
ICPIK: Inverse Kinematics based Articulated-ICP

Shachar Fleishman∗ Mark Kliger∗ Alon Lerner Gershom Kutliroff
Intel

{shahar.fleishman,mark.kliger,alan.lerner,gershom.kutliroff}@intel.com

Abstract

In this paper we address the problem of matching a kine-
matic model of an articulated body to a point cloud ob-
tained from a consumer grade 3D sensor. We present the
ICPIK algorithm - an Articulated Iterative Closest Point
algorithm based on a solution to the Inverse Kinematic
problem. The main virtue of the presented algorithm is
its computational efficiency, achieved by relying on inverse-
kinematics framework for analytical derivation of the Jaco-
bian matrix, and the enforcement of kinematic constraints.
We demonstrate the performance of the ICPIK algorithm by
integrating it into a real-time hand tracking system. The
presented algorithm achieves similar accuracy as state of
the art methods, while significantly reducing computation
time.

1. Introduction

Recent advances in 3D imaging technology, notably In-
tel’s RealSense [22] and Microsoft’s Kinect [23] sensors,
allow for 3D capture of the objects and people in a scene at
high, interactive frame rates. The availability of this tech-
nology in a low-cost and small form factor package has gen-
erated much interest in the area of human-computer interac-
tion, such as the problem of tracking a hand skeleton, which
enables the design of interactive applications controlled by
a user’s natural movements.

Computing the skeleton of a hand based on data cap-
tured by a single camera is a challenging problem, due to
viewpoint variability, the complex articulations of the fin-
gers, and the prevalence of self occlusions caused by natural
hand motions. This topic continues to be an active area of
research in computer vision, even after many years. Earlier
works focused primarily on input from RGB and grayscale
images; for a comprehensive review, refer to Erol et al. [7].
The introduction of consumer grade 3D sensors has shifted
the focus to methods based on the 3D data obtained by these
devices. One possible approach is based on reconstructing

∗S. Fleishman and M. Kliger contributed equally to this work.

a deformable surface model [5, 8, 11]. An alternative ap-
proach matches a hand model to the input depth image cap-
tured by the camera, which is done by solving an optimiza-
tion problem [2, 12, 15, 17].

A natural representation for an articulated objects which
possess an underlying skeletal structure, such as human
hands and bodies, are kinematic chains of rigid bodies
(bones) connected together by joints. The kinematics equa-
tions of the body define the relationship between the joint
angles and its pose. The forward kinematics (FK) problem
uses the kinematic equations to determine the pose given
the joint angles and bones lengths. The inverse kinematics
(IK) problem computes the joint angles for a desired pose
of the articulated body.

In this work we present an efficient articulated iterative
closest point algorithm for matching a kinematic model of
an articulated body to a point cloud. The key idea is to solve
the optimization step of ICP using an inverse kinematics
solver. The solver is based on well-established techniques
to compute analytic derivatives of the IK optimization func-
tion. This allows the efficient estimation of the non-rigid
transformation of an articulated body in an ICP problem.
Furthermore, it enables the enforcement of additional con-
straints which are non-standard in the ICP formulation, such
as kinematic physical constraints, repulsive points that push
the model away, and weighting methods. We therefore refer
to our method as ICPIK.

The rest of this paper is organized as follows. Related
works are presented in Section 2. Our optimization algo-
rithm is described in Section 3. We have integrated our
algorithm into a hand-tracking system which is briefly de-
scribed in Section 4. We present results and conclusions in
Section 5

2. Related work
An Iterative Closest Point (ICP) [1, 16] is an algorithm

which finds the rigid transformation that aligns two point
clouds. In each iteration, the algorithm updates the corre-
spondence between the source and target point clouds, and
computes the rigid transformation that best aligns them.

