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Abstract

In multi-label image annotations, because each image is
associated to multiple categories, the semantic terms (la-
bel classes) are not mutually exclusive. Previous research
showed that such label correlations can largely boost the
annotation accuracy. However, all existing methods only
directly apply the label correlation matrix to enhance the
label inference and assignment without further learning the
structural information among classes. In this paper, we
model the label correlations using the relational graph, and
propose a novel graph structured sparse learning model to
incorporate the topological constraints of relation graph in
multi-label classifications. As a result, our new method will
capture and utilize the hidden class structures in relational
graph to improve the annotation results. In proposed objec-
tive, a large number of structured sparsity-inducing norm-
s are utilized, thus the optimization becomes difficult. To
solve this problem, we derive an efficient optimization algo-
rithm with proved convergence. We perform extensive ex-
periments on six multi-label image annotation benchmark
data sets. In all empirical results, our new method shows
better annotation results than the state-of-the-art approach-
es.

1. Introduction

Due to the Internet and visual data sharing websites, the

availability of visual data has been dramatically increased in

the last decade, which has provided billions of images and

videos to computer vision researchers. Annotating these

images is crucial for the computer vision system develop-

ment and validation. However, the task of manually anno-

tating large-scale visual data sets takes a lot of time and ef-

fort, and is almost impossible. Thus, how to automatically

and accurately annotate the visual data has become one of

the central problems in computer vision research.

∗Corresponding author. This project was partially supported by U.S.

NSF IIS-1117965, IIS-1302675, IIS- 1344152, and ARC grant.

(a) “sky”, “plane” (b) “ocean”, “ship”

Figure 1. An example of label correlations for class membership

inference. Both images have large regions with blue color, and it

is hard to decide to annotate them with “sky” or “ocean”. How-

ever, if we know Fig. 1(a) is annotated to “plane”, we have high

confidence to annotate it with “sky”, rather than “ocean”.

Different to traditional single-label multi-class image

classifications, in image annotation, each image or video

clip is often associated with more than one semantic la-

bel, which poses so-called multi-label multi-class classifi-

cation problem. For example, image in Fig. 1(a) is anno-

tated with semantic words “sky” and “plane”, and image in

Fig. 1(b) is associated to semantic words “ocean”, “ship”.

The multi-label multi-class classifications have many appli-

cations, such as document classification, protein function

prediction, and music annotation.

An important difference between single-label classifi-

cation and multi-label classification is that, the annotation

classes in single-label classification are mutually exclusive,

but the annotation terms in multi-label classification are cor-

related to each other. Thus, in multi-label classification, re-

searchers can utilize such annotation label correlations to

infer the class memberships from one to another. For ex-

ample, in Fig. 1, the semantic words “ocean” and “sky” are

both strongly related to the blue color, therefore it is dif-

ficult to individually decide these two labels based on the

color features. However, from the training visual data, we

can learn the high correlations between “sky” and “plane”,

and between “ocean” and “ship”. Therefore, if an image is

annotated with “plane”, as in Fig. 1(a), we are highly con-

fident to annotate the region of blue in the same image as

“sky”, rather than “ocean”. Similarly, for the image anno-
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tated with “ship”, we will annotate the region of blue as

“ocean” as in Fig. 1(b). Many previous multi-label image

annotation methods explore such label correlations to im-

prove the classification accuracy [3, 17, 11, 12, 13].

However, all previous methods enhance the multi-label

classifications by directly multiplying a label correlation

matrix C ∈ �c×c (which can be calculated by the normal-

ized cosine similarity between classes and c is the number

of classes) on the label matrix or coefficient matrix to im-

prove the label propagation or label assignment. None of

them explores the structures of classes under the label cor-

relations. Beyond straightforwardly applying the label cor-

relation matrix, in this work, we propose to utilize the class

relational graph to model the underlying structures existing

in multi-label classes.

