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Abstract

This paper presents an automatic and robust approach
that accurately captures high-quality 3D facial perfor-
mances using a single RGBD camera. The key of our ap-
proach is to combine the power of automatic facial feature
detection and image-based 3D nonrigid registration tech-
niques for 3D facial reconstruction. In particular, we de-
velop a robust and accurate image-based nonrigid regis-
tration algorithm that incrementally deforms a 3D template
mesh model to best match observed depth image data and
important facial features detected from single RGBD im-
ages. The whole process is fully automatic and robust be-
cause it is based on single frame facial registration frame-
work. The system is flexible because it does not require
any strong 3D facial priors such as blendshape models. We
demonstrate the power of our approach by capturing a wide
range of 3D facial expressions using a single RGBD camera
and achieve state-of-the-art accuracy by comparing against
alternative methods.

1. Introduction

The ability to accurately capture 3D facial perfor-

mances has many applications including animation, gam-

ing, human-computer interaction, security, and telepres-

ence. This problem has been partially solved by com-

mercially available marker-based motion capture equipment

(e.g., [18]), but this solution is far too expensive for com-

mon use. It is also cumbersome, requiring the user to wear

more than 60 carefully positioned retro-reflective markers

on the face. This paper presents an alternative to solving this

problem: reconstructing the user’s 3D facial performances

using a single RGBD camera.

The main contribution of this paper is a novel 3D fa-

cial modeling process that accurately reconstructs 3D facial

expression models from single RGBD images. We focus

on single frame facial reconstruction because it ensures the

process is fully automatic and does not suffer from drift-

ing errors. At the core of our system lies a 3D facial de-

formation registration process that incrementally deforms a

template face model to best match observed depth data. We

model 3D facial deformation in a reduced subspace through

embedded deformation [16] and extend model-based opti-

cal flow formulation to depth image data. This allows us to

formulate the 3D nonrigid registration process in the Lucas-

Kanade registration framework [1] and use linear system

solvers to incrementally deform the template face model to

match observed depth images.

Our image-based 3D nonrigid registration process, like

any other iterative registration processess [1], requires a

good initialization. The system often produces poor reg-

istration results when facial deformations are far from the

template face model. In addition, it does not take into ac-

count perceptually significant facial features such as nose

tip and mouth corners, thereby resulting in misalignments

in those perceptually important facial regions. We address

the challenges by complementing our image-based nonrigid

registration process with automatic facial feature detection

process. Our experiment shows that incorporating impor-

tant facial features into the nonrigid registration process sig-

nificantly improves the accuracy and robustness of the re-

construction process.

We demonstrate the power of our facial reconstruction

system by modeling a wide range of facial expressions

using a single Kinect (see Figure 1). We evaluate the

performance of the system by comparing against alterna-

tive methods including marker-based motion capture [18],

“faceshift” system [20], Microsoft face SDK [11], and non-

rigid facial registration using Iterative Closest Points (ICP).

2. Background

Our system accurately captures high-quality 3D facial

performances using a single RGBD camera. Therefore, we

will focus our discussion on methods and systems devel-

oped for acquiring 3D facial performances.

One of most successful approaches for 3D facial per-

formance capture is based on marker-based motion cap-
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Figure 1. Accurate and robust facial performance capture using a single Kinect: (top) reference image data; (bottom) the reconstructed

facial performances.

ture [9], which can robustly and accurately track a sparse set

of markers attached on the face. Recent effort in this area

(e.g., [2, 10]) has been focused on complementing marker-

based systems with other capturing types of devices such as

video cameras and/or 3D scanners to improve the resolution

and details of captured facial geometry. Marker-based mo-

tion capture, however, is not practical for random users tar-

geted by this paper as they are expensive and cumbersome

for 3D facial performance capture.

Marker-less motion capture provides an appealing al-

ternative to facial performance capture because it is non-

intrusive and does not impede the subject’s ability to per-

form facial expressions. One solution to marker-less fa-

cial capture is the use of depth and/or color data obtained

from structured light systems [22, 13, 12, 21]. For exam-

ple, Zhang and his colleagues [22] captured 3D facial ge-

ometry and texture over time and built the correspondences

across all the facial geometries by deforming a generic face

template to fit the acquired depth data using optical flow

computed from image sequences. Recently, Li and his col-

leagues [12] captured dynamic depth maps with their real-

time structured light system and fit a smooth template to the

captured depth maps.