Multiple works have extended the ICP algorithm to han-

1

dle non-rigid transformations. One approach is to reformu-
late the ICP problem as a non-linear optimization problem
in the parameter space of the kinematic model of an artic-
ulated body [2, 6, 9, 14]. This frequently requires calcu-
lating the Jacobian matrix of partial derivatives of an opti-
mization function. Dewaele et al. [6] apply the Levenberg-
Marquardt (LM) method with the Jacobian matrix of the
kinematic transformation, but the authors do not provide
details regarding their implementation. Bray et al. [2] use a
mix of computationally expensive numerical and algorith-
mic methods to compute the derivatives. Grest et al. [9] an-
alytically derived the Jacobian matrix for human body pose
estimation. We present a general, computationally efficient,
solution to the non-rigid ICP problem based on the analytic
derivatives of the kinematic model.

Our articulated ICP algorithm draws upon prior work on
the IK problem by the robotics and computer graphics com-
munities. In particular, the solution to the kinematic model
benefits from an analytic formulation of the Jacobian ma-
trix, as first derived by Orin and Schraeder [13] in 1984.
The most similar approach to ours is the work of Grest et
al. [9] who directly derive the Jacobian matrix for the par-
ticular case of a full human body. The authors employ a
pseudoinverse-based solution to the optimization problem,
which is known to be unstable in cases where the Jacobian
is singular or nearly singular. To solve the inverse kinemat-
ics problem, we apply the Damped Least-Squares method,
which is related to the LM method, and is known to be more
stable for these type of problems [4]. Moreover, using an IK
approach for solving an articulated ICP problem allows the
seamless incorporation of kinematic joint constraints, joint
weights, and point weights, as well as other constraints (see
Section 3).

Articulated ICP methods are a core element of many full
body and hand tracking systems. Typically, such systems
are composed of two major components: (i) a segmenta-
tion and part detection module, usually based on machine
learning algorithms [10, 17, 18, 21] or using visual mark-
ers [24, 25], which detects the approximate locations of the
articulated body and its parts on an input frame , and (ii) a
tracking system which computes deformations of a model
of the body in order to match the input depth image, which
is solved by some non-linear optimization. This work fo-
cuses on the latter problem. Oikonomidis et al. [12] use
the Particle Swarm Optimization (PSO) algorithm with ran-
dom initializations to search the parameter space and find
the hand model configuration that best fits the data. Qian
et al. [15] extends the approach of Oikonomidis et al., by
incorporating an ICP step into the PSO algorithm. Specif-
ically, at each PSO iteration, an additional ICP iteration is
used in order to converge to faster a local minimum, where
the ICP problem is solved with a partial LM optimization
based on [14].

The proposed ICPIK algorithm can be incorporated as
an optimization step in various full body and hand track-
ing systems, such as the ones described above. It is distin-
guished by its simplicity and computational efficiency. In
Section 5, we compare the performance of the ICPIK and
PSO algorithms integrated into the same tracking system,
and demonstrate that ICPIK outperforms PSO in both speed
and accuracy.

3. IK based articulated ICP: ICPIK
3.1. Inverse kinematics problem

An articulated body can be represented as a multi-body
kinematic system consisting of a set of rigid objects, called
links (bones), connected together by joints. Joints have a
single degree of freedom, DoF = 1, and can be either ro-
tational (revolute) or translational (prismatic). Other joint
types, for example screw joints, can be represented by a
combination of two or more of these basic joints connected
by zero-length links. A rotational joint is parameterized
by a rotation axis and a scalar angle value, while a trans-
lational joint is parameterized by a direction vector and
translation distance. Note that the global 3D position and
orientation of an articulated body can be represented by a
root joint, which consists of three translational joints and
three rotational joints, DoF = 6, i.e. 6 basic joints con-
nected by zero-length links. An articulated body thus has
n joints, each with DoF = 1, and an associated vector
θθθ = (θ1, ..., θn), where θj is the kinematic parameter of
the jth joint.

