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Abstract

In this paper a notion of flow complexity that measures
the amount of interaction among objects is introduced and
an approach to compute it directly from a video sequence
is proposed. The approach employs particle trajectories as
the input representation of motion and maps it into a ‘braid’
based representation. The mapping is based on the obser-
vation that 2D trajectories of particles take the form of a
braid in space-time due to the intermingling among parti-
cles over time. As a result of this mapping, the problem of
estimating the flow complexity from particle trajectories be-
comes the problem of estimating braid complexity, which in
turn can be computed by measuring the topological entropy
of a braid. For this purpose recently developed mathemati-
cal tools from braid theory are employed which allow rapid
computation of topological entropy of braids. The approach
is evaluated on a dataset consisting of open source videos
depicting variations in terms of types of moving objects,
scene layout, camera view angle, motion patterns, and ob-
ject densities. The results show that the proposed approach
is able to quantify the complexity of the flow, and at the
same time provides useful insights about the sources of the
complexity.

1. Introduction
Motion or flow analysis has been an important area of

research in computer vision and over the decades signifi-

cant advances have been made in solving the problems re-

lated to motion estimation [14, 18], tracking of moving ob-

jects [15, 16, 17], motion segmentation [19, 20, 21] and

motion pattern understanding [22, 23]. In general, all mo-

tion analysis methods work under certain assumptions about

the nature (or complexity) of motion. For instance, assump-

tions about a sparse or a dense flow field, planar or non-

planar motion, number of independently moving objects,

etc., are implicitly encoding author’s or practitioner’s be-

lief about the complexity of the motion that can be handled

by their algorithm. The question arises, is there an objec-

tive way to measure this complexity directly from a video

(a) (b) (c)

(d) (e) (f)

Figure 1: Frames from videos depicting movements with

different level of flow complexity. (a) Athletes participating

in a marathon, (b) People crossing a street, (c) Pilgrims per-

forming Hajj, (d) People walking in random directions, (e)

A school of fish, and (f) A colony of ants.

sequence, thus making the notion of motion or flow com-

plexity explicit?

In this paper we attempt to address this question by

proposing a measure that quantifies the flow or motion com-

plexity. For this purpose, the flow complexity is considered

as a measure that captures the amount of collective inter-
action among objects resulting due to the kinematic and

mixing properties of the underlying optical flow field. The

unique kinematic and mixing properties of a flow could be

a result of one of many possible factors that include pres-

ence of high density of objects in a scene, frequent spatial

alteration between positions of objects, magnitude of ob-

ject velocities, articulated movement of parts of an object,

chaotic motion, or transition between flows of qualitatively

different dynamics (e.g. from free to congested flow).

To further elaborate the notion of flow complexity, we

show frames from several video sequences in Fig. 1. These

videos depict a variety of scenes and motion patterns includ-

ing athletes in a marathon (Fig. 1a), groups of people merg-

ing (Fig. 1b & 1d), thousands of people circling in an ex-

tremely dense formation (Fig. 1c), a school of fish (Fig. 1e)
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and a colony of ants (Fig. 1f). While many current meth-

ods can compute optical flow, segment motion patterns, and

track objects in these videos, there is a lack of approaches

that can objectively answer the question: what is the com-

plexity of flow in these sequences? Is the flow resulting

from a large number of athletes in a marathon more com-

plex than the motion of a small group of people crossing

the street? How complex is the flow of a dense crowd in

Fig. 1c? Can we compare the complexity of flows gener-

ated by different entities, e.g., an ant colony vs. a school of

fish?

The approach proposed in this paper to compute flow

complexity has several ingredients. First, particle trajec-

tories are used as the representation of the flow in a video.

This allows capturing of flow dynamics over longer dura-

tion of times. The trajectories may correspond to interest

points (e.g. KLT) [17], complete objects or their parts. Sec-

ond, we make a key observation that 2D trajectories of par-

ticles take the form of a braid in space-time due to inter-

mingling (or interaction) among the objects observed in a

video. A braid is defined as any complex structure or pattern

formed by intertwining three or more strands. The common

notion of intertwining in braids and intermingling in trajec-

tories is what allows us to make the connection between the

two. As a result, the problem of estimating the flow com-

plexity is mapped into the problem of estimating the braid

complexity, which in turn can be computed by measuring

the topological entropy of the braid. The topological en-

tropy can be used as a measure of flow complexity because

the degree of entanglement of trajectories over time, which

signifies the complexity of the underlying flow, is directly

proportional to the topological entropy of the corresponding

braid. Third, we compute the topological entropy of a braid

using several mathematical tools from braid theory [11, 8].