The minimal requirement of a single camera for facial

performance capture is particularly appealing, as it offers

the lowest cost and a simplified setup. However, previ-

ous single RGB camera systems for facial capture [7, 6, 14]

are often vulnerable to ambiguity caused by a lack of dis-

tinctive features on face and uncontrolled lighting environ-

ments. One way to address the issue is to use 3D prior

models to reduce the ambiguity of image-based facial de-

formations (e.g., [3, 19]). More recent research [5, 4, 20]

has been focused on modeling 3D facial deformation using

a single RGBD camera such as Microsoft Kinect or time-of-
flight (TOF) cameras. For example, Cai and colleagues [5]

explored how to use a linear deformable model constructed

by an artist and Iterative Closest Points (ICP) techniques to

fit deformable model from depth data. Breidt et al. [4] con-

structed 3D identity and expression morphable models from

a large corpus of prerecorded 3D facial scans and used them

to fit depth data obtained from a ToF camera via similar ICP

techniques.

Among all the systems, our work is most closely related

to Weise et al. [20], which uses RGBD image data captured

by a single Kinect and a template, along with a set of prede-

fined blend shape models, to track facial deformations over

time. Our system shares a similar perspective as theirs be-

cause both are targeting low-cost and portable facial capture

accessible to random users. Our goal, however, is differ-

ent from theirs in that we focus on authentic reconstruc-

tion of 3D facial performances rather than performance-

based facial retargeting and animation. Our method for fa-

cial capture is also significantly different from theirs. Their

approach utilizes a set of predefined blend shape models

and closest points measurement to sequentially track facial

performances in a Maximum A Posteriori (MAP) frame-

work. In contrast, our approach focuses on single frame

facial reconstruction and combines image-based registra-

tion techniques with automatic facial detection in the Lucas-

Kanade registration framework. Another difference is that

we model deformation using embedded deformation rather

than blendshape representation and therefore do not require

any predefined blendshape models, which significantly re-

duces overhead costs for 3D facial capture. Lastly, as shown

in our comparison experiment, our system achieves much

more accurate results than Weise et al. [20].
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(a) (b) (c) (d)

Figure 2. Accurate and robust facial performance capture using a single Kinect: (a) the input depth image; (b) the input color image; (c) the

detected facial features superimposed on the color image; (d) the reconstructed 3D facial model using both the depth image and detected

facial features.

3. Overview

Our system acquires high-quality 3D facial models from

single RGBD images recorded by a single Kinect. A Kinect
can simultaneously capture depth maps with a resolution of

320× 240 and color images with a resolution of 640× 480
at 30 frames per second based on infrared projection. Our

facial modeling process leverages automatic facial feature

detection and image-based nonrigid registration for 3D fa-

cial expression modeling (Figure 2).

We start the process by automatically locating important

facial features such as the nose tip and the mouth corners in

single RGBD images (Figure 2(c)). Briefly, we formulate

feature detection as a per-pixel classification problem and

apply randomized trees to associate each pixel with proba-

bility scores of being a particular feature. The detected fea-

tures are often noisy and frequently corrupted by outliers

due to classification errors. To handle this challenge, we

employ geometric hashing to robustly search closest exam-

ples in a training set of labeled images, where all the key fa-

cial features are labeled, and remove misclassified features

inconsistent with the closest example. In the final step, we

refine feature locations by utilizing active appearance mod-

els (AAM) and 2D facial priors embedded in K closest ex-

amples of the detected features. For more details of our

feature detection process, please refer to [15].

We model 3D facial deformation using embedded defor-

mation [16] and this allows us to constrain the solution to be

in a reduced subspace. We introduce a model-based depth

flow algorithm to incrementally deform the face template to

best match observed depth data as well as detected facial

features. We formulate the problem in the Lucas-Kanade

image registration framework and incrementally estimates

both rigid transformations (ρ) and nonrigid deformation (g)

via linear system solvers. In addition, we introduce extra

terms into the registration framework to further improve the

robustness and accuracy of our system.

4. Image-based Nonrigid Facial Registration
This section focuses on automatic 3D facial modeling us-

ing single RGBD images, which is achieved by deforming

a template mesh model, s0, to best match observed image

data. In our implementation, we obtain the template mesh

model s0 by scanning facial geometry of the subject under

a neutral expression.

