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Abstract

Face verification involves determining whether a pair
of facial images belongs to the same or different subjects.
This problem can prove to be quite challenging in many im-
portant applications where labeled training data is scarce,
e.g., family album photo organization software. Herein we
propose a principled transfer learning approach for merg-
ing plentiful source-domain data with limited samples from
some target domain of interest to create a classifier that ide-
ally performs nearly as well as if rich target-domain data
were present. Based upon a surprisingly simple generative
Bayesian model, our approach combines a KL-divergence-
based regularizer/prior with a robust likelihood function
leading to a scalable implementation via the EM algorithm.
As justification for our design choices, we later use prin-
ciples from convex analysis to recast our algorithm as an
equivalent structured rank minimization problem leading to
a number of interesting insights related to solution struc-
ture and feature-transform invariance. These insights help
to both explain the effectiveness of our algorithm as well
as elucidate a wide variety of related Bayesian approaches.
Experimental testing with challenging datasets validate the
utility of the proposed algorithm.

1. Introduction

Numerous computer vision applications involve testing
a pair of facial images to determine whether or not they be-
long to the same subject. For example, this so-called face
verification task is required by automatic PC or mobile log-
on using facial identity, or for grouping images of the same
face for tagging purposes, etc. Important open algorith-
mic challenges include robustness across different platform-
s and environmental conditions, as well as computational
efficiency for real-time implementation. Recently, several
authors have demonstrated that simple, scalable generative
Bayesian models are capable of achieving state-of-the-art
performance on challenging face verification benchmarks
[21, 18, 5]. The surprising success of these models (even
surpassing much more complex discriminative approaches)
is likely because facial appearances, when summarized by
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appropriate image descriptors or features, can be reasonably
well-approximated by a linear summation of two indepen-
dent latent factors: (i) intra-personal variations due to pose,
expression and lighting, and (ii) variations due to differing
identities. The former can be viewed as confounding, nui-
sance factors while the latter in isolation should determine
successful face verification.

In [2], ] these observations are exploited via a
Bayesian factor analysis model called probabilistic linear
discriminant analysis (PLDA), while the Joint Bayesian ap-
proach from [5] adopts a multivariate Gaussian distribution
over image pairs achieving a similar effect. In fact, when
trained with large-scale web images, the Joint Bayesian per-
formance [5, 6] has even approached human capacity on the
challenging LFW dataset [13]. For example, human per-
formance on cropped faces is 97.53% [17]; the analogous
performance achievable by the Joint Bayesian algorithm is
95.17% [6].

While these results are promising, many important prac-
tical scenarios involve cross-domain data drawn from po-
tentially different facial appearance distributions. Therefore
amodel trained using widely available web images may suf-
fer a large performance drop in an application-specific tar-
get domain that cannot be viewed as iid image samples from
the web. The obvious solution would be to simply retrain
with data from the relevant target domain; however, this of-
ten leads to over-fitting because available data are limited.
This paper addresses these issues by deriving and analyzing
a principled transfer learning algorithm for combining plen-
tiful source-domain data (e.g., from the web, etc.) with rel-
atively scarce target-domain samples. The underlying goal
here is to match the idealistic performance achievable were
arich target-domain training set readily available.

Although conceptually we may address this problem by
adapting any number of baseline face verification algo-
rithms, we choose the Joint Bayesian algorithm as our s-
tarting point for two reasons. First, despite its simplicity
and underlying Gaussian assumptions (see below for de-
tails), this algorithm nonetheless achieves the highest pub-
lished results on the most influential benchmark face verifi-
cation datasets. Secondly, the scalability and transparency
of the Joint Bayesian cost function and update rules render



principled transfer learning extensions and detailed analysis
tractable.

Our basic strategy can be viewed from an information-
theoretic perspective, where the idea is to penalize the
Kullback-Leibler divergence between the distributions of
source- and target-domain data to maximize the sharing of
information. For the zero-mean multivariate Gaussians used
by PLDA and Joint Bayesian algorithms, this reduces to the
Burg matrix divergence between the corresponding covari-
ance matrices [8]. This factor is then balanced with respect
to the basic Joint Bayesian log-likelihood model which in-
corporates new samples from the target domain. The result-
ing model is optimized with respect to both factors using
a highly efficient EM algorithm that easily scales to large
problem sizes. Although the proposed model can be par-
tially justified by the simplicity of the resulting update rules
and conventional arguments for the utility of the KL di-
vergence as a candidate regularizer, we produce a rigorous
alternative rationalization by completely reformulating our
model as a particular constrained rank minimization prob-
lem, leading to a variety of novel insights. To the best of
our knowledge, Bayesian algorithms of this type have not
be examined from such a perspective. The main contribu-
tions herein can then be summarized as follows:

e Development of a simple, scalable transfer learning
method for adapting existing generative face verifica-
tion models to new domains where data is scarce.

