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Abstract

Inspired by the close relation between nearest neighbor
search and clustering in high-dimensional spaces as well as
the success of one helping to solve the other, we introduce
a new paradigm where both problems are solved simultane-
ously. Our solution is recursive, not in the size of input data
but in the number of dimensions. One result is a cluster-
ing algorithm that is tuned to small codebooks but does not
need all data in memory at the same time and is practically
constant in the data size. As a by-product, a tree struc-
ture performs either exact or approximate quantization on
trained centroids, the latter being not very precise but ex-
tremely fast. A lesser contribution is a new indexing scheme
for image retrieval that exploits multiple small codebooks to
provide an arbitrarily fine partition of the descriptor space.
Large scale experiments on public datasets exhibit state of
the art performance and remarkable generalization.

1. Introduction
We often visualize a clustering process in two dimensions

as in Figure 1, where a number of centroids partition the

underlying space into Voronoi cells. Even with k-means,

which is arguably the fastest alternative at large scale, the

cost is dominated by the assignment of data points to the

nearest centroid. It is thus popular to solve this subproblem

by approximate search [20]. In the 2D discrete space of

Figure 1, one may envision solving first the inverse problem

of computing a distance map on the entire 2D grid, which

could then respond to assignment queries by lookup.

By analogy, one may envision image retrieval as a propa-

gation process on this grid, where query descriptors serve as

source points and a local distance map is generated around

these points. Indexed images have their descriptors dis-

tributed on the grid and only those at a specific range from

source points are retrieved. Weighting of points is possible

based on the distance to nearest query point, as specified by

the position on the grid where they are found.

But how about spaces of up to 128 dimensions as in

the case of SIFT descriptors? Unfortunately, the number

Figure 1. Clustering and space partitioning, visualized on 2D dis-

crete space. Coloring of Voronoi cells follows that of the corre-

sponding centroid; patch intensity follows the distance map.

of grid positions increases exponentially in the number of

dimensions, which prevents us from visiting or even repre-

senting the entire space. This is exactly our contribution in

this work: we use a 2D discrete grid not just as an anal-

ogy but to actually solve clustering or search problems in

higher-dimensional spaces. The key idea is that the grid

actually represents a 2d-dimensional space S. The two “di-

mensions” that we see in fact capture the discrete topology

of two subspaces SL, SR, each of d dimensions, that de-

compose S into a Cartesian product S = SL × SR.

In a clustering setting, and assuming that we see cen-

troids as point sources and do compute a distance map via

propagation from the sources to the entire grid, it is possible

to obtain a triangulation as a by-product, having the cluster

centroids as vertices as in Figure 1. The graph represent-

ing this triangulation captures exactly the discrete topology

of the space. Doing this for both SL and SR, we may ap-

ply the same idea to S, ending up with an algorithm that is

recursive in the number of dimensions.

In a retrieval setting, we do not even need a single code-

book for the entire descriptor space. We may start recur-

sion after decomposing e.g. into two or four subspaces,

of dimension 64 or 32 respectively for SIFT descriptors.
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This corresponds to splitting each vector to e.g. two or four

subvectors, each or which is assigned to a smaller code-

book [12]. Searching is then possible by first finding near-

est neighbors in each individual codebook [2]. We solve

this problem recursively as well.

2. Related work and contribution
Following the success of bag-of-words image retrieval over

fine codebooks [20], several attempts have been made to

alleviate loss incurred by quantization, including e.g. multi-

ple assignment [21], learning even finer codebooks [14], or

embedding more descriptor information [10].

Progress in nearest neighbor search has helped in this di-

rection: product quantization [12, 13] makes it possible to

approximate descriptor distances with a rather small space

overhead and the inverted multi-index [2] turns this idea into

indexing, inducing a very fine partition over the descrip-

tor space via multiple smaller codebooks. Multi-indices are

not new: [18] studies multi-index hashing for fast search in

Hamming space, and in this framework there are much ear-

lier studies like [7].

At the other extreme of a single codebook, scalar quan-
tization [4] offers a lightweight alternative that cannot be

turned into indexing. Other approaches decomposing or

structuring the underlying space exist, e.g. separable dic-

tionaries in the form of a Kronecker product [8]. All such

approaches decompose the input space only once and do not

explore the potential benefit of a hierarchy.

