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Abstract
We propose a novel approach to segment hand regions in

egocentric video that requires no manual labeling of train-
ing samples. The user wearing a head-mounted camera is
prompted to perform a simple gesture during an initial cal-
ibration step. A combination of color and motion analy-
sis that exploits knowledge of the expected gesture is ap-
plied on the calibration video frames to automatically la-
bel hand pixels in an unsupervised fashion. The hand pix-
els identified in this manner are used to train a statistical-
model-based hand detector. Superpixel region growing is
used to perform segmentation refinement and improve ro-
bustness to noise. Experiments show that our hand detec-
tion technique based on the proposed on-the-fly training ap-
proach significantly outperforms state-of-the-art techniques
with respect to accuracy and robustness on a variety of chal-
lenging videos. This is due primarily to the fact that train-
ing samples are personalized to a specific user and envi-
ronmental conditions. We also demonstrate the utility of
our hand detection technique to inform an adaptive video
sampling strategy that improves both computational speed
and accuracy of egocentric action recognition algorithms.
Finally, we offer an egocentric video dataset of an insulin
self-injection procedure with action labels and hand masks
that can serve towards future research on both hand detec-
tion and egocentric action recognition.

1. Introduction
The increasing abundance of low-cost cameras and sen-

sors has prompted an explosion of wearable products such
as Google Glass, Apple Watch, and the like. Meaning-
ful analysis and interpretation of data sensed from wear-
able devices have therefore garnered much recent attention
in the research community. In particular, wearable cam-
eras provide an intimate first-person viewpoint –referred to
as egocentric vision– and enjoy the benefit of continuously
recording, monitoring, and assisting the user in his/her ac-
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tivities on-the-go [1]. Research in egocentric vision can be
categorized into three broad related classes: human action
and activity recognition, object and scene understanding,
and event summarization [2, 3, 4, 5, 6, 7]. Applications
are numerous, and include daily living assistance for sick,
impaired or elderly citizens, assistance in complex assem-
bly and repair tasks, remote/virtual training and automated
compliance monitoring in specialized (e.g., medical) pro-
cedures, assistance in law enforcement and emergency re-
sponse, and event logging in consumer and professional set-
tings [8, 9].

1.1. Motivation
In many of the aforementioned applications, the pres-

ence and patterns of motion of the user’s hands may pro-
vide critical cues towards determining the nature of his/her
actions, intentions, and focus of attention [3, 10, 11, 12].
In this paper we address the problem of reliably detecting
the user’s hands in egocentric video. This is a challenging
problem since hand appearance varies widely across users,
and even for one user can be significantly affected by envi-
ronmental conditions (e.g., lighting), hand motion relative
to the camera, and camera parameters such as focus, expo-
sure, and white-balance. Traditional, including state-of-the-
art, hand detection approaches rely upon the existence of a
large training set of videos captured a priori with multiple
users under a variety of environmental conditions, accom-
panied by pixel-level manual labeling of hand masks within
the video frames. The shortcomings of this approach are
twofold: for one, the substantial effort expended in manual
labeling does not lend itself to a scalable solution that con-
tinuously learns and adapts to new conditions. Secondly,
our experiments show that even the most recent and sophis-
ticated hand detection techniques do not generalize well to
test conditions that deviate from training scenarios.

1.2. Contributions
We present three contributions in this paper. The first

and primary one is a novel on-the-fly method to train a hand
detector requiring no manual labeling of training samples.
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The user is prompted to perform and record a simple hand
gesture just prior to performing the required activity, as il-
lustrated in Figure 1. Motion and color analysis of the ges-
ture enables automatic and unsupervised extraction of pix-
els from different regions of the hand, which are then used
to train a hand detector. This dynamic method of training
that is tailored for a specific user’s hand, capture device,
and environmental conditions is shown to produce superior
detection performance than the standard offline method of
training a detector with pooled features across multiple sub-
jects. At the same time, a simple gesture obviates the im-
practical requirement of manually labeling training samples
in a live application.

Figure 1. Illustration of calibration gesture performed just prior to
the egocentric task (arrows indicate the direction of hand motion).
Gesture analysis identifies hand pixels which are then used to train
a hand detector on-the-fly.