4.1. Facial Configuration Space

We model nonrigid deformation g using embedded de-

formation representation developed by Sumner et al. [16].

Embedded deformation builds a space deformation repre-

sented by a collection of affine transformations organized

in a graph structure. One affine transformation is associated

with each node and induces a deformation on the nearby

space. The influence of nearby nodes is blended by the em-

bedded deformation algorithm in order to deform the ver-

tices or the graph nodes themselves. We choose embedded

deformation because it allows us to model the deformation

in a reduced subspace, thereby significantly reducing the

ambiguity for 3D facial modeling.

In embedded deformation, the affine transformation for

an individual node is defined by a 3-by-3 matrix Aj and

a 3-by-1 translation vector tj . In this way, the collec-

tion of all per-node affine transformations, denoted as g =
{Aj , tj}j=1,...,M , where M is the total number of the nodes,

expresses a non-rigid deformation of the template mesh

model in a reduced deformation space. Specifically, the de-

formed position ṽi of each shape vertex vi is a weighted

sum of its positions after application of the affine transfor-

mations associated with the k closest nodes to the vertex:

ṽi =
k∑

j=1

wj(vi)[Aj(vi − nj) + nj + tj ] (1)

where {Aj , tj}j=1,...,k are the affine transformations asso-

ciated with the k closest nodes of the vertex vi and nj is the

node position for the j-th node on the template mesh. The

weights wj(vi), j = 1, ..., k, are spatially varying and thus
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depend on the vertex position. The weights for each vertex

are precomputed in a way similar to [16]. In our experiment,

graph nodes are chosen by uniformly sampling vertices of

the template mesh model in the frontal facial region. We

have found M = 250 graph nodes are often sufficient to

model facial details captured by a Kinect. We also experi-

mentally set k to 4.

We represent rigid transformations of the face using a

6-by-1 vector ρ, which stacks the translation and rotation

vectors. The state of our facial modeling process can thus

be defined by q = [ρ, g]. We denote the deformed mesh

model as s = s0 ⊕ q, where the operator ⊕ represents the

application of both rigid transformations and embedded de-

formations to the template mesh s0.

Let p̄ = [x̄, ȳ, z̄] be the barycentric coordinates of a

point on the surface of the template mesh s0. The global

coordinates of the corresponding point on the surface of

the deforming mesh s are defined by a forward kinematics

function h for mesh deformation: p = h(q; p̄, s0), which

computes the global position (p) of a surface point from the

model state (q) given the local coordinates (p0) of a sur-

face point on the template mesh (s0). We model the rela-

tionship between the global coordinates of a surface point

and its corresponding pixel on image plane using a pro-

jection transformation function obtained from Kinect SDK:

x = f(p), where x = [u, v] represents the 2D coordinates of

the corresponding pixel in depth image.

4.2. Objective Function

We adopt an “analysis-by-synthesis” strategy to mea-

sure how well the transformed and deformed face template

model fits observed RGBD image data. Our image-based

nonrigid facial registration process aims to minimize the

following objective function:

min
q

Edata + α1Erot + α2Ereg (2)

where the first term is the data fitting term, which measures

how well the deformed template model matches the ob-

served RGBD data. The second term Erot ensures that lo-

cal graph nodes deform as rigidly as possible (i.e., AT
j Aj =

I3×3). The third term Ereg serves as a regularizer for the

deformation by indicating that the affine transformations of

adjacent graph nodes should agree with one another. The

weights α1 and α2 control the importance of the second

and third terms. In our experiment, we set the weights α1

and α2 to 1.0 and 0.5, respectively. Here we focus our dis-

cussion on the first term. For details about the second and

third term, please refer to the original work of embedded

deformation [16].

We define the data fitting term as a weighted combina-

tion of three terms:

αdepthEdepth + αfeatureEfeature + αboundaryEboundary

(3)

where the first term Edepth is the depth image term which

minimizes the difference between the “observed” and the

“hypothesized” depth data. The second term Efeature is

the facial feature term which ensures the “hypothesized”

facial features are consistent with the “detected” facial fea-

tures in observed data. The third term is the boundary term

which stabilizes the registration process by penalizing the

misalignments of boundary points between the “hypothe-

sized” and “observed” face models. In our experiment, we

set the weights αfeature, αdepth, and αboundary to 0.001,

0.1 and 5, respectively.

