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Abstract

In this paper we address the problem of robust and effi-
cient averaging of relative 3D rotations. Apart from having
an interesting geometric structure, robust rotation averag-
ing addresses the need for a good initialization for large-
scale optimization used in structure-from-motion pipelines.
Such pipelines often use unstructured image datasets har-
vested from the internet thereby requiring an initialization
method that is robust to outliers. Our approach works on
the Lie group structure of 3D rotations and solves the prob-
lem of large-scale robust rotation averaging in two ways.
Firstly, we use modern �1 optimizers to carry out robust av-
eraging of relative rotations that is efficient, scalable and
robust to outliers. In addition, we also develop a two-
step method that uses the �1 solution as an initialisation
for an iteratively reweighted least squares (IRLS) approach.
These methods achieve excellent results on large-scale, real
world datasets and significantly outperform existing meth-
ods, i.e. the state-of-the-art discrete-continuous optimiza-
tion method of [3] as well as the Weiszfeld method of [8].
We demonstrate the efficacy of our method on two large-
scale real world datasets and also provide the results of the
two aforementioned methods for comparison.

1. Introduction
In this paper we address the problem of robust averaging

of 3D relative rotations in the context of structure-from-

motion (henceforth SfM) estimation. The canonical

SfM solution of nonlinear bundle adjustment that min-

imizes reprojection error is statistically optimal [15].

Using efficient optimizers and heuristics, current SfM

pipelines such as the well-known PhotoTourism [13] and

its improvements have successfully solved increasingly

larger problems. Such pipelines need to robustly handle

outliers that may exist in unstructured image datasets

harvested from the internet. Given the high dimensional

optimization involved and the presence of outliers, suc-

cessful convergence critically depends on both a good

initial guess as well as the robustness of the optimization

methods used. This is often achieved by incremental bun-

dle adjustment that robustly grows the solution one image

at a time instead of carrying out a single batch optimization.

2. Motion Averaging Preliminaries
In contrast to bundle adjustment, an alternate approach

for global camera motion estimation is to average relative

motions. Motion averaging was introduced in [5] and fur-

ther developed in [6] to use the geometric structure of Lie

groups. While such a formulation is generic enough to ap-

ply to a variety of scenarios, in the context of SfM, motion

averaging leverages the observation that in a set of N im-

ages, there exist as many as NC2 = N(N−1)
2 pairs for which

the relative motions can be estimated. We can represent the

relationships between all the cameras by means of a graph

G = {V, E} known as the viewgraph where each vertex in

V represents a camera and an edge (i, j) ∈ E implies that

the motion between cameras i and j can be estimated.1 In

the following we represent 3D rotations by the 3 × 3 or-

thonormal matrix, R, i.e. RRT = I and |R| = +1. If

with respect to a global frame of reference we denote the

absolute 3D rotation of the k-th camera as Rk, then the rel-
ative rotation between cameras i and j, Rij , can be written

in terms of the global motions of cameras i and j, i.e.

Rij = RjRi
−1, ∀{i, j} ∈ E (1)

All 3 × 3 rotation matrices form a closed group known

as the Special Orthogonal group SO(3) which also has

the differentiable properties of a Riemannian manifold,

i.e., SO(3) is a Lie group which is the basis for an

efficient approach for averaging rotations. Informally

speaking, apart from the standard properties of a group,

being equipped with the smooth differentiable structure

of a Riemannian manifold endows a Lie group with the

1Typically, this would imply that we have a sufficient number of point

correspondences between cameras i and j to solve for their relative geom-

etry.
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additional properties that the product and inverse operations

are differentiable mappings [6]. The local neighborhood

of a point on a Lie group is topologically equivalent to

a vector space, i.e. the neighborhood can be adequately

described by the tangent-space at a point known as the

Lie algebra. An important property of Lie groups is the

existence of direct mappings between the Lie algebra and

the group and vice-versa. These mappings are the famil-

iar exponential and logarithm functions respectively. In

the case of 3D rotations, the Lie algebra is denoted as so(3).