The label correlations indeed can be modeled as a class

relational graph. For example, using PASCAL 2006 data

set, we can model the correlations among annotation term

as a relational graph G = {V,E} in Fig. 2, where nodes

in V are the annotation classes and weights of edges in E
are the correlation values between classes (nodes). Some

classes, such as “Cat”, “Cow”, “Sheep”, have very small

correlations with the rest classes shown in the left panel of

Fig. 2 (the values are smaller than 0.02). For demonstra-

tion purpose, we threshold them as zero, hence there is no

edges connecting these nodes in right panel. If two nodes

(classes) have large correlations, the edge weight between

them will be large. Such a relational graph model can cap-

ture the underlying structural interrelations between classes.

How to utilize this relational graph with discovering the hid-

den classes structures to enhance multi-label classification

is computationally challenging.

In this paper, we will propose the novel structured

sparsity-inducing norm regularization to incorporate the re-

lational graph information into multi-label classification

model. Different to previous methods, which directly use

the label correlation values to enhance the classification re-

sults, our new method will impose the correlated classes

to share the common space, such that the input data rele-

vant to both classes will learn jointly. Our new class rela-

tional graph regularization will include a large number of

non-smooth structured sparsity-inducing norms, such that

the objective function optimization becomes difficult. We

will introduce new optimization algorithms to solve the

proposed non-smooth convex objective with convergence

proof. We perform our new method on six multi-label clas-

sification benchmark data sets and compare the results with

eight state-of-the-art multi-label classification methods.

2. Multi-Label Classification Using Graph
Structured Sparse Learning Model

The existing multi-label learning models cannot incorpo-

rate the semantic terms relational graph to enhance the an-

notation results. To study the feature or class structural re-

lations, many structured sparse learning methods have been

proposed in recent research and shown promising results

[18, 6, 4, 8, 1, 14, 15, 7]. However, these approaches also

cannot incorporate the label relational graph into the classi-

fication models.

To address this challenging problem, we propose new

graph structured sparsity-inducing norms, which learn the

correlated classes in a common space under the relational

graph structure.

Given training data of n data points X = [x1, · · · , xn] ∈
�d×n, the class indicator matrix of these data points is Y =
[y1, · · · , yn]T ∈ �n×c for c classes, the structured sparsity-

inducing norm based classification model is to learn W and

the bias b ∈ �c×1 by solving:

min
W,b

L(X,W, b;Y ) + γΩ(W ), (1)

where γ ≥ 0 is a regularization parameter, and L(·) is a loss

function (e.g. least square loss, hinge loss). The regulariza-

tion term Ω(W ) is the structured sparsity-inducing norm,

which usually uses the mixed norms to capture the features

and classes structural relations for enhancing the classifica-

tion tasks.

In multi-label annotations, we have the label (semantic

terms) relational graph G = {V,E} (e.g. the class relation-

al graph constructed in Fig. 2, in which the edge between

nodes Vi and Vj is denoted as Eij). If we correctly incor-

porate such label relational graph into multi-label classifi-

cation model, the performance can definitely be boosted.

Thus, the structured sparsity-inducing norm Ω(W ) is ex-

pected to model the label relational graph. Meanwhile, con-

sidering the computational efficiency and global optimiza-

tion, we also hope Ω(W ) to be a convex norm. However,

it is challenging to model such graph structured sparsity by

the convex norm.

We propose a new graph structured sparsity model to

capture the graph structures using the structured sparsity-

inducing norms. Our new graph structured sparse multi-

label classification model is to solve:

min
W,b

L(X,W,b;Y ) + γ
∑

Eij∈E
‖[wi,wj ]‖2,1 , (2)

where the �2,1-norm of the matrix W are defined as

||W ||2,1 =
∑d

i=1 ||wi||2 (also denoted as �1,2-norm by

some researchers). Given a matrix W = [wij ], its ith row

and jth column are denoted as wi and wj , respectively. If

two classes are correlated, the mixed-norm �2,1-norm regu-

larization finds inputs relevant to both outputs jointly. Our

regularization terms go through all edges in E to include all

topological constraints by the structured sparsity-inducing

norms. Thus, the learned classification coefficients capture
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Figure 2. Relational graph model of multi-label classes. Left: the correlation matrix of all annotation terms. Right: constructed relational

graph, where nodes are labels and weights of edges are correlation values between classes.

these graph-based class correlations. Meanwhile, our regu-

larization terms are also convex norms which guarantee the

globally optimal results.