As our second contribution, we propose an efficient
video sampling scheme for egocentric activity recognition
that is adapted based on the location of the detected hand
regions. This idea is inspired by previous findings that in-
dicate that hand regions provide important cues for user at-
tention and activity on tasks involving substantial hand-eye
coordination [3, 4, 10, 11]. The user’s hands are located at a
low frame rate (2 fps), and patches are sampled more finely
in the immediate vicinity of the located user’s hands, and
more coarsely elsewhere. This approach enjoys the obvi-
ous advantage of reduced computational cost in feature ex-
traction. More significantly, with the proper tuning of sam-
pling parameters, the method also results in improved action
recognition accuracy due to the fact that the feature descrip-
tors computed from salient portions of the video are more
discriminative across different actions, while being consis-
tent across different users performing the same action. Ex-
periments on the GTEA gaze dataset [4] and a new insulin
self-injection (ISI) dataset show that computation times are
reduced by approximately 66%, while mean average preci-
sion improves by 3-4%.

The third contribution is a dataset of 25 egocentric video
clips of an insulin self-injection procedure performed by
subjects under realistic environmental conditions. Each clip
is segmented into seven actions, constituting a total of 175
action clips with labels and hand masks. The dataset sup-
ports a real-world application, namely medical procedure
monitoring, and is intended to enable explorations in both
hand detection and action recognition.

2. Related work
2.1. Hand detection

Many pixel-based hand segmentation methods have been
proposed in the literature [13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24]. The feature descriptor used to perform the de-
tection is a critical factor. There have been efforts to model
and detect hand skin regions based on low-dimensional
color representations such as RGB, LAB, YUV, YCrCb,
CMYK, etc. [19, 20, 21, 22] These often yield low accu-
racy due to the significant variation in hand color across
different environmental and illumination conditions. Other
techniques use motion features, and exploit temporal con-
sistencies in hand motion patterns to aid segmentation and
tracking tasks [15, 17, 24]. These techniques may be com-
putationally prohibitive for real-time applications, a prob-
lem that is exacerbated by the limited computational re-
sources of mobile and wearable devices. Researchers have
also explored combining color with additional features such
as texture [14, 16, 18, 23]). In [14], a generic pixel-level
hand detector based on a combination of color, texture, and
gradient histogram features is trained using over 600 man-
ually labeled hand images (over 200 million labeled pixels)
acquired under various illumination conditions and back-
grounds, and has shown to outperform several baseline ap-
proaches. This method shows improvements in detection
accuracy by including additional cues to color; however,
once again, this benefit is gained at the expense of com-
putational complexity.

In our approach, we seek a feature that is computation-
ally efficient to compute, discriminative enough to separate
hand from background regions, and robust to environmen-
tal variations, notably illumination. In recent work, color
attributes exhibiting these properties have been employed
in applications such as object recognition [25], object de-
tection [26], action recognition [27], and visual tracking
[28]. In particular, a linguistics study presented in [29] con-
cluded that the English language contains eleven basic color
names: black, blue, brown, grey, green, orange, pink, pur-
ple, red, white and yellow. In [30], a mapping from RGB
values to this 11-dimensional named color representation
was learned automatically using images retrieved through
Google image search. The proposed high-dimensional color
space has been shown to be suitable for real-world appli-
cations where increased robustness to illumination changes
and discriminability are desired. In this work, we perform
hand segmentation in this space.

The majority of hand detection approaches rely on the
use of supervised classifiers which need to be trained with
an extensive set of labeled data, particularly if the detection
is performed at the pixel level [14, 16, 17, 19, 21]. Further-
more training is performed offline by pooling hand pixels
from a variety of subjects and environmental conditions. In
contrast, in this paper we propose a pixel-level hand de-



tection technique that is trained on-the-fly for a given indi-
vidual and environment, and whereby training samples are
gathered automatically without need for manual labeling.
Skin pixels are automatically segmented from a simple cal-
ibration gesture performed by the user, and a classifier is
trained on the high-dimensional color representation of the
segmented pixels. To our knowledge, this is the first attempt
to use gestures to perform in-situ training of a hand detec-
tor. A related effort by Li and Luo [31] proposes using a
Viola-Jones face detector to extract skin regions from the
face, and trains a hand detector from these skin regions in
third-person videos. At high level, our idea is similar, but
our mechanism to extract skin color is different (i.e., hand
gesture). Clearly, face detection would not work for the ego-
centric setting. Also, our approach works when the user is
wearing special apparel (e.g., gloves) where Li’s approach
would fail.

A common approach to enhance segmentation is to
use superpixel techniques to capture local redundancy and
group pixels into perceptually meaningful regions. There
are many approaches to generate superpixels, each with its
own pros and cons [32, 33, 34, 35, 36]. In our work, we use
a modification of a state-of-the-art algorithm termed simple
linear iterative clustering (SLIC) [37]. This approach adapts
k-means clustering to efficiently generate superpixels and
has been shown to outperform previous methods in terms
of adherence to boundary and computational efficiency. We
modify SLIC in several ways to suit our problem, as will be
described in Sec. 3.