If we denote ω = θn ∈ so(3) where θ is the angle

of rotation about a unit-norm axis n, then the exponen-

tial and logarithmic mappings between the Lie group and

the corresponding Lie algebra for 3D rotations are given

as R = e[ω]× ∈ SO(3) and [ω]× = log(R) ∈ so(3)
where [ω]× ∈ so(3) is the skew-symmetric form of ω.

The intrinsic bi-invariant distance on SO(3), d(R1,R2) =
1√
2
|| log(R1R2

−1)||F = 1√
2
|| log(R2R1

−1)||F , where

||.||F is the Frobenius norm. This leads to the Frechet mean

or the intrinsic average μ ∈ SO(3) of a set of rotations

{R1, · · · ,Rn} which is defined as

arg min
μ∈SO(3)

n∑
k=1

d2(Rk, μ) (2)

While there is no closed form solution, an iterative al-

gorithm for estimating this intrinsic average is available as

Algorithm A1 of [6]. Analogous to estimating the mean

rotation, we may use the intrinsic distance to fit global or

absolute rotations to a given set of relative rotation obser-

vations. If with respect to a given frame of reference, we

define the global rotations as Rglobal = {R1, · · · ,RN},
using Eqn. 1 we can define the global rotation estimate as

arg min
Rglobal

∑

(i,j)∈E
d2(Rij ,RjRi

−1) (3)

If we consider a single relationship Rij = RjRi
−1 rep-

resented by an edge (i, j) ∈ E , the first-order approximation

of the corresponding Lie algebraic relationship can be writ-

ten as ωij = ωj − ωi.
2 We further denote the angle repre-

sentations of all the rotations as ωglobal = [ω1, · · · ,ωN ]
T

.

Consequently, we can write

ωij = ωj − ωi =
[ · · · − I · · · I · · · ]︸ ︷︷ ︸

Aij

ωglobal (4)

where in Aij , I and −I are placed as 3× 3 blocks in the

appropriate locations of j and i respectively. While Eqn. 4

2The exact relationship is ωij = BCH(ωj ,−ωi) where BCH(., .)
is the Baker-Campbell-Hausdorff form [6]. However, the first-order ap-

proximation allows us to develop an efficient iterative algorithm.

represents the relationship obtained from a single relative

motion edge in E , we can collect all such relationships into

a single system of equations as

Aωglobal = ωrel (5)

where ωrel is the vector made by stacking all relative

rotation observations ωij and A is made by stacking the

corresponding matrices Aij . In other words, Eqn. 5 is

obtained by concatenating all the relationships given by

Eqn. 4 for each edge in E . This relationship suggests the

following algorithm to obtain a global rotation estimate and

is adapted from [6]. We may also incorporate appropriate

weights in Eqn. 5 to reflect the reliability of individual Rij

estimates.

Algorithm 1 Lie-Algebraic Relative Rotation Averaging

Input: {Rij1, · · · ,Rijk} (|E| relative rotations)

Output: Rglobal = {R1, · · · ,RN} (|V| absolute rotations)

Initialisation: Rglobal to an initial guess

while ||Δωrel|| < ε do
1. ΔRij = Rj

−1RijRi

2. Δωij = log(ΔRij)
3. Solve AΔωglobal = Δωrel

4. ∀k ∈ [1, N ],Rk = Rkexp(Δωk)
end while

In Algorithm 1, we have simplified the notation for

ease of comprehension, see [6] for further details. In this

method for averaging relative rotations, for all the edges in

E , the discrepancy between the observations Rij and the

current estimate for the relative rotation as implied by the

global estimate, i.e. RjRi
−1 is averaged in the Lie algebra.

Following this averaged estimate (step 3), the individual

rotations are updated by mapping the Lie algebraic update

back to the rotation group via the exponential mapping.

It may be further noted that following the averaging in

the Lie algebra, the exponential mapping used to update

individual rotations (step 4) ensures that at every point, the

estimates are on the rotation manifold, i.e. this algorithm

provides an intrinsic estimate for the global rotation

Rglobal. We also note that in practice the rotation for any

camera is fixed to I to remove the gauge freedom of Rglobal.