Theoretical analysis connecting proposed model with
a revealing, equivalent structured rank minimization
problem. This demonstrates several desirable proper-
ties related to robustness, feature-transform invariance,
subspace learning, and computational efficiency, while
further elucidating many existing Bayesian face verifi-
cation algorithms as a natural byproduct.

Superior performance on challenging data sets repre-
sentative of important applications of face verification.

The remainder of this paper is organized as follows. Sec-
tion 2 describes related work on transfer learning while Sec-
tion 3 briefly reviews the Joint Bayesian face verification
algorithm which serves as the basis of our approach. The
specifics of the proposed transfer learning algorithm are p-
resented in Secion 4 followed by theoretical analysis and
motivation for our particular model in Section 5. Finally,
experimental results are carried out in Section 6.

2. Related Works

Transfer learning has been extensively studied in recent
computer vision [22, 3,23, 11, 16, 10].

Of particular relevance to our work, Kulis et al. learn a
Mahalanobis distance function, where the learned metric is
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“close” to the Euclidian distance in the sense of Kullback-
Leibler divergence [7]. This influential approach, termed
ITML, has also been extended to domain adaptation prob-
lems [23, 16]. Alternatively, to resolve the domain differ-
ence for photo-sketch recognition, Xiaogang et al. proposed
a coupled information-theoretic encoding method [28] to
narrow the distribution gap of the encoded features. Other
regularizers, including maximum mean discrepancy [20, 9]
and Bregman divergence [24], have also been studied for
transfer learning. Our algorithm differs from these discrim-
inative approaches via the choice of our generative model
and its subsequent interaction with the KL divergence reg-
ularizer.

Transfer learning algorithms have also been developed
based upon recent rank minimization techniques [4, 14, 15].
However, these methods apply to problems that are struc-
turally very different from face verification and existing
methods do not apply here. Although our algorithm is not
directly derived from a rank minimization perspective, as
intimated above it can be interpreted as a particular min-
imization task that includes multiple concave penalties on
matrix singular values that are combined in a novel way.

3. Review of the Joint Bayesian Method

This section briefly reviews the Joint Bayesian method
for face verification [5] which will serve as the basis for
our transfer learning algorithm. In this context we assume
that the appearance of relevant facial features is influenced
by two latent factors: identity and intra-personal variations.
This fact is commonly approximated by

T = |+, (D
where z is the assumed facial feature, e.g., LBP, SIFT, etc.,
which is linearly decomposed into two independent vari-
ables related to identity p and intra-personal variations e.
The Joint Bayesian method then models both p and e as
multivariate Gaussians with zero mean (after the appropri-
ate centering operation) and covariance matrices S,, and .S,
respectively. .S, and S, can be interpreted as the between-
class and within-class covariances, and both can be comput-
ed empirically via sample averages given sufficient data, or
estimated more accurately by an EM algorithm [5]. During
the testing phase, unlike previous Bayesian face recognition
algorithms which discriminate based on the difference be-
tween a pair of faces [19, 27], the Joint Bayesian classifier
is based upon the full joint distribution of face image pairs
leading to a considerable performance boost.

Specifically, let H represent the intra-personal hypothe-
sis (same identity) and H g represent the extra-personal hy-
pothesis (different identity). Using (1), it is readily shown
that the joint distributions p(z1, 22| H;) and p(x1, z2|HE)



are zero-mean Gaussians with covariance matrices

S/:, + Ss S/L :| and |: S/L + Ss

Sy Sy + 5. 0
respectively. Given these distributions, the likelihood ratio
test

0
Sy + 5.

P (z1,22|Hy)
P (931, i) |HE)
represents a natural classification criterion. The resulting

decision function can be reduced to a convenient closed for-
m leading to an efficient algorithm for the testing phase.