What has captured our attention is that both [12] and [2]

require a number of sub-quantizers that are assumed to be

trained by an independent clustering algorithm, as well as

a way to search into the small individual codebooks, pos-

sibly using an independent nearest neighbor search algo-

rithm. On the other hand, it is known that clustering for

large codebook construction benefits by approximate near-

est neighbor (ANN) search, e.g. in the assignment step of

approximate k-means, requiring an independent ANN al-

gorithm e.g. randomized k-d trees [15].

Our work provides a deeper investigation into this con-

nection. Using a second order index makes search appear

much like local distance propagation on a 2D grid, except

that raw/column ordering on the grid are local, i.e. they de-

pend on the query. During clustering, one requires millions

of queries to the very same points: the cluster centroids.

If the codebooks and consequently the grid are small com-

pared to the number of data points, it makes sense to prop-
agate from centroids to the entire grid rather than to
make queries in the opposite direction. Based on this

idea, we make a number of contributions.

1. We introduce a new clustering paradigm where near-

est neighbor search is handled by distance propagation

on a grid. We devise a dimensionality-recursive vari-

ant of k-means that is self-contained, i.e. it does not

need another algorithm for any sub-problem.

2. We exploit the recursive nature of the algorithm to for-

mulate a tree structure that provides approximate or

exact vector quantization. The former is used during

training and the latter for indexing of new data. It is

probably the first time to perform vector quantization

by lookup in up to 64 dimensions.

3. We explore the use of a higher-order index in the con-

text of image retrieval where we suggest a simple

search alternative to existing solutions that scales to

effective codebook size up to 256 and multiple assign-

ment neighborhoods of up to 228 cells.

Cartesian k-means [17] is another k-means variant on a

Cartesian product but involves no hierarchy and rather fo-

cuses on optimizing subspace selection and rotation, both

represented by an orthogonal matrix. Optimized product
quantization [6] develops the same idea independently, but

also offers a parametric solution that optimizes prior to clus-

tering, which could be combined with our work.

State of the art work on image retrieval focuses on post-

processing and re-ranking methods to improve precision,

for instance query expansion [5, 1], geometry [20, 19, 25],

feature augmentation [27, 1], or k-NN re-ranking [25, 22].

Such studies are beyond the scope of this work, which fo-

cuses on potential improvements from codebook design and

descriptor nearest neighbor search. More relevant are meth-

ods embedding descriptor information like [11] or the more

recent [23, 26]. These are largely complementary, since our

primary contribution concerns off-line processes.

3. Dimensionality-recursive clustering
The basic procedural part of our clustering algorithm is k-

means. This includes random initialization for a predeter-

mined number of centroids, as well as iterative assignment

of points to centroids and centroid update to optimally rep-

resent the underlying points. We adopt a bottom-up descrip-

tion, from the one-dimensional base case to recursion in

higher dimensions. While the former appears like a simple

problem, it actually prepares the ground for the latter.

3.1. The base case: one dimension

Given a set X of N data points lying on a bounded interval

I = [a, b) of R and a target number K > 1 of centroids, we

first construct a uniform partition {x0, . . . , xB} of I with

B � K and xi = a + �i for i = 0, . . . , B, where � =
(b − a)/B. We thus form a set B = {b0, . . . , bB−1} of

subintervals called bins, where each bin bi = [xi, xi+1) is

of constant length �. By scalar quantization, we allocate

each point x ∈ X to bin bs(x) ∈ B with

s(x) = �(x− a)/�� . (1)
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Let Z = {z0, . . . , zB−1} denote the set of midpoints of

subintervals in B. Using Z as a discrete representation of

interval I , the above is equivalent to approximating each

x ∈ X through a map h : I → Z with

x �→ h(x) = zs(x) = a+ �s(x) + �/2. (2)

Denoting by Xi = X ∩ bi = {x ∈ X : s(x) = i} the set

of data points allocated to bin bi, we empirically measure a

finite probability distribution f , where

fi = |X ∩ bi|/N = |Xi|/N (3)

is the normalized histogram frequency of data in bin bi, for

i = 0, . . . , B− 1. In fact, we may now discard the data; the

distribution contains all the information we need for the re-

maining steps. This approximation may seem unnecessary,

but is a critical component of the recursive case.