This method of averaging relative rotations can solve

for the global rotation of all cameras in an efficient manner,

see [6] for details. In the context of SfM, given camera

calibration information and a sufficient number of point

correspondences between images i and j, we can estimate

Rij either from the epipolar geometry or bundle adjustment

between the two images. Given rotations, solving for cam-

era translation and 3D structure is a linear problem. In [12],
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the authors use relative rotation estimates and information

from vanishing point matches to estimate Rglobal. In [11],

the authors use rotation averaging in a RANSAC frame-

work to robustly estimate the global rotations. [4] uses a

dual formulation on a quaterion representation for rotation

averaging while [9] provides a survey on rotation averaging.

2.1. Robust Averaging of Relative Rotations

In [6], step 3 of algorithm A2 is specifically solved

in a least squares sense by minimizing the �2 norm

||AΔωglobal −Δωrel||2, i.e. Δωglobal = A†Δωrel,

where A† is the pseudo-inverse of A. Although this method

can efficiently average relative motions, as is well known

least squares solutions are non-robust and can give highly

erroneous results in the presence of even a single outlier.

Such outliers commonly occur in many SfM contexts in-

cluding outdoor scenes with repeated structures such as

doors, windows and columns that are indistinguishable at a

local image level, or when we have multiple, independently

moving objects in a scene, say cars, pedestrians etc. The

problem can be mitigated to some extent by ensuring that

the individual relative rotation estimates Rij are robustly

estimated, e.g. by using RANSAC or other robust methods

for epipolar geometry estimation. However, in the case of

erroneous matches due to repeated structures it may not be

possible to disambiguate and recover from errors by observ-

ing two images at a time, leading to outlier estimates of Rij .

In other words, in many contexts the presence of outliers

cannot be fully avoided or it can be prohibitively expensive

to remove them. The computational burden can be espe-

cially heavy in the case when we need to deal with a very

large number of images. In effect, modern SfM systems

need a rotation averaging scheme that is efficient, scalable

and robust to outliers in the relative rotations.

2.2. Existing Methods

In recent years a few methods have been developed to

incorporate robustness into the averaging of relative rota-

tions and they can be classified into two approaches. Some

methods detect outliers in the set of relative rotations and

remove them before carrying out �2 norm averaging [7, 18].

In [7], the author uses a RANSAC-based approach for

detect and remove outliers. Subsequently, the inliers are

averaged using Algorithm 1. In [18], the authors utilize

the fact that a loop of transformations should result in the

identity transformation if there is no noise or outliers in the

loop. They collect statistics of the residual transformation

over many overlapping loops which are then used in a

loopy belief propagation framework to classify individual

edges into inliers and outliers. Both these approaches suffer

from the limitation of increased computational complexity

with the increased size of the viewgraph G. In additionally,

the belief propagation stage in [18] is expensive to compute.

The second category of methods robustly average rela-

tive rotations without the need to explicitly detect and re-

move outliers. Methods presented in [3, 8] and the approach

of this paper belong to this category. In [3], the authors use

a combination of discrete-continuous optimization (hence-

forth DISCO) to average relative rotations in a robust man-

ner. Using a robust distance measure between rotations,

dR(R1,R2) = ρR(||R1 − R2||), DISCO sets up an op-

timization cost function as

D(Rglobal) =
∑

(i,j)∈E
dR(Rij ,RjRi

−1) + prior terms

(6)

where the additional prior terms include information

from other sensor measurements that provide an approx-

imate estimate for individual rotations in Rglobal.
3 The

minimization of the cost in Eqn. 6 is carried out in two

stages in [3]. Ignoring the twist component of rotations, [3]

parametrizes rotations as a discrete set of labels on a unit

sphere. The resultant averaging problem in the discrete

labelling form is solved using discrete loopy belief prop-

agation on a Markov Random Field. The approximate

discrete solution is used as initialization for a non-linear

minimization of Eqn. 6 using Rodrigues parameters.