Certain points on the links, typically extremity points
of kinematic chains, and the joints themselves, are identi-
fied as end-effectors. If there are k end-effectors, their 3D
positions are denoted by s = (s1, s2, ..., sk)T . Each end-
effector’s position si is a function of θθθ, and is computed by
applying the forward kinematic equations. The objective of
the IK problem is to find the values of θθθ that transform the
joints so that the end-effectors s reach their target position.
The target positions of the end-effectors are given by a vec-
tor t = (t1, t2, ..., tk)T . The IK problem can be stated as
finding values of θ̂̂θ̂θ such that

θ̂̂θ̂θ = arg min
θθθ
||t− s(θθθ)||2. (1)

Equation (1) can be solved by using the Jacobian matrix
to linearly approximate the function s(θθθ). Recall that the Ja-
cobian matrix of a vector valued function s(θθθ) is the matrix
of all first-order partial derivatives with respect to θi,

J(θθθ) =

(
∂si
∂θj

)
i,j

. (2)

In a simple kinematic models the Jacobian can be computed
by manual differentiation. Alternatively, the Jacobian of

forward kinematics can be computed by symbolic or nu-
merical auto-differentiation, which is often time consum-
ing. We use the method of Orin and Scharader [13] to an-
alytically calculate the entries in the Jacobian matrix for an
arbitrary kinematic model. For the jth rotational joint with
DoF = 1, let θj be its angle of rotation, pj be its position,
and let vj be the unit vector pointing along its current axis
of rotation. The corresponding entry in the Jacobian matrix
for the rotational joint j affecting the ith end-effector is

∂si
∂θj

= vj × (si − pj), (3)

where the angles are measured in radians, and the direc-
tion of rotation is given by the right-hand rule. Intuitively,
this equation means that an infinitesimal rotation around the
axis vj centered at pj will move the end-effector si by an
infinitesimal distance, proportional to distance between si
and pj , along the direction defined by (3). If the ith end-
effector is not affected by the jth joint, then ∂si

∂θj
= 0.

Similarly, for the jth translational joint with DoF = 1,
let θj be its translation distance along its direction vector
vj . If the ith end-effector is affected by the jth joint, then

∂si
∂θj

= vj . (4)

Let
θθθ := θθθ0 + ∆θθθ. (5)

The end-effector positions can be linearly approximated by

s(θθθ) ≈ s(θθθ0) + J(θθθ0)∆θθθ. (6)

For the sake of simplicity we omit the parameter vector
θθθ0 and denote the Jacobian matrix as J. Using the linear ap-
proximation (6) we solve (1) by iteratively updating θθθ from
the previous iteration by ∆θθθ as obtained from

arg min
∆θθθ
||e− J∆θθθ||2, (7)

where the error vector e is defined as e := t− s(θθθ0).
There are several methods to solve a least-squares prob-

lem such as (7) including SVD, the Jacobian transpose
method, pseudoinverse, etc [3]. We use Damped Least
Squares, also known as Levenberg-Marquardt optimization,
which is numerically stable and fast. Rather than solving
(7), we find the value of ∆θθθ that minimizes the l2 regular-
ized version of (7),

||e− J∆θθθ||2 + λ||∆θθθ||2 (8)

where λ > 0 is the damping constant. Minimizing (8) with
respect to ∆θθθ is equivalent, as shown in [3], to solving

JTe = (JTJ + λI)∆θθθ. (9)

The matrix on the right-hand side (RHS) of (9) is posi-
tive definite, and can therefore be solved efficiently using
Cholesky factorization. Note that the number of equations
in (9) is equal to the number of parameters n and is inde-
pendent of the number of end-effectors m. Moreover, the
matrix JTJ and the vector JTe can be computed directly
from (2) as follows:

(
JTJ

)
jk

=

m∑
i=0

∂si
∂θj
· ∂si
∂θk

, (10)

and (
JTe

)
j

=

m∑
i=0

∂si
∂θj
· (ti − si). (11)

Substituting (3-4) into (10-11), we have

(
JTJ

)
jk

=

m∑
i=0

0, j or k are not connected to effector i
(vj × (si − pj)) · (vk × (si − pk)), j, k rot.
(vj × (si − pj)) · vk, j rot., k trans.
vj · vk, j, k trans.

(12)
and

(
JTe

)
j

=

m∑
i=0

 0, j is not connected to effector i
(vj × (si − pj)) · (ti − si), j rot.
vj · (ti − si), j trans.