@)

r(z1,x2) = log

4. Transfer Learning Algorithm

We will now adapt the Joint Bayesian model to the trans-
fer learning problem by first proposing an appropriate cost
function followed by the development of a simple EM algo-
rithm for training purposes.

4.1. Information-Theoretic Cost Function

Given the basic Joint Bayesian model with parameter-
s O, = {S,, S} fitted to source-domain data, and a
handful of labeled target-domain data X, the underlying
goal is to learn a new model with analogous parameter-
s ©;, = {T,,T.} that adequately reflects both domains,
and in particular, generalizes to new target-domain data. In
the absence of source-domain data, the unknown parameter
O, could be estimated by optimizing logp(X|O;) over X,
where the likelihood model for A" is simply analogous to
the Joint Bayesian one. Of course when the available train-
ing samples are limited, over-fitting is likely and generaliza-
tion performance on unseen data will be poor. When addi-
tional source-domain data are accessible, however, we may
ameliorate the risk of over-fitting by including an addition-
al regularizer, or prior, that penalizes deviations from the
distribution of source data. From an information-theoretic
perspective, the KL divergence, which quantifies the infor-
mation lost when we approximate the target-domain dis-
tribution with the source-domain distribution, represents a
useful candidate regularizer for this task. After combining
with the log-likelihood term, this results in the optimization
problem

min - —logp(X|©;) + A KL(p(X]0,)[[p(X]6.)), ()

where the parameter A balances the relative importance be-
tween the new observations and the prior knowledge.

The KL divergence, as well as alternative penalties based
on Bregman divergences and maximum mean discrepancy,
have been motivated for related transfer learning purposes
[7, 23, 16, 20, 24, 9], although not in combination with a
likelihood function as we have done here. However, the
primary advantage of (3) in particular is threefold:
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. In the absence of significant source-domain data, (3)
reduces to a current state-of-the-art algorithm for face
verification.

2. Based on an EM framework, the KL divergence, when
coupled with the Joint Bayesian distributional assump-
tions, leads to simple closed-form update rules that s-
cale to large-sized problems. Moreover, the learned
model is suitable for real-time applications at test time.

. A completely independent justification of (3) and the
associated EM update rules is possible using ideas
from convex analysis (see Section 5).

4.2. Optimization via EM Updates

Assuming the samples from different target-domain sub-
jects are independent, the joint distribution of all samples
can be factorized, such that (3) reduces to

min — logp(X,101)+A 3 KL(p(X,|00)[[p(X,[6,).
(4)

where X; is a long column vector formed by concate-
nating all of the samples from subject i. p(X;|©) then
represents the corresponding likelihood function from the
Joint Bayesian model, which involves a potentially huge,
zero-mean Gaussian with covariance PiQiPiT, where ); =

diag[T},, T, --- ,T.] is block diagonal with T, repeated
once for each sample from subject ¢, and
I I 0 0
I 0 I 0
Pi=. ) .
I 0 0 I

Directly minimizing (4) is difficult because of the high-
dimensionality, the coupling between the log-likelihood and
KL terms, and the fact that the unknown parameters must
be positive semi-definite, symmetric matrices. To address
these issues, we present a generalized EM algorithm which
simplifies the objective function by introducing additional
latent variables based on (1) that allow us to conditionally
factorize the distribution of all samples for each subject.
Specifically, we decompose all of the samples of one
subject! X into two latent parts based on (1): identity ,
which is invariant for all images of the same subject, and
intra-personal variations {eq, ...€,, } assuming m images of
this subject. These latent variables can be expressed as a
long column vector H = {p;€1;...;€mn }, where X = PH.
As the identity and intra-personal variations are indepen-
dent Gaussians, it is easy to show that H follows a zero-
mean Gaussian distribution with covariance {). We may

I As the discussion in the remainder of this section is based on a single
subject, the subject index has been omitted.



now optimize the objective function in (3) by iteratively
computing the expectation of the latent variables (E step)
and updating the parameters by maximizing the expected
penalized log-likelihood found in the E step (M step). Due
to limited space, we omit the derivation and directly present
the closed-form solutions in for the E and M steps. Readers
can refer to the supplementary file for the derivations.
E-step: Given the samples of one subject X, the expec-
tation of the associated latent variable H can be derived as

E(H|X)=QPT(PQPT)'X. 5)
Note that although the required multiplications and in-
versions involve high-dimenstional matrices, the problem
structure can be exploited such that only O(d* +md?) com-
putations are required, where d is the feature dimension of
each image [5].> More importantly however, the overal-
1 complexity required to evaluate (2) for testing new image

pairs is at most O(rank[T},]d) < O(d?) (see Section 5).