In [8] (henceforth Weiszfeld), the authors utilize the fact

that the �1 norm is more robust to outliers than the �2 norm

to robustly average relative rotations. Their minimizer is

the �1 analogue of Eqn. 3, i.e.
∑

(i,j)∈E d(RijRi,Rj).
While the Weiszfeld method can be used to robustly

average absolute rotations, it does not directly lend itself

to the averaging of relative rotations. To work around this

limitation, [8] updates individual rotations one-at-a-time

while holding all other rotation estimates fixed. If we

hold all rotations in Rglobal fixed except for Rj , then the

Weiszfeld optimization reduces to the �1 average of the

rotations Rj = {RijRi|∀i ∈ N (j)} where N (j) is the

set of vertices connected to vertex j. This is nothing but

the Weiszfeld-based median of Rj . Thus, in [8], Rglobal is

indirectly estimated using nested iteration where the inner

loop consists of updating Rj to the Weiszfeld median of

Rj and the outer loop is iterated till convergence. The

reader may refer to [8] for details.

Although the methods of DISCO [3] and Weiszfeld [8]

solve the problem of robust averaging of relative rotations,

they suffer from significant limitations. DISCO [3] can

handle large-scale averaging problems but at a significant

cost of implementational and computational complexity.

3Note that the form of the cost function given in Eqn. 6 is a modified

version of Eqn. 5 of [3] since their notation is different from ours.
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By ignoring the twist component of 3D rotations, the

authors limit the scope of applicability of their methods.

More crucially, disregarding the geometric structure of

SO(3) and treating averaging as a complicated discrete

labelling MRF problem makes DISCO an extremely expen-

sive problem requiring a significant amount of hardware.

In contrast, the Weiszfeld method of [8] elegantly utilises

the geometric structure of the SO(3) group for robust esti-

mation. Nevertheless, the overall algorithm of [8] suffers

from the significant drawback that it scales poorly with

increasing size of the problem. Since the Weiszfeld method

cannot update all rotations in Rglobal simultaneously, it is

forced to update the rotation of each camera (i.e. vertex in

V) one at a time. This is nothing but a distributed consensus

approach where vertex updates on a graph depend only on

the neighbours. For a discussion of distributed consensus

methods applied to computer vision problems, see [17, 16].

Consequently, in the Weiszfeld method, any change of

value at a given vertex takes a long time to propagate itself

over the entire viewgraph G. On the average, the number of

iterations taken to propagate the information of change will

depend on the diameter of the graph, dia(G). As we shall

demonstrate in Sec. 3, for datasets that are larger than those

considered in [8], the Weiszfeld method does poorly both

in accuracy and time.

2.3. �1 Rotation Averaging

Since neither DISCO [3] nor the Weiszfeld method [8]

satisfies both the requirements of a computationally effi-

cient and scalable robust averaging scheme, we propose an

alternate approach that can efficiently handle large-scale

problems. If we consider Eqn. 4, we recognise that if a

specific relative rotation is an outlier, then an �2 average in

the Lie algebra will result in wrong rotation estimates. The

remedy lies in robust Lie algebraic averaging so that at each

iteration the averaging step in the Lie algebra is robust. In

this case the overall estimate of Rglobal is unaffected by

the presence of individual outliers. By exploiting recent

advances in convex optimization for �1 cost functions, we

can achieve the twin goal of accuracy and scalability in the

presence of outliers.

As the Lie algebra is a vector space, our problem of ro-

bust averaging in the Lie algebra is analogous to robust es-

timation for a linear system of equations. Consider the clas-

sical linear algebra formulation of a system of equations,

Ax = b where x ∈ R
n and b ∈ R

m where m > n. If A is

full rank, the input signal x can be recovered given the ob-

servation vector b. However, the difficulty of the problem

changes when the observation is corrupted by an unknown

additive vector e that contains both noise and outlier errors,

i.e. we have b = Ax + e. Evidently our ability to recover

x depends on the nature of the corrupting vector e. Recent

work in compressive sensing [2] has shown that we can effi-

ciently and accurately estimate x in the presence of outliers

by solving

argmin
x
||Ax− b||�1 (7)

Eqn. 7 is an instance of �1 minimization that is known

to be more robust to outliers than �2 methods. An efficient

implementation that solves Eqn. 7 is publicly available in

the �1-magic package [1]. If we consider the presence of

outliers in the observed relative rotations in the Lie algebra

at any given iteration, we have Δωrel = AΔωglobal + e.