2.2. Adaptive sampling for egocentric action recog-
nition

Our second contribution is to apply hand detection to en-
hance the speed and accuracy of egocentric action recogni-
tion via adaptive video sampling. There are several threads
of literature to cite. First, action recognition from first-
person videos is itself a relatively recent but rapidly expand-
ing area of exploration [2, 3, 7, 38, 39, 40, 41, 42, 43, 44].
As far as the authors know, all existing techniques employ
uniform spatiotemporal sampling of the egocentric video.
Researchers have explored adaptive sampling for the anal-
ysis of third-person images and video in order to reduce
computation and/or improve accuracy for tasks such as ob-
ject and action recognition [45, 46, 47, 48, 49]. In [45],
saliency models are used as filters to the sampling process
in a third-person action recognition pipeline so as to im-
prove recognition accuracy. A variety of sampling schemes
are proposed, including biologically inspired masks, an an-
alytical mask based on a structure tensor, and an empiri-
cal mask based on eye-tracking data that reports the best
performance in recognition accuracy. We employ a similar
idea but tailored to the egocentric setting. We draw inspi-
ration from previous studies that highlight the importance
of hands as salient cues towards action and activity recog-

nition [4, 7, 10, 38, 39, 40, 41, 42, 43, 44], and propose to
directly modulate the density of the video sampling based
on the detected hand regions. As in [45], we compare our
approach with several masking schemes and feature extrac-
tion methods.

Also closely related to this paper is the work of [10]
which presents a method to predict human gaze based on
hand location, head motion, and a prior gaze model built
from eye-tracking data. The authors demonstrate that action
recognition accuracy can be improved by firing an action
classifier only in the vicinity of the predicted gaze. While
our proposal is similar at a high level, it is different in the
following ways. First, our saliency model is simpler to com-
pute in that it requires only hand region detection, and no
head motion analysis or eye-tracking priors; and yet, as the
results will show, only marginally compromises accuracy.
This makes our approach more amenable to rapid training
and recognition of a wide variety of multi-action proce-
dures. Second, we apply saliency-based sampling in both
the training and inference stages, so that our visual vocabu-
lary and pooled feature descriptors are tuned specifically to
descriptive regions of action in the video. Finally we offer
an analysis of how the sampling budget affects the tradeoff
between speed and accuracy.

3. On-the-fly training for hand detection
Just before performing a task wearing the egocentric vi-

sion system, the user trains the hand detector for his/her
hands in the same environment where the task is to be
performed. Training of the hand detector comprises three
steps: i) prompt the user to perform a predetermined hand-
gesture such as a wave or rolling motion; ii) capture egocen-
tric video of the hand gesture with a head-worn camera; iii)
use motion segmentation plus region growing to automat-
ically extract hand pixels. Any hand detection algorithm
can be trained with this data; in our work we train a Gaus-
sian Mixture Model (GMM)-based hand detector. In the
collected dataset, a waving gesture is used that exposes the
front and back parts of the hand, as shown in Fig. 1. The
user performs the calibration gesture shortly after initializ-
ing the hand detector application, which will be looking for
salient hand motions based on thresholding the magnitude
of the motion vectors.

Figure 2 illustrates the process of automatic hand pixel
labeling on one frame of the calibration gesture. In de-
tail, Fig. 2(a) shows a sample frame from the gesture clip
that exposes the back of the user’s hand. Each training
frame is mapped to the 11-dimensional color name space
using the mapping derived in [30]. Figure 2(b) shows a
pseudo-colored visualization of the mapping of the frame in
Fig. 2(a) to the color name space. We observed that in the
collected dataset, hand colors in the RGB space are mapped
most frequently into one of three color names in the color
name space (brown, green and red); we believe this is due to



