
 

 
Abstract 

 
In this paper, we propose a novel low-rank appearance 

model for removing rain streaks. Different from previous 
work, our method needs neither rain pixel detection nor 
time-consuming dictionary learning stage. Instead, as rain 
streaks usually reveal similar and repeated patterns on 
imaging scene, we propose and generalize a low-rank 
model from matrix to tensor structure in order to capture 
the spatio-temporally correlated rain streaks. With the 
appearance model, we thus remove rain streaks from 
image/video (and also other high-order image structure) in 
a unified way. Our experimental results demonstrate 
competitive (or even better) visual quality and efficient 
run-time in comparison with state of the art. 

1. Introduction 
Dynamic weather, such as rain, snow, and haze, usually 

brings unpleasant visual artifacts in outdoor vision system 
and would deteriorate the performance of subsequent 
vision tasks. In comparison with other deweathering 
methods (e.g. dehazing), rain removal might be the most 
challenging one because raindrops usually lead to dense 
streaks with unpredictable behaviors (e.g., direction, 
rainfall intensity) over imaging plane. Since these dense 
streaks introduce additional gradients and would hinder the 
detection of reliable features, rain removal is indeed crucial 
and indispensible for in-depth image analysis. 

Garg et.al [1-4] first devoted to build the appearance 
model of rain streak and propose to detect rain pixels in 
video. As pointed out in [1], falling raindrops produce rain 
streaks with properties in both rain appearance and 
dynamic motion. The chromaticity [5] and shape [6] of rain 
streaks were also considered in other research. Recently, 
Barnum et.al [7] adopted frequency domain analysis to 
model rain and snow, and Bossu et.al [8] utilized histogram 
of orientation to detect rain or snow streaks. All of these 
methods [1-8] work on video inputs and rely on the correct 
detection of corrupted pixels. However, once the temporal 
information becomes unreliable (e.g., unstablized video) or 
unavailable (e.g., single frame), their performance and 
applicability would be severely degraded. 

Considering rain removal on one single frame, Kang 
et.al [9] proposed an image decomposition-based method to 
remove rain streaks without referring to temporal features. 
They first removed low-frequency content of raining 
images, and then self-learned two dictionaries followed by 
sparse coding to decompose one image patch into rain 
streak and high-frequency content. Such decomposition- 
based method shows good discriminability without using 
detection stage. However, the time-consuming dictionary 
learning may limit their practicality. Recently, a 
guided-image-filter (GIF) based method [10] was proposed 
for rain removal on one single color image. The authors 
utilized the color channel difference as guidance, which 
serves as non-rain prior, to conduct guided image filtering. 
Since the proposed non-rain prior only roughly captures the 
image content, removal of large raindrops would also 
over-smooth the edges and textures. Thus the results 
usually look unrealistic and of poor quality. 

Different from existing methods, in this paper, we 
propose a novel low-rank rain appearance model on 2-D 
images, and generalize our model to high-order image 
structure (e.g., color image, video). Therefore, the proposed 
model is not limited to any particular source input. Based 
on this model, we then propose to decompose the corrupted 
input into rain streak component, rain-free component, and  
imaging noise. Note that, our method needs no 
pre-processing (e.g., rain detection, subtraction of low 
frequency content) which may causes other side effects, 
and also needs no dictionary learning because the low-rank 
model inherently captures the subspace spanned by rain 
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Figure 1: An observation of similar patterns in a raining image.
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streak patterns. Inspired by [10], we also propose a 
GIF-based detail enhancement by reusing the estimated 
imaging noise. The experiments of image/video rain 
removal will show both the effectiveness and efficiency of 
our approach. 

1.1. Motivation and related work 
We use Fig. 1 to explain our motivation: a rainy scene 

usually contains similar patterns of rain streak in different 
local patches. With this observation, our goal is to model 
the patch dependency in an elegant way. In this paper, we 
assume this dependency is linear and propose to use 
low-rank model to characterize the appearance of rain 
streaks. Although the success of low-rank property has 
been shown in modeling the image background [11] and 
noise-free [12] patches, no investigation for rain streak 
pattern has been studied. One idea similar to ours is [13], 
where the authors rearranged non-overlapping patches into 
a matrix and proposed to minimize the matrix rank. Such 
low-rank model separated the texture part from cartoon part 
for image decomposition. In comparison with [13], we 
propose a more general, higher-order low-rank model (i.e., 
tensor object) with non-convex rank penalty. We will show 
that our generalization improves both the performance and 
applicability in image/video rain removal. 