Our �1 robust rotation averaging method (denoted as

L1RA) can be stated as Algorithm 1 where step 3 is

solved as the minimizer of ||AΔωglobal −Δωrel||�1 using

Eqn. 7. Here Δωglobal ∈ R
3|V| and Δωrel ∈ R

3|E|

since each rotation angle is a 3-vector. Evidently in the

viewgraph G, the number of edges |E| is far larger than

the number of vertices |V|. It will also be noted that

each row of A has only two non-zero entries, specif-

ically {−1,+1} making A exceedingly sparse and our

solution efficient as multiplication by A results in additions.

2.4. IRLS Rotation Averaging

While the �1 optimization solution outlined above

provides an �1 rotation average estimate in the presence of

outliers, we can further improve this solution by treating

the problem of robust rotation averaging as one of robust

regression or M-estimator modifications of least squares

estimation. From Eqn. 3 recall that ideally we would like

to carry out an �2 averaging of relative rotations. Since

the observations of relative rotations are corrupted by the

presence of outliers, we take recourse to robust estimation

using the �1 norm instead of �2. However if the solution

obtained by �1 minimization is accurate enough, the fitting

error for individual relative rotations gives us a good

estimate of the reliability of the input Rij . We utilise this

information to iteratively solve for a robust weighted least

squares averaging of the relative rotations.

Algorithm 2 Iteratively Reweighted Least Squares (IRLS)

Set x to initial guess

while ||x− xprev|| < ε do
1. xprev ← x
2. e← Ax− b
3. Φ← Φ(e)

4. x← (ATΦA)
−1

AΦb
end while

Consider the system of equations Ax = b that we wish

to minimize in a robust �2 sense. Instead of using the stan-
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dard least squares cost function eT e where e = Ax − b,

we choose to minimize a robust version of the cost function,

i.e.

E =
∑
i

ρ(||ei||) (8)

where ei is the i-th element of the error vector e and ρ(.) is a

robust loss function, see Section 6.1.4 of [14]. For this paper

we choose the Huber-like loss function of ρ(x) = x2

x2+σ2 ,

where σ is a tuning parameter that determines the transition

from quadratic to fixed loss for increasing magnitude of x.

To solve for x that minimizes the robust cost of Eqn. 8, we

observe that

min
x

E = min
x

∑
i

ρ(||ei||) = min
x

∑
i

e2i
e2i + σ2

(9)

⇒ ∂E

∂x
=

∂E

∂e

∂e

∂x
= 0

⇒ ATΦ(e)Ax = ATΦ(e)b

where Φ(e) is a diagonal matrix with Φ(i, i) = σ2

(e2
i+σ2)2

.

In the derivation shown in Eqn. 9, we have omitted the

expressions for the individual terms ∂E
∂e and ∂e

∂x for brevity

of presentation. The system of equations in Eqn. 9 is a

non-linear problem due to the dependency of Φ(e) on x
through e. However, such problems are often solved by

an iterative approach. If we hold x fixed, we can compute

e = Ax− b and in turn fix Φ, i.e. we can treat Φ as being

independent of e. Now, the minimization of E becomes

one of solving minx (Ax− b)
T
Φ(Ax − b) for which

the optimal estimate x is (ATΦA)
−1

AΦb. Given this

estimate of x we can in turn re-estimate Φ. Thus, we

can alternate between estimating for Φ (for fixed x) and

estimating x (for fixed Φ) till convergence. This method

is known in the literature as Iteratively Reweighted Least
Squares (IRLS) [10] and can be stated as Algorithm 2. We

note that the IRLS method can be used to robustly solve for

the Lie-algebraic update in Step 3 of Algorithm 1. While it

provides a good solution, the IRLS method of Algorithm 2

is a greedy algorithm and needs a good initial guess for x.

Without a good initial guess, the intermediate weighting

of Φ will not be informative and the algorithm may not

converge to a good final estimate. Since our L1RA method

is efficient and provides a good estimate of Rglobal we use

its output as the initial guess for robust rotation averaging

using the IRLS estimator. We can now state our complete

robust rotation averaging algorithm (denoted as L1-IRLS)

in terms of the steps in Algorithm 1 as Algorithm 3.