the various illumination conditions and skin colors present
in the dataset. Figure 2(c) shows a mask where the fore-
ground regions (in white) comprise pixels corresponding to
one of the three hand color names. Next, motion analy-
sis is performed based on prior knowledge of the gesture.
Horn-Schunck optical flow [50] produces a motion vector
field as shown in Fig. 2(d). Optical flow computation is fol-
lowed by pruning of the resulting motion vector field based
on motion vector magnitude. This step is effective in distin-
guishing salient motion patterns of the hand from apparent
background motion caused by the user and camera move-
ments. The pruned motion mask is shown in Fig. 2(e).
Figure 2(f) shows pixels for which both color and motion
are favorably indicative of hand presence, and computed as
the intersection of the color mask 2(c) and the pruned mo-
tion mask 2(e). A seed for region growing is placed at the
center of mass of the largest blob (highlighted in orange)
of this intersection map (red cross in Fig. 2(g)). Figures
2(h) and 2(i) depict two visualizations of the automatically
labeled hand pixels that result from the region growing pro-
cess, the former as an overlay on the RGB image and the
latter as a binary mask. In the final step, the labeled hand
pixels, represented by their corresponding 11-dimensional
color coordinates, are used to build a GMM-based detec-
tor. Once the detector is trained, it is used to perform hand
pixel detection on subsequent video frames, which are usu-
ally captured while a task is being performed. As illustrated
in the Sec. 4, we propose to use the location of the detected
hand pixels as a cue to perform action recognition.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2. Illustration of the process for automatic labeling of hand
pixels in the gesture-based training stage. See text for explanation
of each step.

As an optional step, we investigate using superpixel seg-
mentation to enhance the accuracy of both the hand labeling
process in training and the hand detection process in testing.
To further improve the efficacy of SLIC we implement a
few modifications. First, instead of working in the CIELAB
color space, as proposed by the authors of SLIC, the images
are converted to the rg chromaticity space which reduces

the dimensionality of the data, and thus aids computational
efficiency, while still maintaining a degree of photometric
invariance. Next, for added efficiency, SLIC is only applied
to a neighborhood in the vicinity of the initially detected
hand region, rather than to the whole image. The number
of superpixels, which is a pre-determined input parameter
in traditional SLIC implementations, is determined dynam-
ically based on the size of the initial hand region. We refer
to the modified SLIC as sped-up SLIC (sSLIC).

Figure 3 compares the performance of SLIC when ap-
plied in the LAB space (Fig. 3(a)) and the rg space (Fig.
3(b)). The images are 180×320 pixels in size, and the num-
ber of output superpixels was set to be 352. It took 33%
longer for SLIC to converge in the LAB space relative to
the convergence time in the rg space. From these timing
figures and the segmentation results from Figures 3(a) and
3(b), it can be seen that SLIC is more efficient when it op-
erates on a lower-dimensional color space such as rg, while
also adhering to image boundaries satisfactorily.

(a) (b) (c)

Figure 3. Examples of SLIC applied to an image in (a) LAB space,
and (b) rg space, and (c) grouped superpixels from (b) using DB-
SCAN.

Lastly, as illustrated in Fig. 3(c), the superpixels are
grouped using Density-Based Spatial Clustering of Appli-
cations with Noise (DBSCAN) [51], one of the most com-
monly cited clustering algorithms in the literature. The orig-
inal hand mask is then used to decide which groups of su-
perpixels to keep as part of the refined mask. To this end,
the following criterion is adopted:

L(Gi) =

{
1, if |Gi ∩ S| ≥ α|Gi|
0, otherwise

(1)

where S denotes the set of pixels in the original mask, Gi

denotes the set of pixels associated with the i-th group of
superpixels, L(Gi) denotes the label of pixels belonging to
Gi, α is the threshold which was set to 0.1 in our experi-
ments, and | · | denotes the cardinality of a set. The pixels
with label 1 then form the foreground region in the refined
mask. Figure 4 gives examples of enhanced labeling and
detection using the proposed method.

4. Application of hand segmentation to adap-
tive sampling for action recognition

We explore the use of hand segmentation to improve the
computational load associated with the performance of an
egocentric action recognition pipeline. The goal is to select
a small subset from the dense set of spatiotemporal video
samples for feature extraction based on the determined hand
location. We first compute the centroid pixel location C



(a) (b) (c)

(d) (e) (f)

Figure 4. (a) Original training frame; (b) original, automatically
labeled hand mask; (c) refined labeled hand mask; (d) original test
frame; (e) original detected hand mask; and (f) refined hand mask.

of the hand mask obtained from the previously described
hand detection module. Descriptors belonging to a region
around C are considered for Bag-of-Words (BoW)-based
feature computation. Frames that do not contain hand re-
gions are not further processed in the pipeline. Figure 5
shows a high-level block diagram illustrating the pipeline
for the proposed sped-up SLIC method.

Figure 5. Block diagram of the proposed adaptive sampling
pipeline for action recognition.