This requires minimizing a sum of squared nonlinear

function values. Our idea is to extend the Lucas-Kanade

algorithm [1] to solve the above non-linear least squares

problem. Lucas-Kanade algorithm, which is a Gauss-

Newton gradient descent non-linear optimization algorithm,

assumes that a current estimate of q is known and then it-

eratively solves for increments to the parameters δq using

linear system solvers.

4.2.1 Depth Image Term

This section introduces a novel model-based depth flow al-

gorithm for incrementally estimating rigid transformation

(ρ) and nonrigid transformation (g) of the template mesh

(s0) to best match the observed depth image D. Assume

the movement (δp) between the two frames to be small, the

depth image constraint at D(x, t) is defined as follows:

D(x(p), t) + δz = D(x(p + δp), t+ 1). (4)

Intuitively, when a 3D surface point (p) has a delta move-

ment (δp) in 3D space, its projected pixel x(p) on image

plane will have the corresponding movement δx = (δu, δv).
However, unlike color image registration via optical flow,

the depth value of a pixel is not constant. Instead, it will

produce a corresponding small change δz along the depth

axis. This is due to reparameterization of 3D point p on 2D

image space.

Similar to the optical flow formulation, we derive the

depth flow formulation by approximating the right side of

Equation (4) with a Taylor series expansion. We have

(
∂D

∂x
∂x
∂p
− ∂z

∂p
)δp +

∂D

∂t
= 0, (5)

where partial derivatives ∂D/∂x are gradients of the depth

image at pixel x. The derivatives ∂x/∂p can be evaluated by

the projection function x = f(p). The temporal derivative

∂D/∂t simply measures the pixel difference of two consec-

utive depth images. The partial derivatives ∂z
∂p is simply a

row vector [0, 0, 1].
We adopt an “analysis-by-synthesis” strategy to incre-

mentally register the deforming template mesh with the ob-

served depth image via depth flow. More specifically, we
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render a depth image based on the current model state (q)

and then estimate an optimal update of the model state (δq)

by minimizing the inconsistency between the “observed”

and “rendered” depth images. To register the deforming

template face with the observed depth image via depth flow,

we associate the delta movement of a point (δp) with the

delta change of the model state (δq):

δp =
∂h(q; p0, s0)

∂q
δq, (6)

where the vector-valued function h is the forward kinemat-

ics function for mesh deformation [17].

After combing Equation (5) with Equation (6) using

chain rules, we have

(
∂D

∂x
∂x
∂p
− ∂z

∂p
)
∂h
∂q

δq +
∂D

∂t
= 0. (7)

The above equation shows how to optimally update the

model state (δq) based on spatial and temporal derivatives

of the “rendered” depth image D(u, v). In the model-based

depth flow formulation, we evaluate the spatial derivatives

based on the gradients of the “rendered” depth image. The

temporal derivatives ∂D
∂t are evaluated by the difference be-

tween the “observed” and “rendered” depth images. An op-

timal update of the model state can be achieved by summing

over the contributions of individual depth pixels associated

with the template face.

A remaining issue for the depth image term evaluation

is to determine which pixels in the “rendered” depth image

should be included for evaluation. We stabilize the model-

based depth flow estimation process by excluding the pixels

outside the border of outer boundary of the face. Corre-

sponding vertices on the template mesh are automatically

marked by back projecting the border pixels of the rendered

depth image. Similarly, we remove the pixels that are in-

side the border of inner boundary of the face, in particular

the mouth and eyes. The inner boundary of the face is de-

fined by the close regions of the detected facial features of

the mouth and eyes.

4.2.2 Facial Feature Term

Depth data alone is often not sufficient to model accurate

facial deformation because it does not take into account

perceptually significant facial features such as the nose tip

and the mouth corners, thereby resulting in misalignments

in those perceptually important facial regions. We address

the challenge by including the facial feature term into the

objective function. In our implementation, we choose to

define the facial feature term based on a combination of 2D

and 3D facial points obtained from detection process.