(13)
Moreover, from (12) and (13) we can see that adding

pairs of end-effectors and targets to the IK problem does
not significantly increase the amount of computation. In-
deed, the pair of end-effector si and target ti only affects
those entries of the Jacobian matrix

(
JTJ

)
jk

, where both
the joints j and k, as well as the end-effector si belong to
the same kinematic chain. Similarly, si and ti only affect
the entries of

(
JTe

)
j

in which both the joint j and end-
effector si belong to the same kinematic chain.

Applying joint weights allows certain joints to move
or rotate more easily than others. For example, weights
wi > 0 can be set to be proportional to the cost of changing
the joint’s parameter θi. In this case higher weight means
the cost to change θi is higher relative to joints with low
weights. Therefore, we reparametrize θ̃i = wiθi , and solve
(9) for ∆θ̃̃θ̃θ. Target weights νi > 0 adjust the relative impor-
tance of targets ti by multiplying the error vector ei by the
weight. Note that target weights do not affect the RHS of
(9). Thus, we can reformulate (10) and (11) as

(
J̃T J̃

)
jk

=

m∑
i=0

1

wjwk

∂si
∂θj
· ∂si
∂θk

(14)

and (
J̃Te

)
j

=

m∑
i=0

νi
wj

∂si
∂θj
· (ti − si) (15)

Figure 1. Target points (Green) are assigned to end-effectors
(Blue). We add virtual end-effectors for targets that are not as-
sociated with any specific joint of the model by finding the closest
point on the model to the target.

After calculating ∆θ̃̃θ̃θ we update θθθ by ∆θi = ∆θ̃i/wi.
In addition, it is possible to define repulsive targets that

push end-effectors away. Repulsive targets can, for exam-
ple, prevent self intersections, move the model behind a vis-
ible surface, or move it away from regions in space that the
body cannot occupy. These can be implemented by adding
targets with negative weights which are inversely propor-
tional to the distance from the end-effector, and updating
the LHS of (9). For example, a repulsive spherical target ti
with radius r for the ith end-effector si, can be defined by
the weight

νi = min

(
−r − ||si − ti||
||si − ti||

, 0

)
. (16)

The negativity of the weight changes the direction of the
error vector ei = ti − si.

Often joints in a kinematic model should obey restric-
tion constraints. For example, finger’s abduction/adduction
and flexion/extension angles are restricted by physical lim-
itations. This can be expressed in the kinematic solution
by reformulating the problem as a bounded constraint opti-
mization problem, in which each joint has a lower and up-
per limit, that is θi ∈ [li, hi] which is its feasible set. We
apply an active set method for constrained optimization in
the following manner: when a constraint is inactive, that is,
parameter value is within its feasible set, we apply the non-
constrained optimization to it. When a constraint becomes
active, θi is set to its closest limit, and in the following iter-
ation, θi remains constant.

3.2. Combining ICP with IK

As previously mentioned, to formulate an IK problem
certain points on the links have to be defined as end-
effectors. Typically extremity points of kinematic chains,
and the joints themselves, are defined as end-effectors. The

set of end-effectors, their target positions and the initial
value of the kinematic parameters define the IK problem.

We are interested in generalizing the standard formula-
tion by adding additional (end-effector, target) pairs, not
necessarily lying on the links, to our IK problem. Specif-
ically, we wish to work with an articulated body model,
composed of a skeleton and an associated skin. In this case,
points on the skin, a fixed distance away from any link, con-
stitute our end-effectors. We refer to these points as virtual
end-effectors, and their associated targets as virtual targets.

The process of choosing virtual end-effectors and targets
is task dependent. Recall, that our goal is to estimate the
pose of an articulated body to match the depth image. Thus,
we define virtual end-effectors and targets in a manner sim-
ilar to the ICP algorithm, i.e. we choose random points on
the depth image as our virtual targets, and then designate the
closest points on the model’s skin as their associated virtual
end-effectors. While the virtual end-effectors do not lie on
any link, they can be associated with a parent joint. We as-
sign a virtual link between each virtual end-effector and its
associated parent joint by the vector originating at the par-
ent joint and terminating at the end-effector, see Figure 1.
Pairs of virtual end-effectors and their targets participate in
the formulation of the IK problem simply by increasing the
size of the summation in (12) and (13) by the number of vir-
tual targets. It should be noted that adding pairs of virtual
end-effectors and their targets does not increase the sizes of
the matrix JTJ and the vector JTe. Therefore, the addi-
tional computational costs are small.