We propose a sampling scheme we term Hand-based
Adaptive Sampling (HAS), and compare its performance
in the context of activity recognition with other sampling
schemes. A list of the considered sampling schemes along
with a short description of the methods (including HAS)
follows.
Hand-based adaptive sampling (HAS) — We define a
mask P (x, y) centered around C that defines a probabil-
ity of selecting a feature at location (x, y). P (x, y) may
take on many functional forms; in our experiments we se-
lect a circularly symmetric 2D-Gaussian function with C
as the mean. At each location of the dense sampling grid,
P (x, y) is compared with a random number r uniformly
distributed in [0, 1]. For grid locations where P is greater
than r, the sample is selected for feature extraction; other-
wise it is eliminated. The optimal covariance matrix for P
is estimated empirically using cross validation. With this
scheme, sampling density decreases with increasing dis-
tance from C. Figure 6 visually illustrates the effect of HAS
when used in conjunction with the dense trajectories algo-
rithm [52].
Image-center-based soft sampling (ICS) — We evaluate
as a baseline a sampling scheme that concentrates a higher
density of samples near the image center. The probability
mask P (x, y) is a Gaussian function (as above) that is fixed

around the image center.
Random sampling (RS) — As a second baseline, we eval-
uate a sampling scheme which randomly selects locations
across the video frame for feature extraction.
Gaze-based adaptive sampling (GAS) — For one of the
datasets containing gaze annotations obtained from an eye-
tracker, we evaluate an adaptive sampling scheme centered
around the subject’s gaze. A comparison of GAS and HAS
provides insights on the efficacy of hand location as an ap-
proximate practical indicator of gaze and attention.

Figure 6. Illustration of proposed adaptive sampling scheme: (a)
video frame showing an action from ISI dataset; (b) hand mask
yielded by proposed method; (c) visualization of adaptively sam-
pled dense trajectories; (d) visualization of the full set of dense
trajectories. Observe in (d) the many spurious trajectories due to
user head motion.

Figure 7. Illustration of sampling approaches (a) original video
frame from ISI dataset (180×320 pixels); (b) ICS; and (c) HAS
with σ = 36.

Figure 7 illustrates some of the sampling schemes. Each
of the aforementioned sampling strategies is employed as a
preprocessing filter in a standard action recognition pipeline
[45, 53, 54]. The Dense Trajectory feature proposed in [52]
is employed in our experiments as the state-of-the-art choice
for action recognition. After feature extraction, a standard
Bag-of-Words feature descriptor is computed followed by
action classification using χ2 SVM [54].

5. Experiments
5.1. Datasets and evaluation protocols

We have generated three new datasets. The first captures
users performing a medical procedure –namely insulin self-
injection– using a Google GlassTM device. This dataset,
which we denote ISI, was motivated by feedback from med-
ical professionals that monitoring quality and correctness
of medical procedures is an important problem and a valu-
able opportunity for wearables. Figure 7(a) shows a frame
from a video clip in the dataset. Each subject was asked to
perform the following seven steps required for self-insulin
injection: (1) Hand Sanitization (2) Insulin Rolling (3) Pull



air into syringe (4) Withdraw insulin (5) Clean injection site
(6) Inject insulin (7) Dispose needle

A total of 8 subjects (4 female, 4 male) with different
skin colors and ages performed this activity. Subjects were
instructed only on the sequence of steps to be taken and
were not coached on how to perform a given step. Prior ex-
perience varied widely. Three locations with different light-
ing and background conditions were used, and objects and
their arrangement, as well as sitting geometry were allowed
to vary freely. As evidence of inter-subject variability, du-
rations of the video segments for a given action varied by a
factor of 2 or more (e.g., 5s vs. 10s, or 13s vs. 29s); further-
more, optical flow motion analysis reveals that mean motion
magnitude varies on average by a factor of 4 and up to a fac-
tor of 6 across subjects for a given action. The dataset will
be made publicly available by the authors, along with the
corresponding action labels and hand masks for each action
clip.

The second dataset called Dynamic Indoor (DI) was col-
lected in an indoor environment with hand gestures being
performed against a challenging background comprising
people in motion. The third dataset named Dynamic Out-
door (DO) was collected in a moving vehicle with the out-
door street scene serving as a moving background. These
datasets, with confounding human motion, extreme light-
ing variations, and low-contrast conditions, are intended to
stress the robustness of hand detection in challenging en-
vironments. Figure 8 shows example frames from these
datasets. We use all three datasets to evaluate the perfor-
mance of the proposed hand detection method.