We have denoted our complete algorithm as L1-IRLS
to emphasise that both components are crucial for the esti-

mation process. While the L1RA method is necessary to

provide a good initial guess as it provides an efficient so-

lution for robust estimation, the IRLS step is necessary to

Algorithm 3 Robust Rotation Averaging (L1-IRLS)

L1RA step:

• Initialise Rglobal to initial guess

• Run Algorithm 1 by solving step 3 using Eqn. 7.

IRLS step:

• Set Rglobal to output of L1RA method.

• Run Algorithm 1 by solving step 3 using Algorithm 2.

appropriately weight the information from individual Rij

estimates to give an efficient and accurate solution.

3. Results

In this Section we compare the results of both our

methods (L1RA and L1-IRLS) with DISCO [3] and the

Weiszfeld method of [8] on two real world datasets of

different sizes, i.e. Notre Dame and Quad. The Notre Dame

dataset is available as raw images4 and for the Quad dataset,

relative rotations Rij have been provided by the authors

of [3]5. In both cases, the results of bundle adjustment are

provided with the datasets and serve as ground truth for all

experiments in this Section. For the Notre Dame dataset,

we estimate relative rotations by running two-frame bundle

adjustment on image pairs using the bundler [13]

software. In Table 1, we have also indicated the number

of cameras (V) and number of relative rotations Rij (E)

for both datasets. These numbers correspond to the largest

connected component G in the original viewgraph.

For all trials both our L1RA method and the Weiszfeld

method of [8] are initialized by the same solution obtained

using a randomly selected spanning tree. For the results in

Table 1, both these methods terminate when the maximum

change of rotations in Rglobal between iterations is less

than a threshold of ε = 10−3. However, in the combined

method of L1-IRLS, for obtaining an initialisation for the

IRLS step, we need not use this termination criterion in the

L1RA step. Instead, running the L1RA method for 5 itera-

tions is sufficient to bring the estimate of Rglobal within the

basin of convergence of the IRLS step. Consequently, since

the IRLS iterations are much faster than those of L1RA,

the combined L1-IRLS method is both very fast and highly

accurate.

While we have implemented our proposed methods and

the Weiszfeld method of [8], the results reported for DISCO

4http://phototour.cs.washington.edu/datasets
5http://vision.soic.indiana.edu/disco
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# Cameras # Relative Median Rotation Error Computational Time
Rotations in degrees in seconds

|V| |E|
DISCO Weiszfeld Our Methods DISCO Weiszfeld Our Methods

[3] [8] L1RA L1-IRLS from [3] [8] L1RA L1-IRLS
NOTRE DAME

715 64678 NA 0.50 0.76 0.54 NA 40 6.14 10
QUAD

5530 222044 5.02 6.95 4.16 1.97 2983 5707 569 232
(49m 43s) (1h 35m 12s) (8m 43s) (3m 52s)

1271 iters 24 iters

Table 1. Comparison of our methods with DISCO [3] and Weiszfeld [8] methods. The columns denoted as L1-IRLS implies the results

for the combined method of using L1RA followed by IRLS. Our methods of L1RA and L1-IRLS significantly outperform both these

methods on both accuracy and computational time. Note that the median error and computational time for DISCO are reproduced from [3]

and datasets provided by the authors and that their results were obtained on a computer that is substantially more powerful than ours. [3]

does not report results on the Notre Dame dataset (indicated as ‘NA’ or ‘Not Available’). For the Quad dataset, the time is also indicated in

hms format along with the number of iterations taken to achieve convergence.

are taken from the datasets provided. Since [3] does not

report results on the Notre Dame dataset, the corresponding

entries in Table 1 for DISCO are marked as ‘not available’

(NA). For the Quad dataset, for the results of DISCO [3]

we use the aforementioned online dataset provided by

the authors. Please note that this dataset is marginally

different from the one used in [3] and consequently the

corresponding error given in Table 1 differs from that

reported in [3]. However, since the online dataset does

not provide timing information, for computational time in

Table 1 we report the time provided in [3]. We believe this

to be reasonable as the difference between the two datasets

is marginal.