Finally, in contrast to the standard IK formulation, in
which the targets remain constant throughout all the iter-
ations of the IK solver, pairs of virtual end-effectors and
their targets are updated at every iteration. Thus, our algo-
rithm is iterative, and similar in spirit to the standard ICP ap-
proach which computes correspondences between two sets
of points at each iteration. However, in contrast to ICP, we
calculate the transformation between the point sets with an
IK solver, thus generating a non-rigid transformation of the
articulated body.

Below is the pseudocode of the ICPIK algorithm. M is
the model, p are the joints positions, and v are their axes:

(M,p,v) = ForwardKinematics(θθθ0) ;
f o r i = 1 t o L

t = SampleTargets(D) ;
s = FindCorrespondence(t,M) ;
Compute JTJ , JTe ;
F ind ∆θθθ from (8) ;
θθθi = θθθi−1 + ∆θθθ ;
(M,p,v) = ForwardKinematics(θθθi) ;

end

(a) (b) (c) (d) (e) (f)
Figure 2. Data flow overview: (a) depth image, (b) grayscale image, (c) candidate fingers, (d) finger label probabilities, (e) labeled targets
on the depth image from which we subsample, (f) output hand model

Figure 3. The proposed system has two main components: (a) a
blob segmentation and tracking component; (b) a pose estimation
and tracking component which estimates an initial position for the
hand and then apply the ICPIK algorithm.

4. Real-time hand pose tracking

In order to provide a context for the ICPIK algorithm, we
present how we integrated it into a real-time hand tracking
system. In this section we present an overview of the track-
ing system. The input to the system is a depth image and as-
sociated grayscale image from the Intel RealSense 3D cam-
era [22] (Figure 2a,b), and the output is a fully articulated
hand model (Figure 2f), whose position and orientation in
3D space best fits the input data. While the depth image is
used to match the hand model, the grayscale image (usually
an IR image) is needed in order to detect and label fingers,
as described in Section 4.2.2.

We use a kinematic model of the hand skeleton with
twenty-six degrees of freedom, six for the root node and
four for each finger. We employ a calibration module at
runtime to adjust the lengths of each bone according to the

proportions of the user’s hand. The details of this calibra-
tion stage are beyond the scope of this paper. For simplicity,
we assume that the bone lengths are constant. The kine-
matic constraints for plausible finger abduction/adduction
and flexsion/extension angles are set according to [19].

Our system solves an optimization problem that mini-
mizes the distance between the input depth image and the
hand model. We use a simple hand model inspired by a
model from [12], composed of spheres and cylinders, that
is attached (skinned) to the skeleton. Note, our approach
can also be applied to other, more complex models, e.g. an
accurate user-specific mesh model as in [20]. We solve the
optimization problem by first finding a good initial guess for
the kinematic parameters, and then improve it by applying
the ICPIK algorithm.

The system is composed of two components; a blob
segmentation component (Figure 3a) which identifies and
tracks the blob of the hand; and a pose estimation compo-
nent (Figure 3b), which computes the posture of the hand.

4.1. Blob segmentation

The process of extracting a blob corresponding to the
user’s hand begins with an over-segmentation of the depth
image into super-pixels. The regions of the image are sub-
divided by thresholding the depth gradients. Subsequently,
a set of heuristics are applied to merge and split the super-
pixels into semantically meaningful blobs. These heuris-
tics, for example, merge regions that overlap the previous
frame’s blob, if available, by a predefined amount; merge
small adjacent regions that appear to be detached fingers;
and filter out regions that are likely part of the user’s arm.
The system is initialized by classifying blobs as hand/not-
hand using a Random Forest (RF) classifier with features as
in Section 4.2.2. The blobs extracted in the current frame
are then matched to those detected in the previous frame.
The quality of the blob-to-blob matching is measured by
mean depth comparison and by matching their contours.