These tools allow rapid computation of topological entropy

even with a large number of trajectories [11, 8]. The terms

braid entropy, flow entropy and topological entropy will be

used interchangeably in the text.

2. Related Work
There are several pieces of work that attempt to char-

acterize video sequences based on their motion content.

Primarily these approaches focus on using statistics de-

rived from magnitude, orientation, and regularity of instan-

taneous optical flow vectors. For instance, Chen et al. [1]

developed a motion entropy measure to distinguish high

motion intensity frames from low motion intensity frames.

Statistical distributions of both direction and magnitude are

employed for this purpose and the idea is that a set of reg-

ular motion vectors, which will appear more frequently in

a low motion intensity frames, would generate a lower en-

tropy (i.e. low motion complexity) while a set of irregular

motion vectors, which will appear more frequently in a high

motion intensity frames, would generate a higher entropy

(i.e. high motion complexity). Similar notion of motion en-

tropy has been used for video watermarking in [3]. On the

same lines Ma et al. [2] employed an entropy measure de-

fined on angle distributions of motion vectors while Liu et

al. [6] used magnitude between successive frames along the

dominant motion direction for characterization of motion in

a video sequence. Iyengar et al. [7] also developed motion-

based measures for quantifying temporal and spatial activity

as part of finding optimal video encoders.

The work of Peker et al. [4] is also closely related where

an attempt has been made to measure the subjective per-

ception of motion activity using a set of motion descriptors.

The descriptors are again based on optical flow vectors and

are designed to capture the mean, variance, and difference

of motion vector magnitudes. The motion activity is also

one of the motion features included in the visual part of

the MPEG-7 standard and has been used to describe the

level or intensity of activity, action, or motion in a video

sequence [5] .

The proposed algorithm differs from these works in two

aspects. First, our approach is based on a trajectory based

representation as opposed to the instantaneous optical flow

based representation. It has been shown by the body of work

on motion pattern analysis ([24][15][23]) that particle tra-

jectories integrate motion information over longer durations

of time, and therefore capture the dynamics of the underly-

ing flow in a more reliable and robust way. Second, our

approach explicitly takes into consideration the interaction

among objects (see Sec. 3.5) while measuring the flow com-

plexity. As interactions among objects emerge overtime,

statistics derived from instantaneous optical flow are not

suitable to characterize interaction driven motion complex-

ity. In addition, the need to capture interactions naturally

leads to a trajectory-based formulation for which sound the-

oretical framework of braids is well suited.

The main contributions of this work are: (1) a trajectory

based formulation of flow complexity that explicitly takes

into consideration object interactions, and (2) introduction

of several techniques from braid theory to the computer vi-

sion community which could be used to analyze trajectory

representations in several other problem areas (e.g. action

recognition, motion segmentation etc.).

3. Algorithm Overview
In this section, we describe various pieces of the pro-

posed flow complexity computation algorithm and discuss

their conceptual and implementation details.

Fig. 2 shows a high-level block diagram of the algorithm.

Given an input video, the algorithm starts by computing op-

tical flow between consecutive frames of the video (Step

1). The computed optical flow fields are stacked together to

generate a 3D flow volume through which a dense grid of
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Figure 2: A high-level block diagram showing algorithmic

steps of the flow complexity computation.

particles is advected (Step 2). The advection process gen-

erates a dense collection of trajectories which are sampled

to obtain a subset of N trajectories (Step 3). Next, N sam-

pled trajectories are mapped into a braid and a generator

sequence is computed for this braid by locating the precise

times at which particles exchange their positions along the

chosen projection axis (Step 4). In parallel, a collection

of K random loops, encompassing the N sampled trajec-

tories, are initialized and encoded using Dynnikov coordi-

nates (Step 5). The generators computed at Step 4 are ap-

plied to these loops to evolve them in time and their final

Dynnikov coordinates are obtained (Step 6). The length

of each loop is computed over time using Eq. 2 (Step 7).