Because the weight aij of the edge connecting nodes Vi

and Vj represents the correlation level of these two class-

es, we also use the weights values to scale the regulariza-

tion terms. As a result, the highly correlated classes will

get large weight in the joint sparsity regularization. Mean-

while, in this work, we use the least square loss (which is

faster than hinge and logistic loss functions, and is suitable

for large-scale multi-label classifications) and solve the fol-

lowing objective:

min
W,b

∥∥XTW + 1bT − Y
∥∥2
F
+ γ

c∑

i=1

c∑

j=1

aij ‖[wi,wj ]‖2,1
(3)

where 1 ∈ �n×1 is the vector with all entries being 1. If

there is no edge between nodes Vi and Vj , aij = 0. Tak-

ing the derivative w.r.t. b and setting to zero, we have

b = 1
nY

T 1 − 1
nW

TX1. We substitute b into Eq. (3), the

problem (3) becomes

min
W

∥∥HXTW −HY
∥∥2
F
+ γ

c∑

i=1

c∑

j=1

aij ‖[wi, wj ]‖2,1,

(4)
where H = I − 1

n11T is the centering matrix.

The objective function in (4) involves many �2,1-norms

as regularization terms, thus the general methods are diffi-

cult to apply here. In this paper, we propose an algorithm to

solve a general �2,1-norm minimization problem, based on

which we will further derive the algorithm to solve the main

objective in (4).

3. General Optimization Framework
Consider a general �2,1-norm minimization problem as

follows:

min
X∈C

f(X) +
∑

i

γi ‖Gi(X)‖2,1 , (5)

where f(X) is an arbitrary function, Gi(X) for each i is

an arbitrary matrix-input matrix-output functions, X ∈ C is

an arbitrary constraint, and assume that the objective has a

lower bound. We can see the objective function in (4) is a

special case of the problem in (5).

3.1. Iterative Reweighted Algorithm

Because any regularization term ‖Gi(X)‖2,1
can be written as the reweighted formulation

Tr(GT
i (X)DiGi(X)), where Di is a diagonal matrix

with the k-th diagonal element as 1
2‖[Gi(X)]k‖2 . Thus, we

propose an iterative reweighted algorithm to solve problem

in (5). The algorithm is described in Algorithm 1. In the

following, we will prove that this algorithm will converge

and converge to a local or global solution to the problem in

(5), when the problem in (5) is non-convex or convex.

Initialize X ∈ C ;

while not converge do
1. For each i, calculate the diagonal matrix Di,

where the k-th diagonal element is:
1

2‖[Gi(X)]k‖2 ;

2. Update X by solving:

min
X∈C

f(X) +
∑
i

γiTr(G
T
i (X)DiGi(X)) ;

end
Output: X .

Algorithm 1: Algorithm to solve a general �2,1-norm

minimization problem (5).

3.2. Algorithm Convergence Analysis

To prove the convergence of our Algorithm 1, first we

introduce the following lemma:

Lemma 1 Suppose D is a diagonal matrix, where the k-th
diagonal element is 1

2‖ak‖2 . We have

‖Ã‖2,1 − Tr(ÃTDÃ) ≤ ‖A‖2,1 − Tr(ATDA) . (6)
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Proof: We start the proof from a simple inequality as

−x2 ≤ 0.