We initialize by sampling K points out of Z with

replacement, according to distribution f . Let C =
{c0, . . . , cK−1} be the set of distinct sampled points; this

is the initial set of centroids, which we represent as a se-

quence in ascending order. It is straightforward to see that

it will remain so during course of the algorithm.

The set of centroids determines a quantizer, i.e. a func-

tion q : I → C that maps a point to the nearest centroid,

x �→ q(x) = argmin
c∈C

‖x− c‖. (4)

The assignment step involves only the restriction q∗ : Z →
C of q to Z, i.e., computing q(z) and storing it as q∗[z] for

all z ∈ Z. This is achieved by partitioning Z into Voronoi

cells, one for each centroid. The (discrete) Voronoi cell Vk

of centroid ck ∈ C is the set of points z quantized to ck,

Vk = {z ∈ Z : q(z) = ck}. (5)

Literally computing Voronoi cells is an easy task in one di-

mension: because centroids are ordered, we find all mid-

points between successive centroids. If mk is the midpoint

of interval [ck−1, ck) for k = 1, . . . ,K − 1 and we define

m0 = a, mK = b, then for all k = 0, . . . ,K − 1,

Vk = Z ∩ [mk,mk+1), (6)

and for all z ∈ Vk, we assign q∗[z]← ck. This operation is

clearly linear-time in |Z| = B.

The update step for centroid ck ∈ C simply requires

weighted averaging of points over its Voronoi cell Vk,

ck ←
∑

i:zi∈Vk

fizi. (7)

At termination, we approximate q(x) for x ∈ X (sec-

tion 4.1) and construct a graph G = {C,E} with edges

E = {(ck, ck+1)
1 : k = 0, . . . ,K − 2} between successive

centroids, representing a neighborhood system over I .

1Here (ck, ck+1) denotes a pair, not an open interval.

3.2. Recursion

Recursion assumes that a space S is decomposed into two

subspaces that have been clustered, each producing a set

of centroids, a set of labels for quantized data points, and

a graph representing its topology. Based on this subspace

information, we cluster S and produce exactly the same in-

formation for it. What we are actually doing is learning a
joint distribution from two marginal ones.

More formally, assume a 2d-dimensional space S de-

composed into a product SL × SR of d-dimensional sub-

spaces SL, SR, a set X of N data points lying on an in-

terval I = IL × IR of S, and a target number K > 1
of centroids in I . Let xL, xR be the projections of x onto

SL, SR respectively, that is, x = (xL, xR)2 for x ∈ X .

Also assume that the corresponding sets of projected points

XL, XR have been clustered, giving rise to two sets of

centroids CL, CR, each of cardinality J . Assume as well

that each projected point xL (respectively, xR) has been

quantized to qL(xL) ∈ CL (respectively, qR(xR) ∈ CR).

Finally, assume that two graphs GL = {CL, EL} and

GR = {CR, ER} representing neighborhood systems over

IL, IR respectively are available. Accordingly, a graph

G = {C,E} representing a neighborhood system over I
is to be computed as a by-product of clustering X .

Let Z = CL × CR be a grid of B = J × J points in

S. As in the one-dimensional case, we see Z as a discrete

representation of I giving rise to a set of bins, and we ap-

proximate each x ∈ X via a map h : I → Z as

x �→ h(x) = (qL(xL), qR(xR)). (8)

If Z is written as {z0, . . . , zB−1}, let f denote the finite

probability distribution as measured empirically by normal-

ized frequencies of data points into bins, such that fi is

the probability of zi. We then initialize centroids C =
{c0, . . . , cK−1} by sampling K points out of Z with re-

placement, according to distribution f .

The problem in the assignment step is to quantize each

point z ∈ Z to the nearest centroid q(z) ∈ C. This is cer-

tainly harder than (6) in the one-dimensional case and is in

fact the bottleneck of the algorithm. We leave this discus-

sion for section 3.3. The update step is identical to (7).