The above process (Step 3 to 7) is repeated for M trajec-

tory sampling runs. Finally, the growth rate is computed for

fixed time intervals for each loop. The growth rate is aver-

aged over M runs and K loops (i.e. by M ×K) and a line

is fitted to the logarithm of the resulting growth rate. The

slope of the line is used as a measure of topological entropy

or flow complexity (Step 8). Each step is described next.

3.1. Optical Flow Computation

Given a video optical flow between consecutive pairs

of frames is computed [26]. From preliminary experi-

ments, it is observed that the exact choice of optical flow

algorithm is not critical, however, it is important to ob-

tain both small and large scale motion structures. Often

(a) (b) (c)

Figure 3: Trajectories obtained by advecting a grid of par-

ticles. (a) A high-angle view of a street intersection, (b) A

zoomed-in view of a street intersection, (c) a colony of ants.

due to explicit flow smoothness constraints small scale mo-

tion structures are not preserved during optical flow com-

putation [18]. However, these small scale structures can

contribute significantly to the complexity of the flow, es-

pecially in scenarios containing a dense collection of ob-

jects. Therefore, we lower the weight associated with the

smoothness term during optical flow computation which

helps in emphasizing both the large and the small scale mo-

tion. For a given interval (t, T + t), the optical flow fields,

U(t),U(t + 1), . . . ,U(t + T ), are pooled to generate a 3D

flow volume.

3.2. Particle Advection

The trajectory-based representation of the flow needs to

capture the kinematics and dynamics of the underlying flow.

For this purpose, particle advection is used to obtain a dense

collection of trajectories [24, 25]. Using advection has sev-

eral advantages: First, it provides a comprehensive cov-

erage of the underlying flow, and second it helps in side-

stepping the shortcomings of current object tracking algo-

rithms especially in presence of complex motion. The tra-

jectories for the interval (t, t+T ) are obtained by overlaying

a grid of particles on the first flow field, U(t). Next, a tra-

jectory [X(t+T ; t, x0, y0),Y(t+T ; t, x0, y0)] correspond-

ing to a particle at the grid location (x0, y0) is computed

by numerically solving the ordinary differential equations:
dx
dt = U(x, y, t), dy

dt = V (x, y, t), subject to the initial con-

ditions [X(t), Y (t)] = (x0, y0)]. Here U and V represent

two components of the optical flow, and interval (t+T ) rep-

resents the temporal duration of the 3D flow volume. Dur-

ing advection, cubic interpolation is used to obtain optical

flow values at sub-pixel locations. The typical choice of T
in our case is 5 seconds (or 150 frames at 30 fps). Currently,

particles are not reseeded once they leave the frame bound-

aries. A visualization of trajectories obtained through this

method is provided in Fig. 3.

3.3. Weighted Particle Sampling

Particle advection results in a large number of trajec-

tories (e.g. 76800 trajectories for a 240 × 320 resolution

video). Some of these trajectories originate from areas de-

picting dominant flows (e.g. pedestrian crossing) while oth-
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(a) (b) (c)

Figure 4: Sampled trajectories using the procedure de-

scribed in Section 3.3. The trajectories are sampled from

the dense collection of trajectories in Fig. 3.

ers may reside in portions of the video that usually do not

have significant motion content. Similarly, some trajecto-

ries may be fragmented while others may be longer in dura-

tion. To reduce the computational complexity of subsequent

steps, the number of trajectories are decreased through a

sampling step. The sampling is based on the observation

that a particle with a large displacement has a better chance

of capturing the dynamics of the flow, and therefore should

be preferred during sampling. A weight, w, is assigned to

each trajectory [x(t+T ; t, x0, y0), y(t+T ; t, x0, y0)], where

w is directly proportional to the sum of displacements

over time, i.e., Δd =
∑t+T−1

i=t sqrt((X(i + 1; i, xt, yt) −
X(i; i, xt, yt))

2 + (Y (i + 1; i, xt, yt) − Y (i; i, xt, yt))
2).

For sampling, the weights are normalized across all trajec-

tories so they sum up to 1 and represent a discrete density.

Sampling is performed from this discrete density with re-

placement. Examples of sampled trajectories are shown in

Fig. 4. A typical value of N = 50 is used during sampling.

3.4. Mapping of Trajectories to Braid

The sampled trajectories are next mapped into a braid.