1.2. Notations and tensor basics 
We summarize the notations used in this paper: lower 

case letters (ݔ, ,ݕ …) denote scalars, bold lower case letters 
,ܠ) ,ܡ …) denote vectors, bold upper case letters (܆, ,܇ …) are 
matrices, and calligraphic upper case letters (X, Y, …) are 
higher order tensors. ሺ܆ሻ, denotes the ሺ݅, ݆ሻ୲୦ element of ܆ , and is similarly defined in tensor. ߪሺ܆ሻ  is the ݎ୲୦ 
largest singular value of matrix ܆. ࣠ and ࣠ିଵ denote fast 
Fourier transform (FFT) operator and the inverse FFT, 
respectively. ܆ഥ is the complex conjugate of ܆. As to tensor 
operation, the mode-k unfolding of a tensor XאԹூభൈூమൈ…ൈூಿ 
is defined by a matrix ܆ሺሻאԹூೖൈ∏ ூೖᇲೖᇲಯೖ , and the mode-k 
folding indicates the inverse process. 

2. Appearance model of rain streaks 
We consider an image ۷ captured in a rainy scene as the 

addition of rain streaks ۷R over a rain-free image ۷S:  ۷ ൌ ۷R  ۷S ,                                 (1) 
In equation (1), the key to successful factorization is to 
effectively characterize the rain streaks ۷R . Instead of 
modeling the appearance of each raindrop, here we first 
give two observations on common rain streaks: 

i Rain streaks usually have similar directions in the 
same imaging environment. 

ii Raindrops, which fall at a nearly constant speed, 
reveal similar rain streaks for a period of time. 

The first observation indicates the similarity between rains 
streaks at different spatial locations, and the second implies 
the repeatability of rain streaks along time axis. Both 
observations suggest high spatio-temporal correlation 
between rain streaks in a rainy scene. To verify our 
observations, in Fig. 2, we measure and show the 
distributions of normalized correlation coefficients (NCC) 
between different patches on raining/rain-free images. The 
NCCs of rain-free image are close to zero and show that 
these patches are mostly uncorrelated. On the other hand, 
once the image is corrupted by rain streaks, their patch 
dependency would obviously increase because of those 
superposed rain streak patterns. This strong evidence 
verifies our observations in patch level. 

Therefore, we define a rain streak pattern as one local 
image patch and assume a bag of patches collected from 
image/video are linearly dependent. In this paper, we 
modify the patch map process [13] to capture the patch 
dependency. In [13], the authors divided an image ۷ א Թൈ  into ݉݊ ⁄ଶݎ  non-overlapping patches by the 
mapping P: Թൈ ՜ Թమൈሺ మ⁄ ሻ, and defined the inverse 
mapping  Pିଵ  by Թమൈሺ మ⁄ ሻ ՜ Թൈ . Different from 
[13], we further consider the patch structure across two 
non-overlapping patches and generalize this mapping to 
high order image structure: 

i P: Թൈ ՜ Թమൈ and ݇  ݉݊ ⁄ଶݎ . 
ii P: Թൈൈయൈڮൈಿ ՜ Թమൈൈయൈڮൈಿ 

Note that, our patch map function using overlapping 
patches may bring additive bias to the objective costs. 
However, we will show in the next section such bias could 
be neglected by proper normalization in our algorithm. 

Using the proposed patch map function, now we define 
the appearance model of rain streaks by  rankሺPሺ۷Rሻሻ ,                                   (2)  
if the input ۷ is a two-dimensional image; otherwise, we 
define the model in high-order image structure by rankሺPሺIRሻሻ .                                   (3)  

3. Image/video rain removal 
Using the low-rank rain appearance model defined in 

section 2, we propose a generalized rain removal method. 