−(
∥∥∥ãk

∥∥∥
2
− ∥∥ak

∥∥
2
)2 ≤ 0

⇒ 2
∥∥∥ãk

∥∥∥
2

∥∥ak
∥∥
2
−
∥∥∥ãk

∥∥∥
2

2
≤ ∥∥ak

∥∥2
2

⇒
∥∥∥ãk

∥∥∥
2
−

∥∥∥ãk
∥∥∥
2

2

2 ‖ak‖2
≤ ∥∥ak

∥∥
2
−

∥∥ak
∥∥2
2

2 ‖ak‖2

⇒
∑

k

∥∥∥ãk
∥∥∥
2
−
∑

k

∥∥∥ãk
∥∥∥
2

2

2 ‖ak‖2
≤

∑

k

∥∥ak
∥∥
2
−
∑

k

∥∥ak
∥∥2
2

2 ‖ak‖2
⇒ ‖Ã‖2,1 − Tr(ÃTDÃ) ≤ ‖A‖2,1 − Tr(ATDA)

Thus the inequality in the lemma holds.

�
The convergence of the Algorithm 1 is demonstrated in

the following theorem:

Theorem 1 The Algorithm 1 monotonically decreases the
value of the objective function (5) in each iteration till the
algorithm converges.

Proof: In the Step 2 of Algorithm 1, we denote the updated

X as X̃ . We have

f(X̃) +
∑

i

γiTr(G
T
i (X̃)DiGi(X̃))

≤ f(X) +
∑

i

γiTr(G
T
i (X)DiGi(X)) . (7)

According to Lemma 1 we have

∑

i

γi‖Gi(X̃)‖2,1 −
∑

i

γiTr(G
T
i (X̃)DiGi(X̃))

≤
∑

i

γi ‖Gi(X)‖2,1 −
∑

i

γiTr(G
T
i (X)DiGi(X)) .

(8)

Summing the inequalities (7) and (8) on both sides, we

arrive at

f(X̃) +
∑

i

γi

∥∥∥Gi(X̃)
∥∥∥
2,1

≤ f(X) +
∑

i

γi ‖Gi(X)‖2,1 . (9)

Thus the Algorithm 1 monotonically decreases the value of

objective function in (5) or remains the objective function

value unchanged in each iteration t. Because the objective

function in (5) has a lower bound, the Algorithm 1 will con-

verge. When the algorithm has not converged, the Algo-

rithm 1 will monotonically decrease the value of objective

function in (5).

�
The following theorem guarantees that the Algorithm 1

will converge to a local or global solution to the problem

(5).

Theorem 2 The Algorithm 1 will converge to a local opti-
mal solution of the objective in (5), and will converge to a
global solution if the objective in (5) is a convex function.

Proof: The Lagrangian function of the problem (5) is:

L(X,λ) = f(X) +
∑

i

γi ‖Gi(X)‖2,1 − h(X,Λ) , (10)

where h(X,Λ) is the Lagrangian term to encode the con-

straint X ∈ C in problem (5).

Taking the derivative of L(X,λ) w.r.t X , and setting the

derivative to zero, we have:

∂L(X,λ)

∂X
= f ′(X) +

∑

i

2γiD
iGi(X)− ∂h(X,Λ)

∂X

= 0 , (11)

where D is a diagonal matrix, and the k-th diagonal element

is 1
2‖[Gi(X)]k‖2 .

Suppose the Algorithm 1 converges to a solution X∗,
from Step 2 in Algorithm 1, we have:

X∗ = arg min
X∈C

f(X) +
∑

i

γiTr(G
T
i (X)(D∗)iGi(X)),

(12)

where D is a diagonal matrix with the k-th diagonal element

as 1
2‖[Gi(X∗)]k‖2 . According to the KKT condition of the

problem in Eq. (12), we know that

f ′(X∗) +
∑

i

2γi(D
∗)iGi(X

∗)− ∂h(X∗,Λ)
∂X∗ = 0 . (13)

Thus, the solution X∗ satisfies Eq. (11), which is the

KKT condition of the objective in (5). Therefore, the con-

verged solution X∗ is a local solution of the objective in

(5). Moreover, if the objective in (5) is a convex function,

then the converged solution X∗ is a global solution of the

objective in (5)

�
In the next section, we will derive the algorithm to solve

the objective in (4) based on Algorithm 1.