M-step: ©; = {7},, 7.} is updated via

12#%
1Z€J €

where w = A/(1 + A), n is the number of subjects, and
k is the total number of images of all subjects. These in-
tuitive updates reveal that source- and target-domain infor-
mation are merged by a weighted linear combination. Also,
from an implementational standpoint, instead of adapting
the mean face from the source to target domain, we direct-
ly estimate the mean using only target-domain data. This
is because first-order statistics can be reliably estimated
with relatively limited data, even though the second-order,
high-dimensional covariances cannot be. Finally, we should
mention that the empirically observed convergence rate is
very fast, e.g., it only takes around five iterations to produce
all of the experiments in Section 6.

T, = wS,+(1—-w

T, wSe+(1—-w (6)

5. Low-Rank Interpretation and Analysis

Let m; denote the number of images of subject ¢ such
that k = > m;. Then we use X to denote the d x k

2Technically speaking, this algorithm only computes an approximate E-
step, and hence falls into the wider category of generalized EM and MAP
EM algorithms [12]. While the full E-step can actually be calculated using
our model with limited additional computation (we merely need to com-
pute a posterior covariance analogous to the mean from (5)), we choose not
to include this extra term for several reasons. First, generalized EM algo-
rithms enjoy similar convergence properties to regular EM and are widely
used in machine learning. Second, we have observed empirically that the
performance is essentially unchanged with or without this additional co-
variance term. And finally, omitting this covariance leads to much more
transparent analysis (see Section 5). The supplementary file contains more
information about these distinctions.
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matrix of all image features from all subjects, with the j-th
column x; representing the feature vector of image j. Also,
define ¥ to be the n x k matrix with i-th row given by all
Zeros except a vector of m,; ones starting at element index
€=y 1 m, + 1.

We now present a novel reformulation of the proposed
learning algorithm that we later show provides insights into
the types of solutions that will be favored. For space consid-
erations the proof, which is based upon ideas from convex
analysis, has been deferred to the supplementary material.

Theorem 1 The iterations from (5) and (6) are guaranteed
to reduce (or leave unchanged once a stationary point is
reached) the minimization problem

min nlog|T,| + klog|T¢| )
s.t. X =E+ MV,

T, = MM” + AS,,, T.=1EE” +\S..

The remainder of this Section will argue that the opti-
mization problem from (7) provides a compelling, comple-
mentary picture of the original transfer learning formulation
from Section 4. As a natural byproduct, it also elucidates
the behavior a number of related Bayesian algorithms in-
cluding PLDA [21, 18] and Joint Bayes [5].

To begin, the penalty terms in (7) both rely on the log-det
function, which represents a somewhat common surrogate
for the matrix rank function. This relationship can be un-
derstood as follows. For a given symmetric, positive semi-
definite matrix Z, let o denote the vector of all singular
values in Z (which will be non-negative) and o, its r-th el-
ement. We then have
log|Z| =

Zlogar = hm Z

In this context, log | Z| can be viewed as a scaled and trans-
lated version of rank|[Z].

Now for simplicity, first assume that no prior source-
domain knowledge is available, and thus S,, = S. = 0. The
objective function from (7) is basically attempting to find
covariances T}, and T, of (approximately) minimal rank,
subject to the constraint that the latent variables M and E,
when confined to the subspaces proscribed by their respec-
tive covariances, satisfy the constraint X = E + MW. Here
columns of E and M each correspond with intra-personal
and extra-personal variation components respectively.