At termination, we map centroids to the nearest points in Z
(via (8)) and approximate q(x) for all x ∈ X (section 4.1).

Graph G is computed once at the final assignment step, also

discussed in section 3.3.

Discussion and analysis. This new k-means variant is

called dimensionality-recursive clustering (DRC). It can be

applied recursively on the number of dimensions to cluster

points in R
D where D is a power of 2 or indeed any in-

teger, with slight modifications. This takes log2 D levels

of recursion and its output is not merely a set of centroids

2xL, xR are d-tuples; (xL, xR) is their concatenation into a 2d-tuple.
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and a corresponding set of labels for the data points, but a

tree structure that can perform approximate or exact near-

est neighbor search over the centroids, as discussed in sec-

tion 4. DRC may be generalized to any space that can be

hierarchically decomposed into Cartesian products of sub-

spaces where clustering can be solved more easily.

An interesting aspect of this new clustering paradigm is

that not all data are required in memory at the same time:

whenever probability distribution f is available over Z, we

are free to discard labels qL(xL), qR(xR), while data points

xL, xR are never actually stored. Given N D-dimensional

data points, the space needed for data is O(N) instead of

O(ND). On the other hand, O(K2) space is needed to

represent grid Z, and this limits the size of produced code-

books. K is assumed to increase with dimensionality d.

3.3. Propagation

The problem of the assignment step is to compute

q(z) (4) and store it as q∗[z] for all z ∈ Z = CL × CR.

This is equivalent to computing a distance map over Z with

C as source points, and can be solved efficiently by dis-

tance propagation using a fast marching method [24]. How-

ever, domain Z is not a 2D space here. The underlying

space topology is represented by graphs GL, GR, which

in fact describe triangulations over CL, CR respectively.

Hence a fast marching method over a triangulated domain

applies [3], except for the fact here we have a product of

two such domains.

Our algorithm, called product propagation (PP), is remi-

niscent of Dijkstra’s algorithm as any fast marching variant

and is outlined in Algorithm 1. The key data structure is a

min-priority queue Q that lets us visit each point z ∈ Z ex-

actly once in ascending order of the distance to the nearest

centroid. This distance is maintained as property dist[z] for

all z and is the KEY value associated to z for Q.

To initialize, we map each centroid c ∈ C to h(c) as

given by (8) and use all mapped points as sources, to enter

Q first. At each iteration, it is the underlying graphs that

guide exploration of the grid: given the current point z =
(zL, zR), we examine neighbors EL(zL), ER(zR) in turn

and propagate accordingly.

Centroids are sampled on the grid initially and mapped

again to the grid at termination. But during k-means it-

erations, they are arbitrary points in space S as computed

by (7). To measure the exact distance of a given point

x = (xL, xR) ∈ S to a point on z = (zL, zR) the grid, we

assume that the underlying codebooks can compute squared

Euclidean distances δL(xL, zL), δR(xR, zR) for the pro-

jected points. Then, the required (squared) distance is

δ(x, z) = δL(xL, zL) + δR(xR, zR). (9)

Since centroids remain constant during propagation, re-

quired distances δ(c, z) are efficiently found via (9) by look-

Algorithm 1: Product propagation

1 function (q∗, E)← PP(C,Z, h, δ;EL, ER, τ)
2 E ← ∅; initialize queue Q
3 for z ∈ Z do state[z]← ALIVE � initialize state

4 for c ∈ C do PUSH(c, h(c)) � initialize sources

5 while ¬Q.EMPTY() do
6 z ← Q.EXTRACT-MIN()
7 state[z]← FAR; c← q∗[z]
8 for y ∈ EL(zL) do SCAN(c, (y, zR))

9 for y ∈ ER(zR) do SCAN(c, (zL, y))

10 return (q∗, E)

11 function SCAN(c, z)

12 if state[z] = ALIVE then PUSH(c, z)
13 if state[z] = CLOSE then RELAX(c, z)
14 if state[z] = FAR then JOIN(c, z)

15 function PUSH(c, z)

16 dist[z]← δ(c, z); q∗[z]← c
17 Q.INSERT(z); state[z]← CLOSE

18 function RELAX(c, z)

19 d← δ(c, z)
20 if d < dist[z] then
21 dist[z]← d; q∗[z]← c
22 Q.DECREASE-KEY(z, d)

23 function JOIN(c, z)

24 if δ(c, z) + dist[z] < τ then
25 E ← E ∪ (c, q∗[z]) � update edges E

ing up precomputed values of δL, δR.