We also evaluate our adaptive sampling methods on
the publicly available Georgia Tech Egocentric Activity
(GTEA) gaze dataset [4]. This dataset comprises 17 ac-
tivity sequences performed by fourteen subjects, with gaze
tracked by Tobii eye-tracking glasses. The task was to make
a recipe of the subject’s choice in the kitchen. The begin-
ning and ending time of the 25 action classes were anno-
tated. We use both the GTEA and the ISI datasets to test
action recognition performance. For the GTEA dataset, we
use the same split of training (13 sequences) and testing (4
sequences) data as employed in [4]. For each of the seven
actions in the ISI dataset, we randomly divide 25 video se-
quences into training and test sets, and report the mean per-
formance across 100 iterations. At each iteration, 91 video
samples are used for training and 84 videos for testing. The
stride between samples in the dense sampling scheme was
set to 10 pixels.

(a) (b)

Figure 8. Example frames from the (a) Dynamic Indoor (DI) and
the (b) Dynamic Outdoor (DO) datasets.

5.2. Hand segmentation
The camera built into the Google Glass device was set

to capture RGB video at a frame rate of 30 fps. The ac-
quired videos were resized to a resolution of 180×320 pix-
els. We compare the performance of the proposed method
with the simplified implementation∗ of the method of [14]
made available by the authors. In this version, color his-
tograms were used as features; at training, one global illu-
mination model was extracted from each of the 442 training
images. At the test stage, the 10 training models that best
approximate the illumination conditions of the test image
were averaged. Note that the detector in [14] is generic and
was trained using over 442 manually labeled hand images
(around 200 million manually labeled hand pixels) taken
under various illumination conditions and different back-
grounds. In contrast, the proposed hand detector is person-
alized for a specific user in a specific environment, and was
trained using at most 10 frames per user, within which the
hand pixels were labeled automatically via the use of the
gesture-based training procedure described in Sec. 3. We
set the number of components in GMM to 10 in the exper-
iments. This number can be typically chosen based on the
estimated diversity of hand color in the environment: the
higher, the better the performance, at a cost of the computa-
tional resource.

We first report on the efficacy of the automatic gesture-
based hand pixel labeling stage. Pixel-wise ground truth
was established from the same set of gesture video frames
used in the automatic training stage of the hand detector.
The average pixel-level precision and recall achieved by the
automatic hand-labeling stage were 0.866 and 0.267 respec-
tively. Note that since the statistical model is built from the
automatically labeled samples it is desirable to bias the pro-
cess to minimize false positives, and these numbers reflect
that bias.

Next, we evaluated the performance of the proposed
hand detection method in comparison to standard ap-
proaches. To this end, we randomly selected 182 test frames
from 12 videos in the ISI dataset. The test frames were ex-
tracted from videos acquired under a wide variety of illumi-
nation conditions ranging from outdoor sky lighting to dim
indoor lighting. For ground-truth purposes, the test frames
were manually labeled by creating binary masks indicat-
ing the location of hand pixels within each of the frames.
Three different hand detection algorithms were evaluated
as reported in Table 1: the proposed algorithm (row 1), the
pixel-level hand detection method from [14] (row 2), and
the detection stage of the proposed algorithm trained with
manually labeled ground truth images (row 3). Mean and
standard deviation of precision and recall across all testing
images are reported.

∗http://www.cs.cmu.edu/˜kkitani/perpix/code_
perpix/ver01/

http://www.cs.cmu.edu/~kkitani/perpix/code_perpix/ver01/
http://www.cs.cmu.edu/~kkitani/perpix/code_perpix/ver01/


Method Precision Recall
Proposed 0.947 +/- 0.053 0.613 +/- 0.170
[14] 0.829 +/- 0.271 0.472 +/- 0.333
Manual 0.902 +/- 0.106 0.547 +/- 0.231

Table 1. Hand detection performance comparison between tested
algorithms.

It can be seen that the proposed method outperforms the
method from [14], likely due to the fact that it is customized
to the particular subject and illumination conditions. As ex-
plained above, the automatic hand pixel labeling algorithm
used to train the model favored false negatives. A compari-
son of rows 1 and 3 in Table 1 indicates that this bias results
in improved pixel-level hand detection performance at the
test stage. We hypothesize this is due to the fact that bound-
ary data in the manually labeled training set may be more
significantly affected by compression artifacts and motion
blur.