Low rank solutions can be highly desirable for regular-
ization purposes, interpretability, and implementational ef-
ficiency. The latter is especially crucial for many practi-
cal applications, where minimal rank implies fast evalua-
tion on test data (see below). However, in the absence of

®)

) o< [loflo = rank[Z],



prior knowledge, and with limited training data, the associ-
ated subspace estimates may be unreliable or possibly asso-
ciated with undesirable degenerate solutions. Fortunately,
when prior information is available in the form of nonzero
covariances S, and S, the situation becomes much more
appealing. The log-det penalty now handles the subspace
spanned by the prior source-domain information (meaning
the span of the singular vectors of A\S,, and AS, that have
significant singular values) very differently than the orthog-
onal complement. In directions characterized by small (or
zero) singular values, T}, or T, will be penalized heavily
akin to the rank function per the analysis above. In contrast,
when source-domain singular values are relatively large,
the associated penalty softens considerably, approaching a
nearly-flat convex, ¢; norm-like regularizer (in the sense
that log(o + ¢) achieves a near constant gradient with re-
spect to o as c becomes large).

Thus to summarize then, the source-domain information
essentially encodes the relative curvature, or severity, of the
penalization on 7T}, or T: strong, non-convex penalization
of directions orthogonal to the significant singular vectors
of AS,, and AS., while relaxing to very mild, nearly con-
vex penalty elsewhere. This all implies relative freedom
to explore regions supported by prior information, but a
stricter impediment for drifting into novel regions without
sufficient data to support it. Other benefits are as follows.

Invariance: The reformulation (7) highlights the fac-
t that the proposed approach is invariant to invertible lin-
ear transformations of the feature vectors in the following
sense: If 77 and T are computed from the optimal solu-
tion to (7), then W1T'; and W are the optimal solution
when x — Wx, with W invertible. This occurs as a direct
consequence of the fact that log |AB| = log |A| + log |B|
for two matrices A and B, allowing a simple reparameteri-
zation to reveal the stated invariance. Moreover, it is read-
ily shown that, because the likelihood ratio test (2) used to
compare two new faces is invariant to an invertible trans-
formation such as W, the solution I/VT;Lk and WT7 is for all
practical purposes fully equivalent to T7; and 7;". This high-
ly desirable invariance property is quite unlike other sparse
or low-rank models that incorporate, for example, convex
penalties such as the ¢; norm or the nuclear norm. With
these penalties an invertible feature transform would lead
to an entirely different decision rule and therefore different
classification results.

Efficiency: It is straightforward to show that the test
statistic (2) can be compactly represented as x7 Ax; +
23 Axg + 2T By where A and B are matrices that depend
only on T; and T},. Importantly, it can be shown that

rank[A] <rank[T,,] and rank[B] <rank[T,]. (9)

The derivation of these bounds is contained in the supple-
mentary file. Consequently, (9) implies that, provided at
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least T}, is of low rank, then (2) can be computed efficiently
using convenient low-rank formula. This is crucial for any
number of practical applications, e.g., face log-on for smart-
phones, where fast, real-time computations are required.
We note that the convex nuclear norm substitution for the
rank penalty does not shrink nearly as many singular val-
ues to exactly zero (experiments not shown), and thus does
not produce nearly as parsimonious a representation. Thus
heuristic singular value thresholding is required for a prac-
tical, computationally-efficient implementation.”

6. Experiments

Here we present empirical results that validate our algo-
rithm and elucidate its desirable properties.

Source-Domain Model: Assembled from Internet pho-
tos, the large-scale WDRef dataset [5] is characterized by
large variations in pose, expression, and lighting and there-
fore reflects the diversity of intra- and extra-personal varia-
tions (see Figure 1 for examples). It contains 99,773 images
of 2,995 subjects, far more than even LFW. We use WDRef
(provided by the authors) as the source-domain dataset and
adopt the method in [5] to learn the source-domain model
used in all experiments.

High-Dim Feature: We use the recently proposed high-
dimensional LBP [6] as the feature representation x. It
densely samples multi-scale LBP descriptors centered at
dense facial landmarks, and then concatenates them to form
a high-dimensional feature. Due to its high dimensionali-
ty (over 100,000), PCA is applied to reduce the size to a
feasible range for subsequent learning.

Experimental Protocol: For all experiments the target-
domain data is divided into three parts for training, valida-
tion and testing. The validation set is used for selecting the
source/target-domain trade-off parameter A as well as the
threshold applied to the likelihood ratio test from (2). The
separate testing set is used only for generating the final re-
sults presented in this section. Typically, there is no identity
overlap among the three parts, unless otherwise stated.

6.1. Results with Similar Source/Target Domains

A good transfer learning method should seamlessly per-
form well even with differing degrees of similarity between
the source and target domains. This section explores the
case where there exists substantial similarity between the
two domains, while Section 6.2 will examine the alterna-
tive. The PCA dimension is fixed to 2,000 for all of these
experiments.