As a by-product, edges E of graph G are generated wher-

ever two propagating fronts meet. As shown in Algorithm 1,

edges can be updated during propagation. However, this is

in fact not repeated during every k-means iteration; it sim-

ply occurs once at termination.

The bottleneck of the entire clustering algorithm is dis-

tance propagation: with a binary heap for the priority

queue, the time complexity of propagation on a K × K
grid is O(eK2 logK), where e is the maximal degree of

the graph. A Fibonacci heap yields O(eK2), but is not any

faster in practice. To limit the queue length, we prune edges

as shown in line 24, where threshold τ is specified as a frac-

tion of the average distance of all centroids to all bins. There

is no guarantee that the entire grid will be explored at termi-

nation under pruning, but in practice we have verified that

with τ = 0.35, all grid positions are indeed visited.

4. Dimensionality-recursive quantization
The outcome of clustering as described so far is a set of cen-

troids, a set of data labels, and a graph representing a neigh-

borhood system. But there is more than that. Clustering of

one space relies on clustering of two underlying subspaces,
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and this recursive implementation gives rise to a tree struc-

ture: each produced codebook is a node in the tree and an

one-dimensional codebook is a leaf. This hierarchy refers

to subspace structure or dimensionality and not to locality

or data size as in typical hierarchical approaches [16].

Each codebook is equipped with appropriate informa-

tion to recursively respond to approximate or exact nearest

neighbor queries over its centroids, simply by delegating

queries to its child nodes and aggregating. The two op-

tions are separately discussed below. We refer to both as

dimensionality-recursive quantization (DRQ).

4.1. Approximate quantization

In one dimension, a given new point x in interval I can

be mapped to z = h(x) ∈ Z, exactly as we did during

training (2). In turn, z is mapped to a unique centroid q(z) ∈
C, and q∗[z] is stored for all z ∈ Z. Hence a leaf codebook

can approximate q(x) by q(z) = q∗[h(x)] ∈ C via scalar

quantization followed by lookup.

In the general 2d-dimensional case, given a new point

x = (xL, xR) ∈ I , the child codebooks can generate ap-

proximations of qL(xL), qR(xR) respectively. This gives

rise to a point z = h(x) on the grid (8). The node has again

q∗[z] stored for all z ∈ Z, so it can approximate q(x) by

q(z) = q∗[h(x)] ∈ C via simple lookup.

Vector quantization via a sequence of scalar quan-
tization and lookup operations achieves unprecedented

speed as we shall see in section 6. For a space of dimension-

ality D that is a power of 2, only D scalar quantizations and

2D− 1 lookups are needed. The time complexity, O(D), is

then constant in K. Alas, its precision is not adequate e.g.

for labeling new vectors for retrieval applications. Still, this

kind of vector quantization is enough for training purposes.

This is exactly how we implicitly treat input data during the

assignment step of k-means, and it renders training virtually

constant in the data size.

4.2. Exact quantization

In one dimension, each leaf codebook stores the original K
scalar centroids, so given a new point x ∈ I it can respond

with a K-vector of squared distances δ(x, c) = (x− c)2 of

x to all centroids c ∈ C.

In the recursive case, given a new point x = (xL, xR) ∈
I , the node first requests from its child codebooks the

squared Euclidean distances δL(xL, zL), δR(xR, zR), for

all zL ∈ CL and all zR ∈ CR. It then computes δ(x, c)
according to (9) for all c ∈ C. At the root of the tree, x can

be quantized as

q(x) = argmin
c∈C

δ(x, c). (10)

The idea is similar to product quantization [12] which em-

ploys only one level of decomposition. We rather decom-

pose from the original space dimension D down to scalars.

