmifar et. al.

[5]) on the average image of the test samples (Fig. 8(b)).

The results in Fig. 7 show that our part-wise ACGSC out-

performs other methods by a significant margin. The stan-

dard ACGSC does not have significant advantage over other

methods. This is due to the fact that the occlusions are

present in all the test samples.

Fig. 8(d) shows the part-based group coefficients (ap)

of the test samples after the optimization. The values of ap

are displayed using the colors overlaid on the correspond-

ing parts. The largest coefficient of this specific example

is around 0.6. We can see that the parts corresponding to

the occluded regions have significantly lower values, i.e.,

our method correctly identified the occlusions. Fig. 8(e)

shows the part-based affine combination of the test images.

Our part-based approach was able to select the parts that are

more consistent with the dictionary (training samples). Fig.

8(f) shows the reconstructed image using our method and

Fig. 8(c) shows the reconstructed image by directly apply-

ing Wright’s method [26] on the average image (Fig. 8(b)).

Due to the occlusion of the scarf, the test samples were in-

correctly matched to training images from a male subject

with beard and mustache.

4.3. Texture Classification

In this experiment, we used the cropped CUReT texture

[21]. This dataset contains images of 61 materials (See Fig.

9). It has a total of 61×92 = 5612 images. Each image is of

size 200-by-200 pixels. For each texture category, we ran-

domly chose 20 images as the training samples and the rest

as test samples. The experiment was conducted as follows:

1. For each image, compute its SIFT 4 features over the

entire image. Each image is then represented by one

4We used the vl sift package.

(a) (b) (c)

(d) (e) (f)

Figure 8: (a) Input test samples. (b) The average of the 3 test
samples. (c) Reconstructed image using Wright’s method on the
average image (b). (d) Weights of the part-wise group coefficients
overlaid on the corresponding test samples. More redness corre-
sponds to a larger affine weight. (e) The part-wise affine combina-
tion of the test samples after optimization. (f) Reconstructed image
using our method. (Images best viewed in color)

128-dimensional SIFT vector.

2. Normalize the SIFT vectors to have unit �2 norm. Vec-

tor components are capped at 0.25 as any component

with values > 0.25 is now set to 0.25. Normalize the

vectors again.

3. Use the training samples as columns of the dictionary

D. D contains 1,220 columns with 61 blocks.

4. For each class, randomly choose ng test samples (X).

5. Iteratively update c and a in Eq. (4). λ for computing

c is set to 0.2 through cross validation.

6. Determine the class label of X using Eq. (11).

We have compared our results with ones using the frame-

work proposed by Wright et. al. [26]. Since there is no

group structure defined in their framework, we computed

the sparse coefficients for all the test images individually. λ
for this method is set to 0.17. We have also compared our

results with those from Hayman et. al. [9], Gau et. al. [8],

Varma et. al. [21] and Liu et. al.[13]. The classification

results are shown in Fig. 10. All results are surprisingly

good for using such simple features. The result from us-

ing Wright’s framework is comparable to the state-of-the-

art results, and our method further improves on the result of

Wright et. al. by 3.3% (classification rate is 99.67% when

ng = 5).

Figure 9: Selected images from the the cropped CUReT database.
Top row: 5 different types of textures. Bottom row: same texture
under different illumination conditions.
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Figure 10: Classification results from the texture classification ex-
periment. Note that in Liu’s work, 46 training images were used.

5. Conclusions and Future Work
We have presented the novel Affine-Constrained Group

Sparse Coding framework for SRC with the aim of extend-

ing the current SRC-framework to classification problems

with multiple inputs. We have also presented a form of

sparse recovery result and based on this result, we have ar-

gued that, at least in theory, the classification performance

using the proposed method should be as good as if not better

than the one using existing SRC-based methods. We have

evaluated the proposed approach using three experiments

that involves face recognition, texture classification and face

recognition under occlusions. The preliminary experiments

demonstrate the effectiveness as well as efficiency of the

proposed approach. For future work, we will investigate

more theoretical aspects of the approach. We believe that

it is possible to obtain a stronger form of the sparse recov-

ery result under noisy assumption, providing a better un-

derstanding of the power and limitation of the proposed al-

gorithm. Furthermore, we will also investigate useful and

effective prior for the group coefficients a and the resulting

(usually non-convex) optimization problem.
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