In preprocessing step, we annotate the locations of fa-

cial features on the template mesh model by identifying the

barycentric coordinates (p̄i) of facial features on the tem-

plate mesh. The facial feature term minimizes the inconsis-

tency between the “hypothesized” and “observed” features

in either 2D or 3D space:

∑

i

ωi‖f(h(q; p̄i, s0))−xi‖2+(1−ωi)‖h(q; p̄i, s0)−pi‖2

where the vector xi and pi are 2D and 3D coordinates of

the i-th detected facial features. The weight ωi is a binary

value, which returns “1” if depth information is missing,

otherwise “0”. Note that only facial features around impor-

tant regions, including the mouth and nose, eyes, and eye-

brows, are included for facial feature term evaluation. This

is because facial features located on outer contour are often

not very stable.

4.2.3 Boundary Term

Depth data from a Kinect is often very noisy and fre-

quently contains missing data along the face boundary. This

inevitably results in noisy geometry reconstruction around

the face boundary. We introduce the boundary term to sta-

bilize the registration along the boundary.

To handle noisy depth data around the outer boundary of

the face, we first estimate the rigid-body transformation ρ
that aligns the template mesh with observed data (see Sec-

tion 4.3). During nonrigid registration process, we stabilize

the outer boundary of the deforming face by penalizing the

deviation from the transformed template s0⊕ρ. Vertices on

the outer boundary of the template/deforming mesh are au-

tomatically marked by back projecting outer boundary pix-

els of the “rendered” depth image. We define the boundary
term in 3D position space by minimizing the sum of the

squares of the distances between the boundary vertices of

the deforming mesh (s0 ⊕ ρ ⊕ g) and their target 3D posi-

tions obtained from the transformed mesh (s0 ⊕ ρ).

4.3. Registration Optimization

Our 3D facial modeling requires minimizing a sum of

squared nonlinear function values defined in Equation (2).

Our idea is to extend the Lucas-Kanade framework [1] to

solve the non-linear least squares problem. Lucas-Kanade

algorithm assumes that a current estimate of q is known and

then iteratively solves for increments to the parameters δq
using linear system solvers. In our implementation, we start

with the template mesh and iteratively transform and de-

form the template mesh until the change of the state q is

smaller than a specified threshold.

We have observed that a direct estimation of rigid trans-

formations and embedded deformation is prone to local

minima and often produces poor results. We thus decouple

rigid transformations from nonrigid deformation and solve
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them in two sequential steps. In the first step, we drop off

the boundary term from the objective function defined in

Equation (3) and estimate the rigid transformation ρ using

iterative linear solvers. We stabilize the rigid alignment by

using a pre-segmented template that excludes the chin re-

gion from the registration as this part of the face typically

exhibits the strongest nonrigid deformations. In the second

step, we keep the computed rigid transformation constant

and iteratively estimate embedded deformation g based on

the objective function defined in Equation (2).

This requires minimizing a sum of squared nonlinear

function values. Our idea is to extend the Lucas-Kanade al-

gorithm [1] to solve the above non-linear least squares prob-

lem using iterative linear system solvers. In our implemen-

tation, we analytically evaluate the Jacobian terms of the

objective function. The fact that each step in the registration

algorithm can be executed in parallel allows implementing

a fast solver on modern graphics hardware.

5. Algorithm Evaluation
Our evaluation consists of two parts. The first part com-

pares our approach with alternative methods. The second

part validates the proposed approach by evaluating the im-

portance of each key component of our process. We have

evaluated the effectiveness of our algorithm based on both

synthetic and real data. Our results are best seen in the

accompanying video. We also show sample frames of the

evaluation results in our supplementary PDF file.

Evaluation on synthetic data. We evaluate our system

on synthetic RGBD image data generated by high-fidelity

3D facial data captured by Huang and colleagues [10]. The

whole testing sequence consists of 1388 frames. We first

synthesize a sequence of color and depth images based on

a RGBD camera (i.e., Kinect) setting similar to what occurs

in the real world. The resolutions of image and depth data,

therefore, are set to 640× 480 and 320× 240, respectively,

with 24-bit RGB color values and 13-bit integer depth val-

ues in millimeters. The face models are placed at a distance

to approximate real world capturing scenarios.