The computation is self-contained because it does not re-

quire another algorithm for the sub-quantizers. It is exact

because node centroids are not arbitrary vectors but quan-

tized and stored as coordinates on the grid.

5. Image indexing and retrieval
Applied to nearest neighbor search or image retrieval, our

approach is tuned to rather small codebooks that can how-

ever quantize subspaces of the target descriptor space. We

focus on image retrieval, applying DRC and DRQ but

choosing to start recursing a number of levels below the tar-

get dimension D, yielding a forest of quantizers.

5.1. Multi-indexing

We assume n root codebooks, each of J centroids, inducing

a partition of the D-dimensional domain I into B = Jn

cells3. An input vector x ∈ S is now split into n sub-

vectors, each quantized separately by one of the codebooks.

As it stands, this representation is the same with product

quantization [12]. However, instead of storing quantized la-

bels per input data, it is possible to invert the representation

when n is small, actually storing input data per label.

This leads to multi-indexing, that is, encoding index cells

by n different codes and storing data appearing within each

cell; n is called the order or dimension of the index. For

instance, the inverted multi-index [2] focuses on the second-

order case n = 2, performing full inversion. As explained

in section 6, we attempt larger n where full inversion is not

possible because the effective codebook size Jn becomes

prohibitive. For instance, J = 4096 = 212 and n = 4
yields a partition of B = 248 cells.

For this reason we follow partial inversion, that is, we

marginalize this fine partition along one or more dimen-

sions. In our experiments for instance, we keep J2 cells for

inverted indexing in two dimensions, and embed the labels

for the remaining two dimensions along with data. With 12
bits required for each label, this takes 24 bits per data point

in addition to the image id, which is only stored once per

point. Varying J and n may give more options in the design

of a large scale retrieval system.

5.2. Retrieval

Searching in a higher-order index is certainly more demand-

ing than in a plain inverted file. Because of the extremely

fine partition, multiple cells need to be looked up, in the

spirit of multiple assignment [21]. That is, choose the k
nearest neighbors per codebook for each query vector by

the exact search (section 4.2), and then search among the

kn possible neighbor cell combinations. The cost is expo-

nential in the order of the index.

3In the context of clustering in section 3, these are referred to as bins,

while (Voronoi) cells are collections of bins, one per centroid. The termi-

nology here is aligned to related work.
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One solution is the multi-sequence algorithm of [2], a

simplified version of distance propagation in two dimen-

sions, which visits cells in ascending order of distance from

the query cell. However, it needs to explicitly store state per

cell and this is prohibitive for large kn, especially for image

retrieval where thousands of queries are needed.

Another solution is to store n separate indices and search

each independently for only a fraction of the k neighbors,

generating n candidate lists to be verified against each

other [18]. This is faster and avoids the kn storage per query

point, but multiplies the index size by a factor of n.

We rather follow a simple scheme that we call rank sum:

we pre-compute all n-tuples α = (α0, . . . , αn−1) with sum

|α| =
n−1∑

i=0

αi ≤ k (11)

and use them to visit all neighbor combinations having sum

of ranks up to k. This choice approximates the neighboring

cells visited by the multi-sequence algorithm but avoids the

kn storage and is much faster especially for large n, because

neighbors are precomputed.

Entries found in all neighboring cells are weighted by an

asymmetric distance between uncompressed query vectors

and quantized database vectors. Formally, given query x =
(x0, . . . , xn−1), each of the k-nearest neighbors zij ∈ Ci in

codebook i for j = 0, . . . , k−1, is associated with an exact

squared Euclidean distance δi(xi, zij) for i = 0, . . . , n− 1.

Then, the squared distance to neighboring cell

zα = (z0α0
, . . . , zn−1

αn−1
) (12)

is given by

δ(x, zα) =
n−1∑

i=0

δi(xi, ziαi
), (13)

similarly to (9). Finally, entries found in a cell at squared

distance δ are weighted by w(δ) = e−δ/σ2

where σ is a

scale parameter, similarly to [21].

In the case of partial indexing, we only get a partial sum

of (13) from the position of a cell. This partial sum is com-

pleted per entry (image id) using codes embedded per entry

in the index. In other words, the cell contains a list of can-

didate neighbors and sum (13) is used to verify whether an

entry belongs to a true neighbor or not.