Speed and Accuracy: In [8], the authors argue that

their method “gives excellent results on large data sets”.

The only dataset considered in [8] is the Notre Dame

dataset and as evident from Table 1, for this dataset the

Weiszfeld method does marginally better than our methods

although both of our methods are much faster. However,

the true difference in performance becomes evident only

when we consider datasets significantly larger than the

Notre Dame dataset used in [8]. The Quad dataset has

5530 cameras, i.e. almost an order of magnitude larger

in size than the Notre Dame dataset. Unlike the similar

performance for the smaller datasets, for the Quad dataset,

from Table 1 it will be immediately observed that both

of our methods, i.e. L1RA and the combined method of

L1-IRLS significantly outperform the discrete-continuous

optimization of DISCO [3] as well as the Weiszfeld method

of [8]. For the Quad dataset, the Weiszfeld method does

poorly and has a high median error of 6.95◦ whereas the

DISCO is somewhat better with a median error of 5.02◦.
In contrast, the median error for our L1RA step is 4.16◦

which is a significant improvement over both DISCO and

the Weiszfeld method. This difference is also evident in the

computational times involved. Our L1RA method provides

the significantly more accurate solution in less than 9
minutes whereas the Weiszfeld algorithm of [8] takes more

than 1.5 hours to provide a result with poor accuracy.

While, our L1RA method outperforms both DISCO and

the Weiszfeld method, we note that our combined L1-IRLS
algorithm is significantly superior both in terms of speed

and accuracy. For the larger Quad data set, our L1-IRLS
method has a very low median error of 1.97◦, which is

much more accurate than the current state-of-the-art results

of [3]. Apart from a higher error than ours, DISCO is

also computationally very expensive when compared with

our method. Since we use a combination of �1 iterations

followed by IRLS iterations, our combined method is

very fast and converges to the final estimate in about 4
minutes! Here the IRLS step converges in 25 iterations

in about 50% of the total time of 4 minutes. The remark-

able performance of our combined L1-IRLS method is

particularly evident when we note that our results were

obtained using a matlab implementation on a desktop

with a 2.67GHz processor, whereas the DISCO results

of [3] were obtained using a multi-threaded implementation

on a 16-core 3.0GHz machine. Even with this significant

difference in computational power, for the Quad dataset

our L1-IRLS averaging method is twice as accurate and

is an order of magnitude faster. On a true basis of com-

parison of computational time, this ratio will be even higher.

Error Distribution: Although we have used the median

error as our basis of comparison in Table 1, for a more

detailed analysis of relative performance we need to use

statistics instead of a single number. In Fig. 1 we present

further evidence to demonstrate the superior performance
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(a) Error Histograms

(b) Precision-Recall

(c) Convergence Rate

Figure 1. Comparison of our methods with DISCO [3] and

Weiszfeld method [8] on the Quad dataset. (a) shows the his-

tograms of errors of individual camera rotation estimates for dif-

ferent methods; (b) represents the fraction of errors below a given

level, i.e. precision-recall curves where the methods with higher

curves are better; (c) plots the median error vs. iterations for the

Weiszfeld method and our methods. The convergence points are

indicated with a circle. Note that the scale for the iterations (x-

axis) is logarithmic and the number of iterations does not reflect

the time taken for the different methods. Please view this figure in

colour.

of our method over both DISCO and the Weiszfeld method.

All plots in Fig. 1 pertain to the experiments reported in

Table 1 for our largest dataset, i.e. Quad. In Fig. 1(a) we

compare the statistical distribution of errors for all four

methods. The comparative performance in terms of median

error is better represented here as we can observe that the

Weiszfeld method of [8] does poorly with a widely spread

distribution of error values. It will also be noticed that apart

from a large spread of errors, the Weiszfeld method also has

two minor peaks in the distribution for very high rotation

errors. This clearly indicates that the Weiszfeld method is

Figure 2. Reconstruction of the Notre Dame dataset using our ro-

bust rotation average results.

inferior in comparison with both DISCO and our methods.