We test our algorithm as well as alternative methods

on synthetic RGBD images and obtain the quantitative er-

ror of the algorithm by comparing its reconstruction data

against ground truth data. In particular, we compute the av-

erage correspondence/reconstruction error between our re-

constructed models and the ground truth data across the en-

tire sequence. We evaluate the reconstruction error by mea-

suring the sum of distances between vertex position on the

reconstruction mesh and its corresponding position on the

ground truth mesh. Note that we know the correspondences

between the two meshes because the reconstruction meshes

are deformed from the first mesh of ground truth data.

Evaluation on real data. We further evaluate the per-

formance of our system on real data by comparing against

Our Method Nonrigid ICP

x (2D image plane) 0.64997 pixel 2.5890 pixel

y (2D image plane) 0.85933 pixel 4.0202 pixel

x (3D space) 1.2112 mm 4.7829 mm

y (3D space) 1.5817 mm 7.5349 mm

z (3D space) 2.1866 mm 4.8383 mm

Table 1. Quantitative evaluation of our algorithm and Nonrigid ICP

registration using ground truth data scaptured with a full marker

set in a twelve-camera Vicon system [18].

ground truth facial data acquired by an optical motion cap-

ture system [18]. We placed 62 retro-reflective markers (4
mm diameter hemispheres) on the subject’s face and set up a

twelve-camera Vicon motion capture system [18] to record

dynamic facial movements at 240 frames per second acqui-

sition rate. We synchronize a Kinect camera with the optical

motion capture system to record the corresponding RGBD

image data. The whole test sequence consists of 838 frames

corresponding a wide range of facial expressions. We test

our algorithm as well as alternative methods on recorded

RGBD image data. We use the 3D trajectories of 62 mark-

ers captured by Vicon as ground truth data to evaluate the

performance of the algorithm. The captured marker posi-

tions and observed RGBD image data are from different co-

ordinate systems and therefore we need to transform them

into the same coordinate system. To achieve this goal, we

use the video images from Kinect as a reference to manually

label marker positions in the Kinect coordinate system and

use them to estimate an optimal 4×4 transformation matrix

to transform markers from the motion capture coordinate

system to the Kinect coordinate system.

5.1. Comparisons Against Alternative Methods

We have evaluated the performance of our system by

comparing against alternative methods.

Comparison against Vicon system. In this experiment,

we quantitatively assess the quality of the captured motion

by comparing with ground truth motion data captured with

a full marker set in a twelve-camera Vicon system [18]. The

average reconstruction error, which is computed as average

3D marker position discrepancy between the reconstructed

facial models and the ground truth mocap data, was reported

in Table 1. The accompanying video also shows a side-by-

side comparison between our result and the result obtained

by Vicon. The computed quantitative errors provide us an

upper bound on the actual errors because of reconstruction

errors from the Vicon mocap system and imperfect align-

ments of the Vicon markers with the Kinect data. Note that

we attached the mocap markers on the subject’s face, which

makes the markers deviate from the actual surface of the

face.

Comparison against nonrigid ICP techniques. We
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Figure 3. Average correspondence/reconstruction errors across the

entire sequence for nonrigid ICP registration and our method

with/without temporal coherence. The evaluation is based on syn-

thetic RGBD image data from [10].

compare our method against non-rigid ICP method on

ground truth data obtained from the Vicon system. The

nonrigid ICP process is similar to [12]. Both our method

and nonrigid ICP are built on embedded deformation with

the same settings. The only difference is the way to define

the data term (i.e., Edata in Equation (2)). Nonrigid ICP

process estimates both rigid transformations and embedded

deformation with standard iterative closest point techniques

(ICP). In each iteration, the corresponding point of each ver-

tex on the deforming mesh is found by its closest point on

the observed depth data. The corresponding points of all the

vertices are then used to update the deforming mesh. Both

methods estimate a rigid transformation, followed by the

non-rigid deformation. The results shown in Table 1 as well

as the accompanying video show that our system produces

much better results than non-rigid ICP. This is because ICP

is often sensitive to initial values and prone to local mini-

mum, particularly involving tracking high-dimensional fa-

cial mesh model from noisy depth data.

In addition, we have compared our system against non-

rigid ICP registration on synthetic data generated by high-

quality facial performance data obtained by [10]. We com-

pare them in two different ways: single frame registra-

tion and sequential tracking. Sequential tracking incor-

porates temporal coherence into facial reconstruction pro-

cess. More specifically, we include a smoothness term into

the objective function to penalize the change of the recon-

structed meshes in two consecutive frames. In addition, we

utilize the result from previous frame to initialize the cur-

rent frame. As shown in Figure 3, our facial reconstruction

produces more accurate results over nonrigid ICP registra-

tion, with and without temporal coherence.