Figure 2: The NCC distribution of raining/rain-free images.
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Very different from existing methods working on one 
specific source input (e.g., video [1-8], single frame [9], 
color image [10]), our proposed method is feasible to every 
source input. In section 3.1, we first describe how we 
estimate ۷R and ۷S in equation (1) when the input is a 2-D 
image. Then we extend our algorithm to high-order image 
structure in section 3.2. Finally, we propose a simple but 
effective rain removal method incorporating with an 
efficient detail enhancement in section 3.3. 

3.1. Rain streak estimation on 2-D images 
In section 2, we have proposed a low-rank model for the 

common appearance of rain streak pattern. To characterize 
the rain-free image ۷S, we use the isotropic total variation 
(TV) as the regularization term of ۷S: ԡ۷SԡTV ൌ ∑ ටሺ݃௫ כ ۷Sሻ,ଶ  ሺ݃௬ כ ۷Sሻ,ଶ,  ,        (4) 

where ݃௫ and ݃௬ are the gradient operators along ݔ and ݕ 
axes, respectively, and כ denotes the convolution operation.  
Note that, although TV has been used to generate 
piecewise-smooth “cartoon” layer [14] of images, it tends 
to characterize edge-aware structure regardless of 
small-scale features (e.g., texture). Therefore, we do not 
claim the TV term could completely restore natural images. 
Instead, the role of TV regularization is to discriminate 
most of natural image content from highly-patterned rain 
streaks and thus facilitate the ill-posed factorization in 
equation (1). 

By further considering the imaging noise ۷ െ ۷R െ ۷S, we 
formulate our rain streak estimation as ۷መR, ۷መS ൌ argmin ߙrank൫Pሺ۷Rሻ൯  ߚԡ۷SԡTV  ଵଶ ԡ۷ െ ۷R െ ۷SԡFଶ .        (5) 
Equation (5) is an NP-hard rank minimization problem 
because the matrix rank is difficult to approximate. To 
make it tractable, most existing methods [11-13] used the 
tightest convex envelope of matrix rank - Schatten 1-norm, 
also called nuclear norm, to replace the rank function. 
Equation (5) is accordingly modified as ۷መR, ۷መS ൌ argmin ߙ ∑ หߪ൫Pሺ۷Rሻ൯ห   ߚԡ۷SԡTV  ଵଶ ԡ۷ െ ۷R െ ۷SԡFଶ .        (6) 
Although [11-13] all suggested  ൌ 1  could guarantee 
global optimum for convex problems, a recent study in [15] 
pointed out that the non-convex penalty ( 0 ൏  ൏ 1 ) 
usually leads to superior performance by their generalized 
shrinkage operation. In our method, we suggest using the 
non-convex rank penalty. A thorough comparison will be 
given in experiment sections. 

Another difficulty in equation (6) mainly lies in the 
nonlinearity and non-differentiability of TV term. Thanks 
to the success of split Bregman iteration [16], we use a 
similar variable splitting technique and obtain ۷መR, ۷መS ൌ argmin ߙ ∑ หߪ൫Pሺ۷Rሻ൯ห   

ߚ  ቛሾ൫I൯ଵ,,, ൫I൯ଶ,,ሿTቛଶ,ଵ,  12 ԡ۷ െ ۷R െ ۷SԡFଶ   s. t. ൫I൯ଵ,, ൌ ሺ݃௫ כ ۷Sሻ, and  ሺIሻଶ,, ൌ ሺ݃௬ כ ۷Sሻ, .  (7) 
In equation (7), I א Թଶൈൈ  is an auxiliary variable for 
the gradient vector. Now every gradient vector could be 
pixel-wisely optimized by l21- norm [17]. 