3For practical purposes, and to avoid undefined solutions involving the
log of zero in (7), both S¢ and S}, can be chosen with no strictly zero-
valued singular values. This would then imply that T and T},, and there-
fore A and B cannot be strictly low rank without some minimal level of
thresholding. However, this is a relatively minor implementational detail
and does not affect the overall nature of the arguments made in this section.
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Figure 1. Typical samples of the datasets used in our experiments. From

Dataset, and WDAsian.

Pete vs Tom [2]
—— Face.com [25]
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— Attributes & Simile [17]
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Figure 2. The ROC Curve on LFW. Our approach exceeds the best
published result under the unrestricted protocol.

0.4

We use the LFW dataset [13] for the target domain both
because of its similarity with WDRef and because it rep-
resents a well-studied and challenging benchmark allowing
us to place our results in the context of existing face veri-
fication systems [17, 26, 25, 2, 18, 6]. Figure 2 shows the
results of our method compared with state-of-the-art algo-
rithms. The previous best published result on the LFW da-
ta (95.17%, unrestricted protocol) is achieved by the Joint
Bayesian method [5] trained using WDRef and the high-
dim features from [6]. Although WDRef and LFW da-
ta are similar, this result shows that the proposed transfer
learning method can still improve the accuracy even further
to 96.33 %, which is noteworthy given that human perfor-
mance is 97.53% [17]. Moreover, given that our algorithm
explicitly abides by all of the rules pertaining to the unre-
stricted LFW protocol, it now represents the best reported
result on this important benchmark. We also emphasize that
the top performing methods on LFW all use outside training
data as we have; however, our algorithm appears to be the
most effective at assimilating discriminative information.

6.2. Results with Large Domain Differences

Next we experimentally verify the proposed method in
two common daily-life scenarios where, unlike the previous
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left to right: WDRef, LFW, Video Camera Dataset, Family Album

section, considerable domain differences exists relative to
source-domain data collected from the Internet.

Video camera dataset. The images in this dataset were
collected by video camera under various challenging con-
ditions. It contains 58 subjects and 1,948 images in total,
typically around 40 samples per subject. Figure 1 displays
some typical exemplars. We study the accuracy of our mod-
el as a function of the number of subjects used in the target
domain. Due to significant domain differences between web
images and the captured video camera frames, the error rate
of the baseline source-domain model is 13.3%. However,
with data from only 16 subjects, our method can effectively
reduce the error to 5.8% as shown in Table 1.

fSubj. [ 2 4 8 16
TDO | 185% | 153% | 12.2% | 10.2%
TL | 9.8% | 85% | 7.0% | 58%

Table 1. Error rates using video camera data. Results from models
trained with target-domain data only (TDO) and transfer learning
(TL). The source-domain model error rate is 13.3%.

Family Album dataset. This dataset contains eight re-
al family photo albums collected from personal contacts.
There is considerable diversity between the different albums
in terms of the number of images, subjects, and time frame.
The smallest album contains 10 subjects and around 400 im-
ages taken over the past two years. In contrast, the largest
albums contain hundreds of subjects and around 10, 000 im-
ages taken over the past eight years. To mimic a practical
scenario, we consider each family album as a target domain.
In each case, the images taken earlier (20% of the whole
album) are used for training. Unlike the settings in other
experiments, the identities are overlapped in training and
testing sets. As shown in Figure 3, for most albums the er-
ror rate is reduced to less than half of the error rate achieved
by the source-domain baseline model. We expect that this
could improve the user experience in personal album man-
agement on many platforms such as PC, phone, and social
networks.

6.3. Comparisons with Existing TL methods

Using the video camera dataset from the previous sec-
tion, we now turn to comparisons with competing transfer
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Figure 3. Error rates using family albums. X-axis labels show the
number of images and subjects in the corresponding album.

learning techniques. Because metric and subspace learning
represent influential, extensible approaches for face verifi-
cation, we choose to conduct experiments with two popular
representatives. First, information-theoretic metric learning
(ITML) [7] learns a Mahalonobis distance that is “close” to
a prior metric. By using the source-domain to obtain such
a prior, ITML is naturedly extended as a transfer learning
method, referred to as T-ITML. Secondly, linear discrimina-
tive analysis (LDA) [1] learns a discriminative subspace for
differentiating different identities. Recently Si ef al. [24]
proposed a framework for transductive transfer subspace
learning based on Bregman divergences. By applying their
framework, we then have transfer LDA, or 7-LDA, as a use-
ful competing method.