Comparison against Weise et al. [20]. We compare

our results against Weise et al. [20]. We downloaded their

tracking software “faceshift” [8]. We started their tracking

process by building a personal profile using their system.

Specifically, we instructed the user to sit in front of a Kinect
and recorded a small number of facial expressions to retar-

get a set of predefined blendshape models to the user [20].

With the retargeted blendshape models, we can use their

software to sequentially track the facial expression of the

user. The accompanying video clearly shows our system

produces much more accurate results than their system.

Comparison against Microsoft Kinect Facial
SDK [11]. We evaluate the performance of our sys-

tem by doing a side-by-side comparison against Microsoft

Kinect facial SDK. Kinect facial SDK tracks a number

of facial features (about 100 features) from RGBD image

data and combine the tracked facial features with a small

number of predefined blendshape models in the Candide3

model [5], including six AUs (Animation Units) and 11

SUs (Shape Units), to reconstruct facial deformation.

The accompanying video shows our system produces

much better results. This is because we model detailed

deformation of the whole face using both facial features

and per-pixel depth information.

5.2. Evaluation on 3D Facial Reconstruction Pro-
cess

We have evaluated the performance of our facial registra-

tion process by dropping off each term of the cost function

described in Equation 3. The evaluation is based on syn-

thetic RGBD image data.

The importance of facial feature term. We compared

results obtained by the facial registration process with or

without the facial feature term. The accompanying video

shows that tracking without the facial feature term often re-

sults in misalignments of perceptually important facial fea-

tures. More importantly, when the facial performances are

very different or far away from the template model, the op-

timization often gets stuck in local minima, thereby produc-

ing inaccurate results. With the facial feature term, the algo-

rithm can accurately reconstruct facial performances across

the entire sequence. Without the facial feature term, the

average correspondence/reconstruction error is increased

from 0.68 mm per vertex to 1.71 mm per vertex.

The importance of depth image term. Our evaluation

shows that incorporating the depth image term into the ob-

jective function can significantly improve the reconstruction

accuracy. This is because the facial feature term only con-

strains facial deformation at locations of a sparse set of fa-

cial features rather than detailed per-pixel constraints. With

the depth image term, the average error of our facial recon-

struction process is reduced from 5.46 mm per vertex to

0.68 mm per vertex.

The importance of boundary term. We evaluate the

importance of the boundary term on both synthetic data and

real data. The accompanying video shows that adding the

boundary term stabilizes the facial deformation along the
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border of face boundary, which is more obvious in the real

data.

5.3. Applications in Facial Performance Capture

We have tested our system on acquiring 3D facial per-

formances of four subjects. We used a Minolta VIVID 910

laser scanner to record high-resolution static facial geome-

try of an actor/actress as the template mesh. Our results are

best seen in the accompanying video. In our implementa-

tion, we utilize the temporal coherence to speed up the facial

tracking process. The algorithm usually converges quickly

as we initialize the solution using the result from the previ-

ous frames. The current system runs at an interactive frame

rate (2 frames per second) on a machine with Intel Core i7

3.40GHz CPU and GeForce GTX 580 graphics card.

6. Conclusion

We have presented an automatic algorithm for accurately

capture 3D facial performances using a single RGBD cam-

era. The key idea of our algorithm is to combine the power

of image-based 3D nonrigid registration and automatic fa-

cial feature detection for 3D facial registration. We demon-

strate the power of our approach by modeling a wide range

of 3D facial expressions using a single RGBD camera and

achieve state-of-the-art accuracy by comparing against al-

ternative methods.

Our system is appealing for 3D facial modeling and cap-

ture. It is flexible because it does not require strong 3D

facial priors commonly used in previous facial modeling

systems (e.g., [20]). It is robust and does not suffer from

error accumulation because it builds on single frame facial

registration framework. Last but not the least, our system

is accurate because facial feature detection provides loca-

tions for significant facial features to avoid misalignments

and our image-based nonrigid registration method achieves

down to sub-pixel accuracy.
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