4. Algorithm to Solve Objective in (4)
According to Algorithm 1, the key step to solve the ob-

jective in (4) is to solve the following problem:

min
W

∥∥HXTW −HY
∥∥2
F
+

γ
c∑

i=1

c∑
j=1

aijTr([wi,wj ]
TDij [wi,wj ]),

(14)
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where Dij is a diagonal matrix with the k-th diagonal ele-

ment as 1
2‖[wi,wj ]k‖2 .

We simplify the second term in Eq. (14) as following

c∑

i=1

c∑

j=1

aijTr([wi,wj ]
TDij [wi,wj ])

=
c∑

i=1

c∑

j=1

(aijwT
i D

ijwi + aijwT
j D

ijwj)

=

c∑

i=1

wT
i (

c∑

j=1

aijD
ij)wi +

c∑

j=1

wT
j (

c∑

i=1

aijD
ij)wj

=
c∑

i=1

wT
i (

c∑

j=1

aijD
ij)wi +

c∑

i=1

wT
i (

c∑

j=1

ajiD
ji)wi

Because aij = aji and Dij = Dji, the above equation can

be written as:

c∑

i=1

wT
i (2

c∑

j=1

aijD
ij)wi .

Let’s denote M i = 2
∑
j

aijD
ij , then the problem (14)

can be simplified as:

min
W

c∑

i=1

∥∥HXT wi −Hyi
∥∥2
2
+ γ

c∑

i=1

wT
i M

iwi . (15)

We can see that the problem (15) is unrelated between

different wi, and thus can be decoupled to solve the follow-

ing problem for each wi:

min
wi

∥∥HXT wi −Hyi

∥∥2
2
+ γwT

i M
iwi . (16)

Taking the derivative of Eq. (16) w.r.t. wi and setting to

zero, we have

(XHXT + γM i)wi −XHyi = 0 . (17)

Therefore, we get the optimal solution of the problem (16)

as:

wi = (XHXT + γM i)−1XHyi . (18)

Based on the above derivation, the detailed algorithm to

solve the objective in (4) is summarized in Algorithm 2.

Because the objective in (4) is a convex problem, accord-

ing to Theorem 2, we can obtain the global solution with

Algorithm 2.

5. Experimental Results
5.1. Experiment Data

In this section, we will briefly introduce the multi-label

image data sets that we used to evaluation the proposed

graph structured sparse multi-label learning model.

Input: X , A.

Output: W ∈ �d×c.

Initialize W ∈ �d×c ;

while not converge do
1. For each i and j, calculate the diagonal matrix

Dij , where the k-th diagonal element is
1

2‖[wi,wj ]k‖2 ;

2. For each i, calculate the diagonal matrix M i by:

M i = 2
∑
j

aijD
ij ;

3. For each i, update wi by:

wi = (XHXT + γM i)−1XHyi ;

end
Algorithm 2: Algorithm to solve the problem (4).

Barcelona image data set is composed of urban scenes

from Barcelona, and consists of 139 urban scene images in

“jpeg” format with minimum resolution of 1600 x 1200. It

has 4 overlapping labels: “Buildings”, “Flora”, “People”

and “Sky”. Each image is represented by a feature vec-

tor of 816 dimensions using the concatenation of LBP [9],

GIST [10] and CMT [16].

Natural scene data set [2]1contains 2407 images repre-

sented by a 294-dimensional vector, which are labeled with

6 semantic concepts (labels).

TRECVID 2005 data set2 contains 61901 sub-shots la-

beled with 39 concepts. We randomly sample the data such

that each concept (label) has at least 100 video key frames.

Therefore, we have 3721 images in total and we extract

LBP [9], GIST [10] and CMT [16] features from each im-

age. After concatenating the above three visual features,

each image is represented by a 816 dimension vector.

PASCAL VOC 20063 is a data set for visual object

recognition challenge held in 2006. It has 5304 images with

10 classes, i.e. bicycle, bus, car, motorbike, cat, cow, dog,

horse, sheep and person. We download the 960-dimension

GIST feature image descriptor4 extracted from all the im-

ages. Note that multiple objects from multiple classes may

be present in the same image. Therefore, it is a multi-label

classification data set.