Compared to these two methods, we note that the error

distributions for both our methods are better, especially

so for L1-IRLS as its distribution is shifted leftward to

a significant degree, implying much lower errors on the

average. This fact is also well summarized in Fig. 1(b) that

is similar to a precision-recall curve. For each method,

for a given level of rotation error (θ), we plot the fraction

of estimated camera rotations that have an error less than

θ. As in precision-recall curves, the better method has

a higher curve implying that a larger number of rotation

estimates have better accuracy than a given error bound of

θ. As is evident from Fig. 1(b), both our methods are better

than DISCO and the Weiszfeld method. In particular, our

L1-IRLS method is significantly superior to these methods.

One measure that summarizes the performance of different

methods is the area under each curve which is normalized

to 1 for a perfect precision-recall curve, i.e. when there

are no errors. The normalized areas for Weiszfeld [8],

DISCO [3], our L1RA and L1-IRLS are 0.77, 0.86, 0.88

and 0.92 respectively.

Convergence Rate: In Fig. 1(c) we show the conver-

gence behavior of the Weiszfeld method of [8] and our

methods by plotting the median error as a function of the

iteration number. Note that the scale for the iterations is

logarithmic as the Weiszfeld method takes 1271 iterations

to converge while our methods converge in far fewer

iterations. In Fig. 1(c), the iterations at which all the

methods meet the termination criterion are indicated by

dots on the respective convergence curves. It should also
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be noted that we have plotted the error vs. iteration number

to characterise the behaviour of the individual methods in

a platform independent manner. In particular, it should

be noted that while the L1-IRLS takes more iterations

than our L1RA method, L1-IRLS is the faster of the two

methods. Evidently, as indicated by the steeper slope on

a logarithmic scale, both of our methods converge much

faster than the Weiszfeld method of [8] while achieving

much higher accuracy. The comparative behaviour of

the convergence curves is demonstrable evidence that the

Weiszfeld update is unsuitable for large graphs and we

should use a joint update of all rotations as is done by our

methods.

3D Reconstruction: Finally, as an illustration of the

correctness of our robust rotation averaging, we carry out a

full 3D reconstruction of the Notre Dame dataset using our

rotation estimate. When the rotation is fixed, estimating

the 3D structure as well as 3D camera translations can

be robustly solved using an SOCP optimization [11], i.e.

without any computationally expensive bundle adjustment.

The resulting reconstruction is shown in Fig. 2.

4. Discussion
We can now derive some conclusions from our experi-

ments. For large-scale datasets, even a small improvement

in rotation estimation has major implications for the

speed and accuracy of downstream processing in the SfM

pipeline. We also remark here that the inferior quality of

DISCO’s result is due to its converting a geometric problem

into a complicated discrete Bayesian inference problem.

On a different note, despite using the geometry of SO(3),
the Weiszfeld method of [8] suffers from the bottleneck of

carrying out individual updates to solve a global problem.

This makes the Weiszfeld method particularly slow and in-

accurate for large graphs. In contrast to both these methods,

our approach has two crucial attributes. We utilise both

the geometric structure of the SO(3) Lie group and also

carry out a joint update for all rotations simultaneously.

By exploiting recent advances in �1 optimization in the

L1RA approach, we are able to efficiently solve the relative

rotation averaging problem in the presence of outliers. In

addition to being efficient and accurate, our L1RA method

is very robust to the presence of outliers. The speed and

accuracy of our L1-IRLS is striking given its simplicity.

The lesson we draw here is that, given a good initialisation,

a weighted least squares approach can effectively solve the

problem of robust estimation. However, we do emphasise

that the remarkable accuracy of the L1-IRLS method

cannot be achieved without the powerful capability of the

�1 approaches to provide an accurate initial estimate with a

few iterations.

5. Conclusion
In summary, we have developed a robust method for

averaging relative rotations that outperforms the state-of-

the-art DISCO method of [3] as well as the Weiszfeld

method of [8]. Apart from joint estimation on the SO(3)
group, a judicious mix of �1 and IRLS steps can yield a

method that is efficient, accurate and scales well with the

problem size. We believe that the comparative performance

on larger datasets would be even more favorable for our

method.
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