4.2. Pose estimation

The first step of the pose estimation component is to es-
timate the rigid transformation of the hand between the pre-

vious and the current frames, as described in Section 4.2.1.
Subsequently, a classifier is applied to identify regions of
the blob that are likely candidates to be fingers, which are
then used to generate plausible poses of the hand; see Sec-
tion 4.2.2. Note, the candidate fingers are not dependent on
the results of previous frame’s tracking, and therefore pro-
vide an effective mechanism for error recovery. The reini-
tialization module (Section 4.2.3) generates a set of skele-
ton hypotheses, which are sets of kinematic parameters, that
constitute initial guesses for the ICPIK algorithm.

4.2.1 Rigid motion estimation

The rigid motion of the hand from the previous to the cur-
rent frame is estimated from a set of point pairs computed
from the respective frames’ depth blobs. We apply the
RANSAC algorithm in order to find the best transformation
based on triplets of the point pairs.

4.2.2 Finger detection and labeling

Candidate fingers are detected by applying an edge-
detection algorithm to the grayscale image and searching
for the locus bounded by two parallel edges approximately
a finger-width apart, as shown in Figure 2c. We locate the
“base” and the “tip” of each finger and estimate the radius
R of the palm in the image. For each finger, we crop a
2R× 2R square patch, centered at its base, and oriented to-
ward the “base-to-tip” direction. HOG-like features are then
extracted from these patches on the grayscale and depth im-
ages and used by an RF classifier to classify each finger as
“Thumb”, “Index”, etc. The result is a set of probabilities
for each finger, as shown in Figure 2d.

4.2.3 Hypothesis generation and error recovery

The reinitialization module generates a set of skeleton hy-
potheses that are subsequently passed as initial guesses to
the ICPIK algorithm. When a hand is detected for the first
time, a set of possible poses for the skeleton are generated
from detected and labeled fingers (Section 4.2.2). When a
blob was detected as a hand from the previous frame, the
rigid transformation (Section 4.2.1) generates an additional
hypothesis for the pose of the hand. The reinitialization
module adds several more skeleton hypotheses, where each
finger is assigned to one of the labeled fingers, assumed to
be folded, or remains in its post-rigid pose. Each skeleton
is given a score, indicating how well it fits the input, and
the top K configurations are passed on to the module that
performs ICPIK. The details of the score are described in
the next section.

4.2.4 ICPIK refinement

In the final step, we apply ICPIK algorithm to each skele-
ton hypothesis generated by the previous module. In or-
der to apply ICPIK, we must first define correspondences
between the virtual end-effectors of the articulated hand
model and the virtual targets of the depth blob pixels. Re-
call that this step is analogous to matching the closest points
between the source and target point clouds in an ICP imple-
mentation. However, we leverage the additional knowledge
extant in the skeleton hypotheses regarding which regions
of the depth blob correspond to fingers. We begin by pro-
jecting the skeleton’s fingers onto the depth blob, to assign
an appropriate finger label to each pixel. The labels are
then propagated by the watershed transform to fill the en-
tire blob. Next, we randomly subsample the pixels so that
each label has at most L pixels assigned to it. A typical
value is L = 200. We assign weights to the selected pix-
els so that the sum of the weights for each label equals one.
Figure 2e shows an example of our labeling. These pix-
els are the virtual targets, and to each virtual target we as-
sociate a virtual end effector by choosing the closest point
on the hand model with surface normal facing the camera.
The root mean square (RMS) error between the virtual end-
effectors and virtual targets is the error metric that is used
to select the top K hypotheses in Section 4.2.3.