PASCAL VOC 20075 is an extension visual objec-

t recognition challenge data set based on PASCAL VOC

2006. It has 9963 images with 4 group annotations and

each group can be further divided into the following class-

es. Person: person; Animal: bird, cat, cow, dog, horse,

sheep; Vehicle: aeroplane, bicycle, boat, bus, car, motor-

bike, train; Indoor: bottle, chair, dining table, potted plant,

1http://mulan.sourceforge.net/datasets.html
2http://www-nlpir.nist.gov/projects/trecvid/
3http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2006/
4https://sites.google.com/site/christophlampert/data
5http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2007/
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Table 1. Data Sets Summary

Data Sets Samples (n) Features (d) Labels (c)

BARCELONA 139 816 4
SCENE 2407 294 6

TRECVID05 3721 816 39
PASCAL06 5304 960 10
PASCAL07 9963 512 20

MIRFLICKR08 25000 512 38

sofa, tv/monitor. We download the 512-dimension GIST

feature as the image descriptor6 extracted from all the im-

ages.

MIR FLICKR 20087 is a public image data set used for

ACM sponsored image retrieval evaluation. It has 25000
images with 38 classes downloaded from the social photog-

raphy site Flickr through its public API. After removing the

most common annotations, i.e. colors, seasons and place

names, the average number of annotation per image is 8.94.

In the collection there are 1386 annotations which occur in

at least 20 images. We download the 512-dimension GIST

image descriptor8 extracted from all the images.

We summarize the data as listed in Table 1

5.2. Experiment Settings

In our experment, we used the following way to build the

graph structure for the annotations. Without losing of gen-

erality, we assume the first l < n data are already labeled

and each training data xi is labeled with a number of annota-

tions yi = {y1, · · · , yC} represented by yi ∈ {0, 1}C , such

that yi(k) = 1 if xi is annotated with the k-th annotation

term and 0 otherwise, ∀i = 1, 2, ...l.
Different from conventional single-label classification

learning in which classes are mutual exclusive, the annota-

tions are interrelated with one another in multi-label prob-

lem. We utilize the following cosine similarity to calculate

the annotation affinity matrix

A(i, j) = cos(yi, yj) =
< yi, yj >

(||yi|| × ||yj ||)
(19)

where yi and yj are the i-th and j-th column of the indi-

cator matrix of the labeled data Y ∈ R
l×c respectively.

Thus, a graph G = (V,E) is induced, where V = A and

E ⊆ V × V . What is more, in order to remove the ”noisy”

correlation induced by the outlier data or inevitable inaccu-

rate annotation information of the training data, we set up

a filter to set those entries of A in Eq. (19) with values less

than 10% of its maximum value to 0. We will use the above

calculated annotation graph structure as input for both our

method and the comparison approaches.

6http://lear.inrialpes.fr/people/guillaumin/data.php
7http://press.liacs.nl/mirflickr/
8http://lear.inrialpes.fr/people/guillaumin/data.php

In all experiments, we use 5-fold cross validation.

Specifically, we split the data evenly into 5 folds and take

turns choosing 4 folds for training and using the remain-

ing 1 fold for testing. In each training step, we further

divide the training data into 5 parts and pick up 4 part-

s for testing and choose the remaining 1 part as the val-

idation to tune the best regularization parameter γ from

log2γ ∈ {−20,−19,−18, ..., 19, 20}. We repeat the above

procedure 5 times and report the average classification re-

sults.

Moreover, we compare our proposed method with the

following state-of-art multi-label classification methods:

K Nearest Neighbor (KNN), where we set K as 1 (1NN)

for its simple and intuitive interpretation, that is, we predict

the annotations of the testing data as the ones of its nearest

neighbor.

Support Vector Machine (SVM). We consider the an-

notations as independent ones and use one V.S. the rest strat-

egy to predict the annotations one by one, where we chose

the linear kernel and set C as 1.