To solve equation (7) efficiently, we adopt the inexact 
Augmented Lagrange Multiplier (IALM) method [18], 
whose convergence property has been well-studied in [19]. 
We first introduce the augmented Lagrange function Lଵ: Lଵ൫۷R, ۷S, I,Y,ߤ൯ ൌ  ߙ ∑ หߪ൫Pሺ۷Rሻ൯ห  ߚ ∑ ቛሾ൫I൯ଵ,,, ൫I൯ଶ,,ሿTቛଶ,ଵ, ଵଶ ԡ۷ െ ۷R െ ۷SԡFଶ  ,Yۃ I െ I୦ۄ  ఓଶ ฮI െ I୦ฮFଶ ,     (8) 
where I୦ א Թଶൈൈ  denotes the stack of ݃௫ כ ۷S  and ݃௬ כ ۷S  in order to simplify our notations. Following the 
update rule of IALM, we could obtain at least one global or 
local optimum of equation (7) by ۷R௧ାଵ ൌ argmin Lଵ൫۷R௧, ۷S௧, I௧,Y௧,ߤ௧൯ , ۷S௧ାଵ ൌ argmin Lଵ൫۷R௧ାଵ, ۷S௧, I௧,Y௧,ߤ௧൯ , 

I௧ାଵ ൌ argmin Lଵ൫۷R௧ାଵ, ۷S௧ାଵ, I௧,Y௧,ߤ௧൯ , 
Y௧ାଵ ൌ Y௧  ௧ሺI௧ାଵߤ െ I୦௧ାଵሻ , and ߤ௧ାଵ ൌ  ௧ ,                                   (9)ߤߩ

where ݐ is the iteration index and ߩ is a penalty parameter 
(>1). Below we detail how to update ۷R, ۷S, I, respectively. 
3.1.1 Optimization of  ࡵோ 

By ignoring those terms independent of ۷R, we obtain the 
sub-Lagrange function:  ߙ ∑ หߪ൫Pሺ۷Rሻ൯ห  ଵଶ ԡ۷R െ ሺ۷ െ ۷SሻԡFଶ .     (10) 
To make equation (10) tractable, we could rewrite the noise 
term ԡ۷R െ ሺ۷ െ ۷SሻԡFଶ  into ԡPሺ۷Rሻ െ Pሺ۷ െ ۷SሻԡFଶ . Recall 
that our proposed patch map function allows overlapping 
patches and hence there is a bias between the two objective 
costs. Therefore, we multiply a variable ߣ and obtain ߙ ∑ หߪ൫Pሺ۷Rሻ൯ห  ఒଶ ԡPሺ۷Rሻ െ Pሺ۷ െ ۷SሻԡFଶ ,   (11) 
where the normalization term ߣ is given by ԡ۷ԡFଶ ԡPሺ۷ሻԡFଶ⁄  
at first and updated by ฮ۷R௧ െ ሺ۷ െ ۷S௧ሻฮFଶ/ฮPሺ۷R௧ሻ െPሺ۷ െ ۷S௧ሻԡFଶ in the ሺݐ  1ሻ୲୦ iteration. 

Equation (11) is a typical low-rank matrix approximation 
which has a closed-form optimum. Using the generalized 
shrinkage operation [15], we have ۷መR ൌ Pିଵ൫܃ఈ ఒ⁄  T൯ ,                 (12)܄
where ܃܄T is the singular value decomposition (SVD) of 
matrix Pሺ۷ െ ۷Sሻ  and ఈ ఒ⁄  denotes the diagonal matrix 
with all shrunk singular values of Pሺ۷ െ ۷Sሻ, i.e.,  ߪො ൌ maxሺ|ݒ| െ ሺߙ ⁄ߣ ሻ|ݒ|ିଵ, 0ሻ ௩|௩|  ,   

and ݒ ൌ ൫Pሺ۷ߪ െ ۷Sሻ൯ .                 (13) 

3.1.2 Optimization of  ࡵௌ 
The sub-Lagrange function w.r.t ۷S is  
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ଵଶ ԡ۷S െ ሺ۷ െ ۷RሻԡFଶ   ఓଶ ቀԡ݃௫ כ ۷S െ ۷୶ԡFଶ  ฮ݃௬ כ ۷S െ ۷୷ฮFଶቁ ,       (14) 
where ሺ۷୶ሻ, ൌ ൫I  Y ⁄ߤ ൯ଵ,, , ൫۷୷൯, ൌ ൫I  Y ⁄ߤ ൯ଶ,, . 
According to Plancherel’s theorem [20], we derive the 
closed-form optimum by FFT: ۷መS ൌ ࣠ିଵሺ࣠ሺ۷ି۷Rሻାఓሺ࣠ሺೣሻതതതതതതതതത࣠לሺ۷౮ሻା࣠൫൯തതതതതതതതത࣠ל൫۷౯൯ሻଵାఓሺ࣠ሺೣሻതതതതതതതതത࣠לሺೣሻା࣠൫൯തതതതതതതതത࣠ל൫൯ሻ ሻ .   (15) 