5. Results and conclusions

We evaluate the runtime performance and accuracy of
the ICPIK algorithm on 3000 consecutive frames from
six sequences of different people performing a variety of
gestures in front of the camera. We compare a single-
hypothesis version of the ICPIK algorithm to a PSO op-
timization similar to the one described in [12], and to a
multiple-hypotheses ICPIK. In each case, the ICPIK com-
ponent of Section 4 was replaced by the alternative op-
timization scheme, the PSO or the multiple-hypotheses
ICPIK. However, the remainder of the system remained un-
changed, so that at each frame each optimization scheme
received the same initial state, as computed by the earlier
components. We use PSO to optimize our objective func-
tion, rather than one described in [12]. The accuracy of
each scheme was measured using the ICP objective error
metric, i.e. root mean square (RMS) distance between sets
of corresponding end-effectors and targets. Figure 4a is a
plot of the ICP error as a function of the computation time
in milliseconds for each algorithm. We use the hypothe-
sis with highest score from the pose-detection module (Sec-
tion 4.2.3) for initialization of the single-hypothesis ICPIK,
and top five hypotheses from the pose-detection module for
initialization of the PSO and ICPIK with multiple hypothe-
ses. For the PSO scheme, we use 30 particles (six for each
model), which are generated by randomly perturbing the

(a)

(b)
Figure 4. RMS Error vs. time of the ICPIK and the PSO optimiz-
ers. (b) shows the first few iterations in (a).

same five states used to initialize the ICPIK. All experi-
ments were performed on a laptop running an Intel Core-
I7-4700hq CPU.

One can see in Figure 4b that the ICPIK algorithm typi-
cally converges within 8 iterations, requiring about 0.8ms,
while the PSO algorithm with 30 particles requires about
4ms to achieve the same error. The implementation of
ICPIK based on five initial hypotheses further minimizes
the error, which indicates that the single hypothesis ICPIK
algorithm tends to converge to local minima and can benefit
from multiple initializations. In the hand tracking system
described in Section 4 we limit the number of iterations to
20, which requires 2ms of computation time for a single
hypothesis ICPIK. For all twenty iterations, about 55% of
the time (1.1ms) is spent computing the correspondences
between the hand model and the depth image, while the rest
of the time (0.9ms) is spent on computing the Jacobian ma-
trix and the rest of the DLS solution.

Figure 5 displays qualitative results of the ICPIK algo-
rithm, in which the output skeletons are rotated to provide
better views. The first three rows show sample frames in
which the algorithm successfully improved the initial hy-
pothesis, while the fourth row shows a failure case. In
general, given an adequate initial pose, the tracking system

Grayscale Initial pose ICPIK Improves

R
in

g
In

de
x

&
T

hu
m

b
In

de
x

&
T

hu
m

b
Fa

ile
d

Figure 5. Qualitative results of the ICPIK algorithm. The left col-
umn shows an grayscale image, the middle column shows the ini-
tial configuration and the right column shows the result of the
ICPIK algorithm. On the middle and left columns, the model is
rendered along with a mesh of the input point-set in red.

performs well, and the ICPIK scheme prevents the track-
ing from drifting. Occasionally, due to fast motions, noisy
or imperfect depth image, or another source of error, the
ICPIK can push the initial pose even further away from the
desired solution, as in the last row of Figure 5.

Failures of the algorithm can be attributed to erroneous
correspondences between the virtual end-effectors and their
targets, and to inaccuracies in the hand model. Our method
to find correspondences, as described in Section 4.2.4, relies
on assigning correct labels to finger regions. Mislabeled fin-
gers therefore generate incorrect correspondences, and dis-
tort the result. A promising direction for future research is,
therefore, to improve the quality of the correspondences, for
example, by ignoring the labels after a few iterations of the
ICPIK, rejecting outliers, etc. Our hand model, shown in
Figure 2f, is composed of spheres and cylinders. While the
simplicity of the model lends itself to fast computation, it

does not come close to capturing the full complexity of the
human hand. In particular, we have found that accurately
modeling the articulation of the thumb is challenging, and,
despite our best efforts, the thumb is responsible for many
of the errors.

An additional improvement is to incorporate repulsive
targets (as described in Section 3.1) to avoid various types
of implausible configurations. Examples are self intersec-
tions, regions of the model that map to free-space of the
depth map, and hand poses for which fingers occlude the
palm, although the palm is visible in the camera’s image.
Properly defining and implementing these types of repul-
sive targets is another topic for future work.