A physical braid is defined as a collection of three or more

strands that are intertwined. Since trajectories are space-

time constructs and their intermingling results in intertwin-

ing as well, each trajectory can be considered as a strand

of a braid. Using this similarity, the geometric representa-

tion of a braid is obtained by projecting each trajectory into

the xt−plane [8]. This process is shown in Fig. 5b where

three trajectories (or strands) from Fig. 5a are projected onto

the plane containing the x- (or any other chosen axis) and

the time-axis. This projection captures the organization of

trajectories (i.e. which trajectory is next to or behind an-

other trajectory) and also preserves the crossing information

(along y-axis or the axis perpendicular to the chosen axis).

Note that exchange in positions along x-axis in the geomet-

ric representation of the braid is called a crossing. Another

important thing to note is that any braid is uniquely defined

by how the trajectories intertwine or cross in the projected

view. The trajectories can be perturbed but the braid will be

invariant to this perturbation as long as the direction, num-

ber, or order of crossing is not changed [9, 8].

From the implementation point of view, the trajectory
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Figure 5: (a) Trajectories corresponding to three particles

with cross representing the start and dot representing the

current position; (b) Geometric representation of the braid

where trajectories are projected onto the xt-plane; (c) Alge-

braic representation of the braid where trajectories are or-

dered and indexed in terms of their x-axis coordinate.
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Figure 6: (a) Demonstrates the process of computing cross-

ing times by finding line intersections. (b) Shows how index

locations of particles are updated and generator sequence is

created from the crossing time information.

projection starts by sorting the sampled trajectories in terms

of their position along the projection axis (e.g. x-axis) at

initial time t. The index of location resulting from the sort-

ing is assigned to each trajectory as its starting identity. For

instance, Fig. 6a shows four trajectories that are projected

onto the xt-plane and based on their positions are assigned

identities 1 to 4 . During the next time step, t to t+ 1, pair-

wise crossings between all trajectories are computed using

line intersection computation. For each resulting crossing

(e.g. the blue marker in Fig. 6a) three pieces of informa-

tion are saved: the time of the crossing (which is 0.153 in

Fig. 6a), the direction which is either clockwise or counter-

clockwise based on the value along y-axis at the time of

crossing (counter clockwise in Fig. 6a), and the order of the

trajectories before crossing (which is [2, 3] in Fig. 6a). After

all pairs of trajectories are analyzed, the resulting crossings

are collected and sorted by the time of crossing.

3.5. Generator and Crossing Time Computation

Generators are operators that act on a braid by taking a

pair of trajectories (or strands) and crossing them. They al-

low conversion of the geometric representation of the braid

into an algebraic representation, as shown in Fig. 5c. Here
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two generators act in a sequence where the first generator

causes the green trajectory to pass in front of the black tra-

jectory, while the second generator causes the black trajec-

tory to pass in front of the red trajectory.

A numerical value of a specific generator is assigned as

follows: The trajectories involved in the crossing are indi-

cated by their index location which becomes the magnitude

of the generator, and the direction of crossing (clockwise

or counter-clockwise) is indicated by the sign (positive or

negative) of the generator. Since geometrically it is only

possible to cross two adjacent trajectories, the magnitude of

the generator is set to the lower index of the trajectory in-

volved in the crossing. Fig. 6b shows a pictorial description

where the first generator switches the position of particle in-

dexed 2 with the particle indexed 3. Referring to a generator

by σ, the magnitude of the first generator becomes −2 due

to counter clockwise change in position. The subsequent

generators (σ2, σ3) update the index locations further. Each

generator is stored along with its crossing time as this in-

formation is needed for evolving the loops in Section 3.7.

We refer the readers to reference [8] for a comprehensive

description of the process of extracting generators from a

geometric representation of braids.

3.6. Loop Generation and Dynnikov Coordinate
Encoding

Now that trajectories are converted into a geometric rep-

resentation of braid and a sequence of generators is com-

puted, the next step is to utilize this information for com-

puting the entropy of the braid. This is achieved by using

the concept of a loop where loop is a non-self intersecting

closed curve or a region that passes around or encapsulates

a set of particles. An example loop is shown in Fig. 7 where

it is surrounding a sample consisting of four particles. The

intuition behind using loops is that the length of a loop sur-

rounding a set of particles involved in complex motion will

grow exponentially over time, while a loop surrounding par-

ticles that exhibit simple motion e.g., particles moving in a

straight line, will not grow rapidly. Therefore, the “growth

of a loop” can be used to infer entropy of the braid, and in

turn the complexity of underlying motion. The loop gen-

eration consists of two steps [8]: i) Symbolic Encoding of

Loops; and ii) Dynnikov Encoding.