Using FFT in equation (15), where all the operations are 
element-wise, we need not to solve a large linear system. 
3.1.3 Optimization of I 

Since every gradient vector could be pixel-wisely 
optimized, we update I by the shrinkage operation [17]. 
Let ߶ ൌ ฮሾሺI୦ െ Y/ߤሻଵ,,, ሺI୦ െ Y/ߤሻଶ,,ሿTฮ, we have ൫I൯,, ൌ థିఉ ఓ⁄థ ሺI୦ െ Y/ߤሻ,, , ݈ ൌ1, 2  
if ߶  ߚ ⁄ߤ ; otherwise, we have 

 ൫I൯,, ൌ 0 , ݈ ൌ1, 2 .                     (16) 
 

To demonstrate the effectiveness of our model, we give 
the estimated rain streaks of some 2-D raining images 
(released by [9]) in Fig. 3. The results show that our method 
accurately captures flexible rain streaks from heavy/light 
rains or with different directions. In addition, almost no 
image content is mistakenly estimated as rain streaks. 

3.2. Rain streaks estimation on high-order images 
We generalize equation (5) into high-order images by 

replacing rankሺPሺ۷Rሻሻ with rankሺPሺIRሻሻ. Considering the 
temporal coherency, we also modify ԡISԡTV by including 
the gradients along ݐ axis: ∑ ටሺ݃௫ כ ISሻభ,…,ಿଶ  ሺ݃௬ כ ISሻభ,…,ಿଶ  ሺ߱݃௧ כ ISሻభ,…,ಿଶభ,…,ಿ  ,  

(17) 
where ߱ is set as 0 for color images and is 1 for videos. 
Thanks to the success of tensor trace norm recently 
developed in [21], we propose to extend the Schatten 
p-norm from matrix to tensor in our model. In [21], the 
authors defined the trace norm of IאԹభൈమൈయൈڮൈಿ by 

ԡIԡכ ൌ ଵே ∑ ฮ۷ሺௗሻฮכேௗୀଵ ൌ ଵே ∑ ∑ หߪ൫۷ሺௗሻ൯หேௗୀଵ . Therefore, 
we accordingly propose to define the Schatten p-norm of I 
by ଵே ∑ ∑ หߪ൫۷ሺௗሻ൯หேௗୀଵ  and have 

IR, IS ൌ argmin ఈே ∑ ∑ หߪሺP൫۷Rሺௗሻ൯ሻหேௗୀଵ   ߚԡISԡTV  ଵଶ ԡI െ IR െ ISԡFଶ .        (18) 
To relax the interdependency of ܰ Schatten p-norm, we 

first rewrite equation (18) into 
IR, IS ൌ argmin ఈே ∑ ∑ หߪሺ܅ௗሻหேௗୀଵ   ߚԡISԡTV  ଵଶ ԡI െ IR െ ISԡFଶ     s. t.  ܅ௗ ൌ P൫۷Rሺௗሻ൯ .  (19) 

Similar to equation (7), we include an additional equality 
constraint ൫I൯ଷ,భ,…,ಿ ൌ ሺ߱݃௧ כ ISሻభ,…,ಿ , and use IALM 
to solve equation (19) by introducing Lଶ: Lଶ൫IR, IS, I,Y,܇ଵ,…,܇ே,ߤ൯ ൌ ఈே ∑ ∑ หߪሺ܅ௗሻหேௗୀଵ   ߚ ∑ ቛሾ൫I൯ଵ,భ,…,ಿ, ൫I൯ଶ,భ,…,ಿ, ൫I൯ଷ,భ,…,ಿሿTቛଶ,ଵభ,…,ಿ    ଵଶ ԡI െ IR െ ISԡFଶ  ,Yۃ I െ I୦ۄ  ఓଶ ฮI െ I୦ฮFଶ   ∑ ሺ܇ۃௗ, ௗ܅ െ P൫۷Rሺௗሻ൯ۄ  ఓଶ ฮ܅ௗ െ P൫۷Rሺௗሻ൯ฮFଶሻேௗୀଵ  . (20) 
Our algorithm is built on the one in section 3.1. To update 
IS and I, we replace the 2-D FFT operator in equation (15) 
by ܰ-D FFT and also accordingly modify ߶ in equation 
(16). The major difference lies in the estimation of IR . 
Below we detail how to update the prima variable IR and 
the auxiliary variables ܅ଵ, … ,  .ே܅
3.2.1 Optimization of  ࢃௗ 