To evaluate the effect of superpixel-based enhancement,
we tested three additional scenarios. Case 1 (sSLIC-te):
sSLIC used only in testing as a post-processing step after
the original detection. Case 2 (sSLIC-tr): sSLIC used only
in training to improve the original labeling. Case 3 (sSLIC-
both): sSLIC used in both training and testing. We tested
the performance of the three variants of the algorithm on the
ISI dataset. Table 2 shows the results.

Method Precision Recall
Proposed/sSLIC-te 0.901 +/- 0.074 0.756 +/- 0.154
Proposed/sSLIC-tr 0.905 +/- 0.095 0.678 +/- 0.214
Proposed/sSLIC-both 0.852 +/- 0.113 0.783 +/- 0.194

Table 2. Effect of sSLIC-based enhancement on hand detection.

Compared to row 1 in Table 1, sSLIC-based enhance-
ment considerably increased recall, while only slightly de-
creasing precision. The decision as to whether to adopt such
enhancement can be made based on the specific applica-
tion. The computational per-frame overhead for the origi-
nal SLIC algorithm was 2.77s (mean) +/- 0.08s (σ) and for
the proposed sSLIC, 0.28s (mean) +/- 0.03s (σ), which in-
dicates that sSLIC is about 10 times faster than SLIC. To set
these figures in context, the per-frame processing time for
the basic pixel-wise hand detection was measured as 0.15s
(mean) +/- 0.003s (σ). Execution time was measured in sec-
onds on a Windows 7 machine with 16GBytes of RAM and
an Intel i7 2.80GHz processor. The implementation was
done in Matlab R2013b.

A similar set of experiments was conducted on the DI
and the DO datasets. Table 3 and 4 contain the results. It
can be seen that even in the challenging environment where
hand color appears similar to colors of both the static and
dynamic backgrounds, the proposed method still exhibits
robust performance. Naturally, almost all purely color-
based hand detector would fail in the extreme case when
foreground and background colors are the same; in this

case, other features such as texture could be explored.
Method Precision Recall
[14] 0.30 +/- 0.30 0.33 +/- 0.36
Proposed 0.91 +/- 0.05 0.72 +/- 0.11
Proposed/sSLIC-te 0.86 +/- 0.05 0.88 +/- 0.05
Proposed/sSLIC-tr 0.89 +/- 0.05 0.87 +/- 0.05
Proposed/sSLIC-both 0.84 +/- 0.05 0.94 +/- 0.05

Table 3. Effect of sSLIC-based enhancement on hand detection
performance on the DI dataset.

Method Precision Recall
[14] failed failed
Proposed 0.91 +/- 0.06 0.62 +/- 0.20
Proposed-/sSLIC-te 0.89 +/- 0.10 0.64 +/- 0.23
Proposed-/sSLIC-tr 0.82 +/- 0.13 0.78 +/- 0.18
Proposed-/sSLIC-both 0.78 +/- 0.17 0.84 +/- 0.20

Table 4. Effect of sSLIC-based enhancement on hand detection
performance on the DO dataset.

As before, it can be seen that use of sSLIC-based en-
hancement increases recall and decreases precision. Note
that in the particularly challenging outdoor dataset, the
method from [14] completely failed to return any detections
while the proposed method still performed reasonably well.
We emphasize that the success of our on-the-fly approach
hinges on the fact that training takes places in a given envi-
ronment just before the user task is performed, and hence
is not burdened (as traditional approaches are) with hav-
ing to account for vast changes in ambient conditions. In
this sense, it is difficult to make a completely fair com-
parison between our approach and that of [14] which was
pre-trained across multiple subjects. Since our training ap-
proach can be employed with any hand detection algorithm,
we expect competitive results when combining our training
method with the detection algorithm of [14].

5.3. Action recognition

We now report the action recognition performance of the
proposed adaptive sampling pipeline on videos taken from
the ISI and GTEA datasets. Figure 9(a) is a plot of the
mean average precision (mAP) of recognition as a function
of sampling budget for each of the sampling methods used
on the ISI dataset. Sampling budget was varied by adjusting
relevant parameters for each sampling scheme. The point
on the extreme right of each plot corresponds to the dense
sampling (DS) scheme where no subsampling is performed.
We observe that HAS achieves the best mAP of 0.92 using
roughly one third of the total number of descriptors. Neither
RS nor ICS achieve competitive accuracies.