Symbolic Encoding of Loops: The symbolic encoding of a

loop surrounding a set of particles is achieved by introduc-

ing a coordinate system which uniquely defines a loop. This

is possible as any non-self intersecting closed loop, wind-

ing around particles, can be reconstructed by counting the

number of intersections with fixed reference lines [8], for

instance green vertical line in Fig. 7. Intuitively the number

of intersections is capturing the information that how many

times a loop passes above, below or between particles.

Given reference lines, the encoding scheme for a ran-

�� = 2 �� = 4 �� = 4 
�� = 1 �� = 3 

�� = 3 �� = 1 

(a)

Figure 7: A closed loop encapsulating four particles. Verti-

cal reference lines are used to encode the loop in Dynnikov

coordinates [12] while the horizontal reference line is used

for computing length of the loop (see Eq. 2).

domly initialized loop around particles proceeds as follows:

Let μi counts the number of intersections of boundary of the

loop with the reference line above and below the particles,

and νi counts the number of intersections of the boundary of

loop with the reference lines in between the particles. The

number of crossings above and below the first and the last

particle (along the projection line) is not required as that

can be deduced from the other crossing information [9, 12].

Fig. 7 provides a visualization of this initial loop encoding

step where the above and below crossings and their magni-

tudes are μ1 = 1, μ2 = 3, μ3 = 3 and μ4 = 1, while the

midpoint crossings and their magnitudes are ν1 = 4, ν2 = 4
and ν3 = 2. For an N trajectory sample it requires 2N − 4
dimensional coordinates to encode one loop.

Dynnikov Encoding: The initial loop encoding is further

condensed using a minimal coordinate system called Dyn-

nikov coordinates [12]. This is done by taking difference

between adjacent μ and ν values, that is following opera-

tion is performed for i = 1 . . . (N − 2):

ai =
1

2
(μ2i − μ2i−1), bi =

1

2
(νi − νi+1), (1)

where N is the number of trajectories. The Dynnikov co-

ordinates are essentially a comparison of number of times

a loop passes above or below the (i + 1)th particle (cap-

tured by ai), and the number of times loop passes to the

left and to the right of (i + 1)th particle (captured by bi).
Both ai and bi are signed integers and they are concatenated

to generate Dynnikov coordinate representation of the loop,

u = (ai, . . . , an−2, bi, . . . , bn−2). This coordinate system

uniquely defines any loop by a sequence of integers, and

any even number of integers can be represented as a loop.

3.7. Generator Application

The loops encoded in Dynnikov coordinates are evolved

using the generators computed from the trajectory cross-

ings. The idea is that as generators are applied to the tra-

jectories, the loop surrounding the trajectories also moves.

The benefit of encoding a loop using Dynnikov coordinate
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is that there is a set of rules for updating the these coor-

dinates under the application of a generator. These rules

allow rapid computation of change in the position of the

loop due to a generator and prevent the need for a computa-

tionally intensive loop advection process. This also allows

the analysis of a large number of random loops, therefore

enabling the search of exponentially growing loops. The

rules are discussed in detail in [11]. It is pertinent to men-

tion that initialization of a loop is done in a random fashion,

and since a loop is represented by 2N − 4 coordinates, a

large number of possible loops can be generated for a N
trajectory sample. However, in the current implementation

only the loops with coordinate values between−1 and 1 are

considered. For a single run of the flow complexity compu-

tation, K different loops are initialized and their evolutions

are tracked under the application of generators.

3.8. Loop Length Computation

The next step is to measure the length of the loop for

which we use the result by Moussafir [11]. This result

demonstrates that the length of a loop is proportional to

the number of times the loop crosses (intersects) a line con-

necting all the particles (green horizontal line in Fig. 7). In

terms of Dynnikov coordinates, the number of intersections

L with the reference line for a loop q is [8]:

Lq =| a1 | + | an−2 | +
n−3∑

i=1

| ai+1 − ai | +
n−1∑

i=0

| bi |,
(2)

where b0 = −maxi≤i≤n−2(|ai| +max(bi, 0) +
∑i−1

j=1 bj)

and bn−1 = −b0 −
∑n−2

i=1 bi.