The sub-Lagrange function w.r.t ܅ௗ is  ఈே ∑ ௗሻ|܅ሺߪ|  ఓଶ ฮ܅ௗ െ ሺP൫۷Rሺௗሻ൯ െ  ሻฮFଶ .  (21)ߤ/ୢ܇
By generalized shrinkage operation [15], we have ܅ௗ ൌ ఈ܃ ఓே⁄  T,                             (22)܄
where ܃܄T is the SVD of matrix P൫۷Rሺௗሻ൯ െ  .ߤ/ୢ܇
3.2.2 Optimization of Iோ 

The sub-Lagrange function w.r.t IR is ଵଶ ԡIR െ I  ISԡFଶ  ఓଶ ∑ ฮP൫۷Rሺௗሻ൯ െ ሺ܅ௗ  ሻฮFଶேௗୀଵߤ/ௗ܇ . 
(23) 

Similar to section 3.1.1, we introduce the normalization 
factor ߣ and obtain ଵଶ ԡIR െ I  ISԡFଶ  ఓଶఒ ∑ ฮ۷Rሺௗሻ െ Pିଵሺ܅ௗ  ሻฮFଶேௗୀଵߤ/ௗ܇ . 

(24) 
Let Zௗ be the mode-d folding of matrix Pିଵሺ܅ௗ   .ሻߤ/ௗ܇
The optimum is derived as 

IR ൌ ఒሺIିISሻାఓ ∑ Zಿసభఒାఓே  .                      (25) 
 

Note that, although our proposed model inherently 
characterize the appearance of rain streaks with various 
image dimensions, similar image patches along time axis 
(especially captured by a static camera) may also exhibit 
low-rank structure and severely degrades the performance. 

Figure 3: Some examples (released by [9]) of rain streak
estimation. The 1st row shows the original raining images and the
2nd row shows their rain streaks estimated by our method.
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To avoid IR capturing image content, after the patch map 
process, we conduct random patch permutation on each 
2-D image to alleviate the temporal consistency. 

3.3. Rain streaks removal 
When using the rain-free image ۷S as our rain removal 

result, we observe that the noise layer also contains little 
image content or details. To fully utilize such information, 
we conduct guided image filtering (GIF) [23] to enhance 
the image contrast. The basic idea of GIF is to generate an 
output image which is not only similar to the input image 
but also exhibits the structure of the guidance image. Since 
most rain streaks are characterized by ۷R(or IR) and leave 
little trace on the residual, we use the noise layer as the 
input and ۷ െ ۷R (or I െ IR) as our guidance. The filtered 
result, denoted by ۷D (or ID), then serves as the detail layer 
to improve the visual quality. Finally, we obtain the 
rain-removal result as ۷S  ߬۷D or IS  ߬ID. 

4. Experimental results 
We first detail our experimental settings. All images and 

video frames are resized into 256x256, and we empirically 
determine the patch size r as16 and the patch offset as 12 to 
balance the tradeoff between visual quality and efficiency. 
As to the parameters, we fix ߤ and ߩ as 0.1 and 1.1 in all 
cases, and adaptively determine ߙ  as the ݇௧  largest 
singular value of Pሺ۷ሻ, where ݇ ൌ 0.95ہ כ ܰۂ and ܰ is the 
number of nonzero singular values. Only one parameter ߚ 
needs to be fine-tuned. In general, smaller ߚ  leads to 
cleaner but fewer rain streaks. In our experiments, we test ߚ 
from 0.001 to 0.01 to get the most visually-pleasant result. 