6. Experiments

Our main contribution refers to off-line processes, i.e.

dimensionality-recursive clustering (codebook training)

and vector quantization. On-line applications like nearest

neighbor search and image retrieval mainly serve as valida-

tion. We focus on the latter in this work.

K
log2 Kd for dimension d

time (m)
1 2 4 8 16 32

16K 6 7 8 9 11 14 129.96

8K 6 7 8 9 11 13 119.43

4K 6 7 8 9 10 12 20.07

2K 5 6 7 8 9 11 2.792

1K 5 6 7 8 9 10 2.608

512 4 5 6 7 8 9 0.866

4K Approximate k-means [20] 504.2

Table 1. Codebook setup and training times for varying codebook

size K. Codebook size Kd for dimension d is given as a power

of two. E.g., for K = 16K, we get 214 = 16K (target codebook

size) for d = 32, which is trained on a 211 × 211 = 2048× 2048
grid, since codebooks at the previous level d = 16 are of size

211. Times refer to n = 4 codebooks on the N = 12.5M 128-

dimensional SIFT descriptors of Oxford 5K.

6.1. Datasets and evaluation protocol

We apply our methods to specific object retrieval and eval-

uate on two public datasets, namely Oxford buildings [20]

and Paris [21], containing 5062 and 6412 images, as well as

55 queries each. We train codebooks on both datasets and

evaluate retrieval performance on the same or on different

datasets. At larger scale, we also use the additional 100K

distractor images provided with Oxford buildings. We refer

to datasets as Oxford 5K / Paris 6K without distractors, and

Oxford 105K / Paris 106K with distractors.

We use features detected with the modified Hessian-

affine detector and SIFT descriptors of [19], using the same

settings as in [19] including the gravity vector assumption,

producing e.g. a set of 12.5M features in total for Oxford

5K. We normalize SIFT descriptors as in RootSIFT [1], that

is, �1-normalize and take square root element-wise.

For vector quantization, we measure performance by

Recall@R, i.e., the proportion of queries for which the

nearest neighbor is ranked in the first R positions [12]. For

retrieval, we use the protocol of [20], measuring perfor-

mance by mean Average Precision (mAP), where good and

ok images are treated as correct and junk as if they are not

in the database. All times refer to single-threaded C++ im-

plementations on a 3GHz Core i7 CPU with 24GB RAM.

6.2. Results

Training. As discussed in the retrieval experiments, we

choose to focus on fourth order indices, that is, we decom-

pose the 128-dimensional SIFT descriptor space into n = 4
32-dimensional subspaces. Table 1 shows the setup of the

training process for varying target codebook size K. The

size Kd of each child codebook increases with the dimen-

sionality d of the underlying subspace. It is clearly seen that

the training time depends explicitly on the codebook size at

d = 16, which determines the size of the grid where the

root codebook is trained.
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K 16K 8K 4K 2K 1K 512

Approximate (μs) 0.95 0.83 0.80 0.73 0.80 0.90

Exact (ms) 1.19 0.79 0.51 0.26 0.21 0.11

Table 2. Vector quantization times per point for varying codebook

size, averaged over the N = 75K SIFT descriptors of the 55
cropped query images of Oxford 5K.

101 102

0.6

0.8

1

Recall@R

R KK == 16K

KK == 8K

KK == 4K

KKK == 2K2K

KK == 1K

KK == 512

Figure 2. Recall@R performance of approximate vector quantiza-

tion for varying codebook size, averaged over the query images of

Oxford 5K.

The above reveals that the bottleneck of the algorithm is

distance propagation on the grid. At the given sizes, training

is much more efficient than e.g. approximate k-means [20]

(25× faster); however at larger sizes it becomes impractical.

It is interesting that training is independent of the data size,

N . Averaging over 15 runs for K = 4K and N varying

from 2.5M to 12.5M, we have found that training time does

not increase with N .