The growth rate of L(t) (dependence on q is removed for

clarity) is a measure of how fast the loop is growing with

time. If the rate of growth is slow or remains approximately

the same, the loop is surrounding particles exhibiting sim-

ple motion. On the other hand if the length is growing at

exponential rates, it surrounds particles with complex and

entangled motion. The growth of the loop is measured by

computing L(t) in intervals of 0.5 seconds (or 15 frames).

3.9. Braid Entropy Computation

The final step is to compute the topological entropy of

the braid. However, instead of directly computing the topo-

logical entropy we compute the braid entropy which is a

lower bound on the topological entropy. As more trajecto-

ries are included it converges to the topological entropy of

the underlying the flow (or dynamical system) [13, 10]. In

general the topological entropy of a dynamical system mea-

sures the loss of information under the dynamics, and this

loss happens usually in the presence of chaotic (or complex)

motion. Given the growth rate of a loop, the braid entropy,

Sb, is computed as [10]:

Sb = lim
t→∞

d

dt
logL(t). (3)

Here Sb is an approximation to braid entropy and captures

the the asymptotic growth rate of the logarithm of the length

of the loop L(t). Note that Sb is maximized over the choice

of loops, K. To obtain a single value, L(t) is averaged over

all M sampling runs, and slope of a line fitted to the loga-

rithm of the averaged L(t) is used as the magnitude of the

braid entropy. The value also represents the topological en-

tropy or motion complexity of the underlying flow.

4. Experiments and Discussion

4.1. Dataset & Experimental Setup

The approach is tested on a dataset depicting various

types of moving objects, scenes, camera viewpoints, motion

patterns and density levels. The types of objects include

groups of people, vehicles, school of fish, ants and syn-

thetic moving characters. In term of scenes, the dataset con-

tains videos taken at street intersections, religious gather-

ings, sports stadium and under-water. Similarly, the camera

viewpoint exhibits wide variations. In terms of motion pat-

terns, the dataset contains dominant flows of various shapes

and orientations, and flows resulting from intermingling of

objects, chaotic motion, and multiple independently mov-

ing objects. In total, the dataset consists of 50 videos with

each having 120 to 150 frames on average. 30 of the videos

are originally from the UCF crowd dataset. The amount

of variation in this dataset allows a realistic benchmark for

evaluating the performance of the proposed algorithm.

For each video the optical flow is computed as described

in Section 3.1. OpenCV based implementation is used with

default parameters except the value of α (the smoothness

term) is set to 0.01. Trajectories are obtained by advecting

a dense grid of particles through the flow and N = 50 tra-

jectories are sampled for further analysis. It is observed that

this choice of N is reasonable to capture the dynamics of the

flow in the current dataset. However, a more thorough ex-

perimentation is required to understand the dependence of

N on the computed flow complexity. In total M = 10 sam-

pling runs are performed to compute L(t) (Eq. 2). The final

value of L(t) is obtained by averaging growth rate over all

M runs. The braid entropy for a particular projection axis

is computed by fitting a line to the logarithm of averaged

L(t) as described in Section 3.9. The entropy computation

is repeated for 12 projection axis oriented from θ = 0◦ to

165◦ with a jump of 15◦ in between (see Fig. 8a). Finally,

the braid entropy averaged over all projection axis is used

as a measure of flow complexity in a video.
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Figure 8: (a) The 12 projection axis ranging from θ = 0◦

to 165◦; (b) The growth rate, logL(t), of all videos in

the dataset; (c) The computed braid entropy of each video

(sorted in descending order).

4.2. Flow Complexity Computation Results

This section presents quantitative and qualitative results.

Fig. 8b shows a plot of logL(t) (averaged over all 12 pro-

jection axis) as a function of time for all 50 videos in the

dataset. Based on the slope of the line fitted to each of these

curves, videos are categorized into three types of flow com-

plexity based on high, medium and low growth rates of the

logL(t). It is observed that the videos representing high

flow complexity contain dense motion at high speeds and

are also captured by a zoomed-in camera (i.e. trajectories

cover greater than 80% of image space). In the dataset this

corresponds to the videos of school of fish, fast moving ve-

hicles and zoomed-in view of street crossings (Fig. 9a to

Fig. 9c). This is intuitively understandable as fast moving

trajectories are able to perform many more crossings per

unit time thereby increasing the braiding factor. Similarly

flow at a street crossing, when observed by a zoomed-in

camera, becomes highly complex due to people walking in

opposite directions and articulated motion of arms and legs.