4.1. Rain removal on monochromatic images 
We use four synthetic raining images (see Fig. 4) 

released by [9] to evaluate our method. Because the ground 
truth images are also available, we could compare our 
results with [9] under the same criterion VIF [24]. Due to 
the limited pages, we only show one example in Fig. 5 for 
subjective assessment and give all quantitative results in 
Table 1. Two cases of rank penalty (p=1, 0.5) in our method 
are first compared. We fine-tune ߚ  to guarantee the 
estimated ۷R  have similar average of magnitudes. From 
Fig.5 (a) and (e), the case of p=0.5 removes more rain 
streaks and achieves better visual quality. The reason can 

be explained by Fig. 6, where smaller p more significantly 
reduces the patch rank under similar average of magnitudes. 
Since smaller p means a better approximation of matrix 
rank, it is superior to capture the underlying rain streak 
patterns and is also less sensitive to image content. 

To compare with the high-frequency (HF) part estimated 
in [9] (see Fig. 5 (k)), we also follow the same procedure to 
subtract the low-frequency part (bilateral filtering results of 
raining image) from our two rain-removed images. From 
Fig. 5, our method with p=0.5 achieves very competitive 
result with [9] in terms of visual quality. When comparing 
the rain streaks and HF content, we observe that [9] could 
preserve small-scale features very well but tends to lose 
edge structure similar to rain streak pattern (see the red 
rectangles). The reason is because their method mainly 
relies on the discriminability of dictionary bases on 
individual patch. In contrast, our method could preserve 
global image structure which benefits from the TV term, 
and thus retain most HF content. Although our method may 
lose small-scale features, we could still use the proposed 
detail enhancement to compensate such information. 

Because of the superiority of using a smaller p, we fix 
p=0.5 in the other three images and also the following 
experiments. In Table 1, the proposed method outperforms 
[9] by VIF in all images. These results again verify our 
model in the ability of single-frame-based rain removal. 
 

TABLE 1. EVALUATION OF IMAGE RAIN REMOVAL BY VIF METRIC [24]. 
THE RESULTS OF [9] ARE REPORTED IN [9]. 

 Fig. 4(a) Fig. 4(b) Fig. 4(c) Fig. 4(d) 
[9] 0.5 0.53 0.36 0.56 

[9] (+ extended 
dictionary) 0.52 0.57 0.38 0.60 

Ours ߬ ൌ 0 0.5275 0.5909 0.4037 0.6290 ߬ ൌ 3 0.5204 0.5957 0.4148 0.6446 ߬ ൌ 5 0.5120 0.5950 0.4195 0.6518 

4.2. Rain removal on color images and videos 
We use three video sequences, including the “heavy rain” 

released by [2], the “mag” released by [3], and the “forrest” 
released by [7], to evaluate our method. As to the case of 
single color image, we pick one frame from “heavy rain” to 
conduct rain removal, and also implement the GIF-based 

(a)                      (b)                     (c)                      (d)
Figure 4: Four synthetic raining images.

Figure 6: The estimated rank of rain streak patterns using p=1 and 
p=0.5. 
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method [10] for comparison. We show the rain-removed 
results in Fig. 7 (b)-(c) and their estimated rain streaks in 
Fig. 7 (f)-(g). Although we have fine-tuned the GIF 
parameters, [10] still obtains over-smooth result with 
inaccurate rain streaks because their proposed guidance 
image only estimates rough image content. In contrast, our 
method removes rain streaks much accurately. 

As to the case of video rain removal, all of the results 
could be found in our supplementary files. Here we also 
show the same frame in the image-based case and its 
corresponding rain streaks in Fig. 7 for comparison. 
Because now we further suppress the temporal gradients by 
equation (17), the rain-free image (Fig. 7(d)) contains 
almost no rain streaks and achieves better visual quality in 
comparison with our image-based result (Fig. 7(c)). In 
addition, the estimated rain streaks (Fig. 7(h)) contain less 
content structure than the image-based one (Fig. 7(g)). We 
also show the detail-enhanced image in Fig. 7(e), and 
zoom-in their texture parts in Fig. 7(i)-(j). One could 
observe that the local contrast becomes clearer and more 
visually-pleasant due to the proposed detail enhancement. 