Vector quantization. Table 2 shows average vector quan-

tization times. Our exact quantization comes at a speed

that offers a practical alternative over other approximate

schemes, and this is exactly what we have used to label im-

ages for indexing. For instance, FLANN [15] takes 0.118ms

per point on average at the same setup for a 4K codebook

using 200 checks, corresponding roughly to a precision of

98%. Our approximate, lookup-based scheme offers un-

precedented speed, but its performance is quite low as re-

vealed in Figure 2. Although this is not adequate for label-

ing images, it is still appropriate for training.

Indexing. Our initial target has been a second order index.

However, we have only achieved mAP performance up to

0.66 with codebooks of size up to 65K2, where behavior is

not much different than a standard inverted file and training

times become an obstacle. Although there is still space for

experiments, we have decided to move on to the unexplored

area of a fourth order index with codebook size J4.

0 50 100 150

0.6

0.65

0.7

k-nearest neighbors

m
A

P J = 16K

JJ = 8K= 8K

J = 4K

J = 2K

J = 1K

JJ = 512512

Figure 3. mAP performance versus k-nearest neighbors in our

fourth order indexing scheme for varying codebook size on Ox-

ford 5K, also trained on Oxford 5K.

Figure 3 shows that up to J = 2K, the behavior is sim-

ilar to standard multiple assignment: mAP exhibits a peak

and begins to drop due to additional distractor noise. The

situation changes radically for larger codebooks, however.

It appears that the space partition becomes so fine that mAP

continues to increase for large number of neighbors k, and

the only limit is the search time. We choose J = 4K be-

cause at k = 90 it outperforms the 8K codebook; and we

choose k = 90 to keep query times below one second for all

remaining experiments. At these settings, the average query

time is 989ms on Oxford 5K.

Retrieval. We focus on performance evaluation relating

codebooks, descriptor encoding and indexing. We compare

to methods using multiple assignment or embedding addi-

tional descriptor information, but not other complementary

re-ranking methods. We fix scale parameter σ2 to 0.05,

found to be optimal on all datasets. Table 3 compares our

solution to the state of the art on different combinations of

training and test sets or distractors.

We clearly outperform most methods. It is also remark-

able that searching on the same or on a different dataset

than the training one has little impact, unlike most known

methods. [19] is superior at the Oxford5K/Oxford5K com-

bination, but using a different test set is more important in

general to avoid over-fitting behavior. [14] is superior when

using alternative words, but this method is not really com-

parable as it employs large scale learning over a different

training set of millions of images using geometry.

7. Discussion
We have investigated the relation between nearest neighbor

search and clustering in high dimensional spaces, provid-

ing deeper insight and a new paradigm that may open new

directions in numerous applications. We have shown that
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Training set Oxford 5K / other [*] Paris 6K / other [*]
K MA Other

Test set Ox5K Ox105K Pa6K Pa106K Ox5K Ox105K

This work 0.716 0.657 0.696 0.584 0.703 0.640 4K4 �
Perdoch et al. [19] 0.717 0.568 — — 0.558 0.423 1M

Arandjelovic et al. [1] 0.683 0.581 — — — — 1M

Shen et al. [25] 0.649 0.568 — — — — 1M

Philbin et al. [21] 0.614 0.498 — — 0.403 0.290 1M

Philbin et al. [21] 0.673 0.534 — — 0.493 0.343 1M �
Philbin et al. [20] 0.618 0.490 — — — — 1M

Jegou et al. [10] — — — — 0.615 0.516 200K � HE, WGC

Jegou et al. [9] — — — — 0.647 — 20K � HE, WGC

Mikulik et al. [14] — — 0.625* 0.533* 0.618* 0.554* 16M �
Mikulik et al. [14] — — 0.749* 0.675* 0.742* 0.674* 16M * Learning

Table 3. mAP performance on different combinations of training and query / test sets, comparing our work to number of state of the art

methods. K = codebook size. MA = multiple assignment. HE = Hamming embedding. WGC = weak geometric consistency.

a single recursive data structure is enough for all related

problems, from codebook construction and database label-

ing, to indexing and search. In image retrieval, we have

investigated higher order indices that offer remarkable gen-

eralization but do not scale well, hence mostly serve as a

validation for our off-line solutions. A coarse/fine approach

would be more practical as in [12]. Nearest neighbor search

is another application we are currently investigating.
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