The medium complexity flows correspond to videos con-

taining zoomed-out views of crowds, usually from a high

angle view, where trajectories intertwine primarily due to

high density of objects. However, due to the zoomed-out

camera view (which translates to low resolution) trajecto-

ries travel for much shorter distances per unit time and as a

result the number of crossings drop. Fig. 9d to Fig. 9f show

keyframes from videos that fall in medium complexity cat-

egory. Finally, videos with low complexity flows contain

motion in a dominant direction (i.e. people running along

a path, traffic on a road, motion of synthetic characters in

one direction), or flows at extremely high density (almost

packing density) where it becomes hard for particles to ex-

change their positions (see Fig. 9h). This is an interesting

result as apparently this flow appears complicated due to the

shear number of people in the scene. When there is a domi-

nant motion, high braid entropy is observed only along few

projection axis. Fig. 9g to Fig. 9i show keyframes for low

complexity flow videos. The bar chart in Fig. 8c summa-

rizes the braid entropy, which is an average of braid entropy

over 12 projection axis, for all videos in the dataset.

(Rank 1) Entropy = 0.5756

(a)

(Rank 2) Entropy = 0.4703

(b)

(Rank 3) Entropy = 0.4682

(c)
(Rank 20) Entropy = 0.0708

(d)

(Rank 22) Entropy = 0.0692

(e)

(Rank 23) Entropy = 0.0670

(f)
(Rank 47) Entropy = 0.0070

(g)

(Rank 48) Entropy = 0.0063

(h)

(Rank 49) Entropy = 0.0047

(i)

Figure 9: Videos having high (top row), medium (middle

row) and low (bottom row) flow complexity.

Next we discuss the effect of projection axis on flow

complexity computation. For this purpose, for each projec-

tion axis percentage change in the entropy with respect to

the highest entropy value along any other axis is computed.

Then a mean of the percentage change is obtained over the

12 axis. The idea is that if the underlying motion is truly

complex, the percentage change in entropy should be small

(i.e. it is independent of the projection axis). On the other

hand if the percentage change in entropy is large, it sig-

nals the existence of a motion which is complex only along

certain axis. Based on this measure all videos are ranked

and a keyframes from one of the highest and lowest ranked

videos are shown Fig. 10. The logL(t) curves for all 12
projection axis is also displayed. It is observed that videos

least effected by the choice of projection axis are the ones

that usually have medium density of objects (people, ants

etc.) with relatively zoomed-in views. The objects in these

video move in all directions which results in a large number

of crossings along all projection axis. On the other hand,
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videos depicting flows with highest amount of percentage

change in braid entropy contain flows in a dominant direc-

tion (e.g. marathon, vehicles on a road). For example, the

video in Fig. 10c has one of the highest percentage change

in the braid entropy, with the highest entropy of 0.1 along

the projection axis oriented at 60◦ (see Fig. 8a) i.e., axis

slightly slanted with respect to the dominant direction of

motion, and the lowest entropy of 0.021 along the axis ori-

ented at 150◦ (i.e. almost perpendicular to the dominant

direction of motion).

(Rank 1) Mean Percentage Change = 0.2483
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Figure 10: Videos having low (top row) and high mean per-

centage change in braid entropy with respect to the projec-

tion axis.

Finally, Fig. 11 shows the flow complexity based order-

ing of videos displayed in Fig. 1.

(Rank 2) Entropy = 0.4703 (Rank 9) Entropy = 0.2251 (Rank 15) Entropy = 0.1174 (Rank 33) Entropy = 0.0424 (Rank 36) Entropy = 0.0353
(Rank 48) Entropy = 0.0063

Figure 11: Ordering in terms of complexity of flow (left

more complex - right less complex).

5. Conclusion
In this paper, a trajectory based formulation for flow

complexity is proposed. This formulation explicitly takes
into consideration object interactions and demonstrates that
braids resulting from intermingling of trajectories can be
used to compute the level of flow complexity in video se-
quences. The future work can take a number of possible
directions. For instance, dependence of flow complexity
on various design parameters (e.g. number of trajectories,
temporal scales, projection axis etc.) can be further ex-
plored and validated. In addition, the trajectory represen-
tation in combination with braid theory can be used to ad-
dress several other problem areas that include action recog-

nition, motion segmentation and abnormal behavior detec-
tion.
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