Fig. 8-9 show our rain-removed frames of the other two 

sequences in comparison with the results released by [3] 
and [7], respectively. Note that, [3] and [7] only work on 
video input and need a “rain detection” stage either in pixel 
or frequency domain. The two-stage rain removal usually 
leads to flickering artifacts if rain pixels are not completely 
detected (please refer to our video results for comparison). 
In contrast, our method tends to obtain spatio-temporally 
consistent results (see the zoomed-in areas in Fig. 8-9). One 
may notice that, in Fig. 9, although our method removes 
more accurate “rain streak”, some of the large raindrops 
still remain. However, this result is expected because our 
goal is to remove dense rain streaks instead of raindrops. 
Finally, as pointed out in [5], raindrops bring similar 
changes for three color channels at different pixels. We find 
that our rain streak layer is nearly monochromatic when 
conducting our method on the whole color image/video 
(see the video result “heavy rain”); i.e., our high-order 
model inherently characterizes this chromatic property. 

4.3. Discussion 
We implement our method in MATLAB on the PC 

Figure 5: Results of gray-level image rain removal (the 1st column) and their estimated rain streaks (the 2nd column), high frequency 
content (the 3rd column), and imaging noise (the 4th column). The images in (a)-(d) and (e)-(h) are obtained by our method using p=1 
and p=0.5, respectively. The results in (i)-(k) are obtained by [9]. (The noise term is not provided in [9]) 
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equipped with Intel Core i7-2600 processor and 4-GB 
memory. The run time of bilateral filtering and our rain 
removal on each image is about 1.05 and 3.2 seconds, while 
the report in [9] is about 1.5 and 8 to 22 seconds but they 
need more than one minute for dictionary learning. This 
result shows that our method is much more efficient than [9] 
in the single-frame-based rain removal and also achieves 
competitive or even better quality. One may notice, in Fig. 
7, the brick wall is also captured by our model because of 
its strongly-correlated pattern. This is indeed the limitation 
of our low-rank model. However, we could easily tackle 
this problem via a “rain dictionary” ۲; i.e., in equation (5), 
we replace rank൫Pሺ۷Rሻ൯  by rankሺ܈ሻ  and further include  Pሺ۷Rሻ ൌ  Fig. 10 shows an example, where we use a .܈۲
very simple method (rather than KSVD learning in [9]) to 
obtain ۲ : first subtracting the temporally mean-filtered 

result, and extracting HOG features from overlapped 
patches to conduct 2-means clustering. The larger cluster is 
then selected as our dictionary. This strategy is quite 
efficient and, as shown in Fig. 10 (c), indeed improves the 
estimated rain streak layer substantially. 

5. Conclusion 
In this paper, we propose a generalized model, which 

utilizes the nice properties of low-rank pattern, for common 
rain streak appearance. The proposed model characterizes 
the spatio-temporally correlated rain streaks, and thus could 
tackle both image and video rain removal. In comparison 
with existing methods, our major contribution is threefold: 
1) the proposed model is feasible to different source inputs 
without any pre-processing; 2) our method inherently 
characterizes the dictionary spanned by low-rank rain 
streak patterns without learning; and 3) different from 
pixel/patch-based methods, both global structure (image 
total variation) and local appearance (low-rank patch) are 
leveraged in our method. Finally, the experimental results 
demonstrate our superiority in both subjective/objective 
evaluation and time complexity. 
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(a)                                                     (b)                                                    (c)

(d)                 (f)    

(e)                  (g)    
Figure 8: (a) A selected frame from video “mag”; and the rain-removed results obtained by (b) [3]; and (c) our method. (d)-(e) and (f)-(g) 
show the enlarged red/green rectangles in (b)-(c), respectively. 

(d)                  (f)    

(e)                  (g)    (a)                                                     (b)                                                    (c)
Figure 9: (a) A selected frame from video “forrest”; and the rain-removed results obtained by (b) [7]; and (c) our method. (d)-(e) and 
(f)-(g) show the enlarged red/green rectangles in (b)-(c), respectively. 
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