Figure 9(b) shows a similar mAP plot for the GTEA gaze
dataset. The authors of this dataset have provided gaze loca-
tions for each frame in the videos. Previous work has shown
that human gaze provides an important clue in action recog-
nition. We thus also evaluate the same action recognition



pipeline with gaze-centered sampling where the same soft
Gaussian probability mask used for HAS is centered instead
at the gaze location in each frame. We denote this strategy
GAS, and observe that it outperforms the other sampling
methods. Note that while GAS serves as an upper bound
in performance, it is difficult to execute in practice due to
the need for eye-tracking instrumentation. We believe HAS
serves as a practical alternative, in particular because it out-
performs the remaining sampling schemes.

In order to assess the efficacy of adaptive sampling
across different choices of features, we evaluated action
recognition performance using SIFT3D [55] and the two-
layer stacked convolutional independent subspace analysis
(SC-ISA) network from [53]. Table 5 contains the action
recognition performance across different spatio-temporal
features achieved by the traditional dense sampling (DS)
approach, the proposed HAS, as well as the two baseline
approaches, ICS and RS, on the ISI dataset. Note that while
the value of the σ parameter in the ICS and HAS schemes
affects their performance, we only report the accuracy for
the value of σ that yields the best performance. For RS,
we randomly sampled 25% of the total descriptors. For
SIFT3D features, HAS achieves a mAP of 0.89, while the
DS scheme obtains a mAP of 0.87. This performance gain
is achieved with only 28% of the total descriptors. For SC-
ISA features, network weights were learned using a subset
of videos from each dataset. HAS achieves an improvement
of 0.04 in mAP over DS. For a comparable sampling bud-
get, RS is ineffective across all features. In general, it can
be seen that adaptive sampling is beneficial independently
of the choice of features.

DS HAS ICS RS
DT 0.88 0.92 0.89 0.86
SIFT3D 0.87 0.89 0.87 0.85
SC-ISA 0.81 0.85 0.83 0.80

Table 5. Performance comparison between DS and HAS across
different types of features on the ISI dataset.

(a) (b)

Figure 9. Mean average precision (mAP) for action classification
on (a) ISI dataset and (b) GTEA gaze dataset using DT features

HAS ICS RS DS [52]
Time 0.0483 0.0394 0.0374 0.1217

Table 6. Execution times in seconds (per frame) for different sam-
pling schemes.

In order to quantify the computational gain brought

about by the proposed sampling methods, we timed the ex-
ecution of the standard dense trajectory approach from [52]
and the proposed approach on a 30 fps, 8 second video. In
the timing experiment, the number of descriptors for the
subsampling schemes (i.e., HAS, ICS, and RS) was fixed
to 18103. Table 6 contains the results.

5.4. Conclusions

We have proposed a novel on-the-fly method to train a
personalized pixel-level hand detector based on analysis of
a simple known user gesture. This form of in-situ training
can effectively address the challenging variations brought
about by hand appearance differences across users and envi-
ronmental conditions such as lighting, shadows and motion.
Results show that bringing a “human in the loop” effectively
simplifies and automates the training process by benefiting
from the specific context of egocentric vision. The fact that
our customized detector significantly outperforms generic,
state-of-the-art techniques indicates that it is difficult to cap-
ture the full range of variability of factors present in ego-
centric scenarios with currently available statistical models
trained offline on pooled data. We have also investigated
the use of superpixel region growing to perform segmen-
tation refinement and improve robustness to noise in both
the training and testing phases. A significant benefit of the
proposed approach is that the painstaking process of man-
ually labeling large amounts of pixels in training images is
eliminated. In order to economize on mobile computational
processing, we train only on color features; incorporation of
additional attributes, e.g., texture, will surely enhance de-
tection performance.

We have also shown that adaptive sampling schemes for
egocentric action recognition that guide feature extraction
towards hand regions in the video can improve both compu-
tational performance and recognition accuracy. As the num-
ber of samples is reduced from the dense to adaptive scheme
with increasing selectivity, recognition performance ini-
tially improves as features from irrelevant regions are fil-
tered out, and then eventually deteriorates due to paucity of
features from even the salient regions. There is an optimal
operating point at which recognition accuracy outperforms
that of dense sampling by about 3-4%, while computation
times are reduced by approximately 66%. If computational
cost is the prime consideration, HAS permits a reduction
in the sampling budget by a factor of about 10 while main-
taining an equivalent level of accuracy. This trend holds true
across a variety of feature descriptors, and marks significant
progress towards making real-time action recognition prac-
tical. We have also shown that HAS incurs only a modest
compromise in performance compared to gaze-based sam-
pling, while avoiding the use of costly eye-trackers. Finally
the ISI dataset is made publicly available to serve further re-
search in egocentric action recognition and hand detection.
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