Besides the above two fundamental methods, in our ex-

periment we compare the following multi-label dimension

reduction methods as well:

Multi-Label LDA (MLDA) [11] is extension of classi-

cal Linear Discriminate Analysis for solving the multi-label

classification problem. With the new defined with-class and

between class scatter matrix, it can take advantage of the

prior knowledge, that is, the class-wise correlation.

Multi-Label Informed Latent Semantic Indexing
(MLSI) [17] is an approach to extend unsupervised latent

semantic indexing (LSI) to utilize the provided supervision

information.

Multi-Label Dimension Reduction via Dependen-
t Maximization (MDDM) [19] is a method to identify

a lower-dimensional subspace by maximizing the depen-

dence between the original data and the associated anno-

tations.

Multi-Label Least Square (MLLS) [3] is a method to

extract the common subspace shared by multiple annota-

tions. However, the way that MLLS takes advantage of

the annotation information is different with our proposed

method. In [3], if we denote the data matrix as X ∈ R
d×n

and annotation indicator matrix as Y ∈ R
n×c, then MLL-

S explores the linear annotation information by calculating

XY Y TX only without the graph information.

What is more, with the development of feature selection

methods, more and more filter methods or their variations

can be used to reduce the dimension of feature and further

boost the multi-label classification performance. For sake of

completeness, we compare them in our experiment as well.

In [5], Kong et al proposed Multi-Label ReliefF (MRF)
and Multi-Label F-Statistic (MF) to extend the traditional

reliefF and F-statistic tackling feature selection problem for
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Table 2. Classification performance comparison by 5-fold cross validations on the six multi-label image data sets.

Data Metrics 1NN MLLS MDMI MLSI SVM MLDA MRF MF LSG21

BARCELONA

Macro Pre 0.7553 0.7220 0.7147 0.7518 0.7246 0.7091 0.7546 0.7669 0.8109
Macro F1 0.7596 0.7235 0.7243 0.7589 0.7567 0.7198 0.6994 0.7222 0.7104
Micro Pre 0.7296 0.6729 0.6607 0.7101 0.6366 0.6667 0.7498 0.7712 0.7741
Micro F1 0.7267 0.6702 0.6672 0.7123 0.6246 0.6721 0.6920 0.7216 0.6690

SCENE

Macro Pre 0.6874 0.4722 0.5898 0.5402 0.6721 0.5936 0.6874 0.6920 0.6931
Micro Pre 0.7053 0.4731 0.6058 0.5559 0.6854 0.6083 0.7054 0.6874 0.7055
Macro F1 0.6825 0.4722 0.5908 0.5409 0.6726 0.5944 0.6825 0.6844 0.6748
Micro F1 0.6864 0.4719 0.6039 0.5523 0.6485 0.6069 0.6863 0.6896 0.6821

TRECVID05

Macro Pre 0.5271 0.5152 0.5150 0.5107 0.4582 0.5162 0.4687 0.4688 0.5617
Macro F1 0.5436 0.5311 0.5274 0.5254 0.5501 0.5300 0.4745 0.4745 0.5664
Micro Pre 0.4376 0.4108 0.4110 0.4082 0.3872 0.4115 0.3414 0.3414 0.4425
Micro F1 0.4356 0.4147 0.4098 0.4102 0.3933 0.4125 0.4145 0.3422 0.4213

PASCAL06

Macro Pre 0.4613 0.3907 0.4099 0.3987 0.3874 0.4122 0.4468 0.4616 0.5239
Macro F1 0.4681 0.3920 0.4122 0.4016 0.4052 0.4133 0.4541 0.4681 0.5081
Micro Pre 0.4485 0.3727 0.3875 0.3715 0.4131 0.3901 0.4306 0.4447 0.5226
Micro F1 0.4460 0.3724 0.3906 0.3741 0.4055 0.3914 0.4313 0.4657 0.4957