We use 20 subjects for transfer learning. For T-ITML, a
large amount training pairs* are generated to maximize it-
s performance, while for 7-LDA the optimal subspace di-
mensionality must be selected. All other parameters are
set according to published recommendations [7, 24]. As
shown in Table 2, our method leads to the lowest error
rate. This occurs because our improvement over the base-
line source-domain model is large (around 10%), and be-
cause our source model is stronger to begin with. Addition-
ally, it should be mentioned that 7-ITML involves a compu-
tationally intensive training procedure because of the high
number of training pairs required.

PCA Dim. | TLDA | TITML Ours
100 17.5(20.9) | 12.1(21.5) | 8.2(18.3)
200 16.8(19.1) | 11.4(19.8) | 6.2(16.9)
400 15.4(18.2) | 10.8(18.7) | 5.4(15.1)

Table 2. Error rates of different transfer learning methods. The
result in brackets is obtained by the corresponding source model.

4We generate 200,000 pairs for training the source-domain metric and
6,000 pairs for transfer learning
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6.4. Transfer Learning vs. Large Scale Data

When provided with a small amount of target-domain
data, ideally a good transfer learning algorithm will pro-
duce a new model which performs nearly as well as a mod-
el trained using a fully-representative, large-scale target-
domain dataset. To assess this issue, we experimentally s-
tudy the performance of our proposed model as a function
of the amount of the target-domain data. We construct a
large-scale dataset named WDAsian as the target domain.
It contains 2,000 Asian celebrities and around 100,000 im-
ages in total. Over 1,800 subjects have 40+ samples. Figure
1 shows some typical samples.

Two conclusions can be drawn from the results in Table
3. First, our transfer learning model performs similarly to
the model trained using the large-scale target-domain da-
ta, which is around 20 times larger than the data used for
transfer learning. Secondly, when the target-domain data is
scarce, the over-fitting problem is so severe that the model
trained only with target-domain data performs much worse
than the source-domain model. Actually, this conclusion
holds generally as discussed further in Section 6.5.

g Subj. 20 80 640 1280 | 1800
TDO | 33.0% | 28.8% | 13.0% | 11.2% | 9.5%
TL 11.5% | 11.1% | 99% | 9.5% | 9.1%

Table 3. The error rate of the models trained with target-domain
data only (TDO) and transfer learning (TL). The error rate of
source-domain model is 13.6%.

6.5. The Role of Regularization

The amount of target-domain data and model complexity
jointly determine the risk of over-fitting and the need for
regularization. To examine these effects we use the PCA
dimension to represent the freedom of the transfer learning
model, while WDAsian is used as the target-domain dataset.
The source-domain weight is fixed to 0.8.

High model complexity generally translates into high
structural risk and over-fitting. Figure 4 (left) clearly
demonstrate this. When the data is scarce, the model with
higher PCA dimension performs worse when trained on
target-domain data alone. With increasing data however the
trend reverses; the model with higher dimension eventual-
ly outperforms the others because the structural risk is no
longer the dominating factor, i.e., the more complex model
can harness the extra information to improve performance.
Our method presents another way of hedging the structural
risk. As shown in Figure 4 (right), even when training with
small amounts of target-domain data (only 10 subjects), the
higher dimensional model performs best with limited effect-
s of over-fitting. The reason of course is that the source-
domain data acts as a powerful regularizer, centering the
solution space at a more reasonable baseline. In this con-
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Figure 4. Left: the results obtained with target-domain data only.

Right: the results obtained by transfer learning.

text the higher PCA dimensions can be safely exploited to
enhance the performance without over-fitting.

7. Conclusion

This paper presents a generative Bayesian transfer learn-
ing algorithm particularly well-suited for the face verifica-
tion problem. This is possible in large part because large
web-based facial databases contain a variety of relevant in-
formation that can be used to bias estimation in smaller,
more nuanced, application-specific domains. Although ad-
mittedly quite simple, our extensive theoretical and empir-
ical analysis suggest that it nonetheless represents a viable
candidate for many practical, real-time systems.
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