PASCAL07

Macro Pre 0.3261 0.3131 0.3096 0.3028 0.3477 0.3135 0.3137 0.3195 0.3799
Macro F1 0.3411 0.3221 0.3187 0.3128 0.3029 0.3229 0.3258 0.3324 0.4065
Micro Pre 0.2346 0.2149 0.2117 0.2082 0.2078 0.2189 0.2202 0.2218 0.3092
Micro F1 0.2320 0.2149 0.2135 0.2110 0.2111 0.2202 0.2139 0.2209 0.3069

MIRFLICKR08

Macro Pre 0.3489 0.3417 0.3484 0.3443 0.3574 0.3522 0.3388 0.3452 0.3814
Macro F1 0.3500 0.3536 0.3579 0.3520 0.3574 0.3619 0.4281 0.4368 0.4672
Micro Pre 0.2260 0.2291 0.2308 0.2296 0.2371 0.2243 0.2381 0.2393 0.2646
Micro F1 0.2234 0.2200 0.2247 0.2238 0.2281 0.2287 0.2760 0.2762 0.3172

multi-label data. In addition, they used 1NN as the classifi-

er to evaluate the multi-label classification performance on

10% to 70% selected features and reported the best multi-

label classification result based on a certain number of se-

lected features.

5.3. Multi-Label Classification Results

Two standard multi-label classification performance

metrics precision and F1 score are used to evaluate image

annotation performances. In our experiment, we report both

macro and micro results in Table. 2. As can be observed

from the table, first of all, correlations between annotations

can indeed boost the classification performance compared

with the methods that consider annotation classification in-

dependently, like SVM. Moreover, given the same graph

structure, our proposed graph structured sparse multi-label

learning method can consistently beat those dimension re-

duction methods as well as feature selection methods in-

vented for multi-label classification on most data sets. For

Barcelona data set, because there are only 4 class annota-

tions, the recall of our method is lower than that of KNN

method. Therefore, although the precision of our method is

higher, we get a less macro and micro F1 score.

5.4. Enhanced Coefficient Matrix W ∗ by Graph
Structured Sparse Learning Model

In Fig. 3, we plot the flowchart of the proposed

method for demonstration purpose. Given an image hav-

ing “Chairs”, “Dinning table”, “Person” inside, the anno-

tation affinity matrix shows the correlation values between

these semantic terms. Because semantic terms “Chairs” and

“Dinning table” often appear together and have large cor-

relations, the weight of edge connecting them in the label

relational graph G is large. Thus, their regularization term

has large contribution in training process (in right-bottom

panel), such that the learned coefficient matrix W ∗ show-

ing these correlations.

From the middle-bottom panel in Fig. 3, we can see that

the learned W ∗ is sparse, shrunk by the �2,1-norm with the

help of pairwise annotation correlation information, which

is shown in the top panel. We mark the coefficient visualiza-

tion results of “Chairs”, “Dinning table” by the blue circle.

Obviously two semantic terms show similar weight coeffi-

cient structures, i.e. these two classes share similar visual

features. In testing phase, the input feature vector multiplies

W ∗ to predict labels. The existing methods didn’t consid-

er the shared structure between correlated semantic terms,

hence they predict “Dinning table”, but miss “Chairs” in the

prediction. Our graph structured sparse multi-label learning

model can correctly predict both labels due to the shared

similar weight structures in W ∗.

6. Conclusion

In this paper, we model the label correlations using the

relational graph, and propose a novel graph structured s-
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Figure 3. The flowchart of the proposed method. With the higher correlation weight, like the one between “Chairs” and “Dinning table”,

�2,1-norm will shrink the coefficient matrix based on different weight values. And the higher weight will boost the multi-label classification

via graph structured sparse learning.

parse learning model to incorporate the topological con-

straints of relation graph to tackle multi-label classifications

problem. Moreover, it is a general method to incorporate

graph structure information to the supervised learning. De-

pending on the constructed graph, we prove that our pro-

posed algorithm can guarantee to converge. Extensive ex-

periments have been conducted on six multi-label data set-

s. Compared with multiple state-of-art multi-label classifi-

cation methods, our method consistently achieves superior

classification result with respect to both precision and F1

score in macro as well as micro cases.
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