In conclusion, we have presented an efficient articulated
ICP algorithm, which incorporates the ICP problem into an
inverse kinematics framework. The accuracy of the ICPIK
algorithm is similar to the state of the art, while consuming
significantly less computational resources. This is a result
of the analytical evaluation of the Jacobian matrix coupled
with an efficiently formulated optimization. Computational
efficiency allows the algorithm to be run several times on
different initial states, to improve accuracy. We have also
demonstrated how the ICPIK algorithm achieves state-of-
the-art results in a real-time hand tracking solution, and the
approach can be similarly applied in the context of other ar-
ticulated body problems, such as full-body skeleton track-
ing, and registration of 3D models to point clouds.

Acknowledgments. We gratefully acknowledge the
contributions of Maoz Madmony, Dr. Shlomo Polonsky,
Itamar Glazer, Moti Daniel, Chen Paz, Kfir Viente, Amit
Bleiweiss, in implementing the real-time hand pose track-
ing system, as well as the help and support of all the former
members of the Omek Interactive team.

References
[1] P. J. Besl and N. D. McKay. A method for registration of 3-d

shapes. IEEE Trans. Pattern Anal. Mach. Intell., 14(2):239–
256, Feb. 1992. 1

[2] M. Bray, E. Koller-Meier, P. Mueller, L. Van Gool, and N. N.
Schraudolph. 3d hand tracking by rapid stochastic gradient
descent using a skinning model. In CVMP, 2004. 1, 2

[3] S. R. Buss. Introduction to inverse kinematics with jacobian
transpose, pseudoinverse and damped least squares methods.
Technical report, 2004. 3

[4] S. R. Buss and J.-S. Kim. Selectively damped least squares
for inverse kinematics. Journal of Graphics Tools, 10:37–49,
2004. 2

[5] E. de Aguiar, C. Stoll, C. Theobalt, N. Ahmed, H.-P. Seidel,
and S. Thrun. Performance capture from sparse multi-view
video. In SIGGRAPH, 2008. 1

[6] G. Dewaele, F. Devernay, R. Horaud, and F. Forbes. The
alignment between 3-d data and articulated shapes with
bending surfaces. In ECCV, 2006. 2

[7] A. Erol, G. Bebis, M. Nicolescu, R. D. Boyle, and
X. Twombly. Vision-based hand pose estimation: A review.
Computer Vision and Image Understanding, 2007. 1

[8] J. Gall, C. Stoll, E. de Aguiar, C. Theobalt, B. Rosenhahn,
and H.-P. Seidel. Motion capture using joint skeleton track-
ing and surface estimation. In CVPR, 2009. 1

[9] D. Grest, J. Woetzel, and R. Koch. Nonlinear body pose
estimation from depth images. In PR, 2005. 2

[10] C. Keskin, F. Kirac, Y. E. Kara, and L. Akarun. Hand pose
estimation and hand shape classification using multi-layered
randomized decision forests. In ECCV, 2012. 2

[11] H. Li, R. W. Sumner, and M. Pauly. Global correspondence
optimization for non-rigid registration of depth scans. In
Symposium on Geometry Processing (SGP), 2008. 1

[12] I. Oikonomidis, N. Kyriazis, and A. Argyros. Efficient
model-based 3d tracking of hand articulations using kinect.
In BMVC, 2011. 1, 2, 5, 6

[13] D. E. Orin and W. W. Scharader. Efficient computation of
the jacobian for robot manipulators. International Journal of
Robotics Research, 3(4):66–75, 1984. 2, 3

[14] S. Pellegrini, K. Schindler, , and D. Nardi. A generalization
of the icp algorithm for articulated bodies. In BMVC, 2008.
2

[15] C. Qian, X. Sun, Y. Wei, X. Tang, and J. Sun. Realtime and
robust hand tracking from depth. In CVPR, 2014. 1, 2

[16] S. Rusinkiewicz and M. Levoy. Efficient variants of the icp
algorithm. In International Conference on 3-D Digital Imag-
ing and Modeling, 2001. 1

[17] T. Sharp, C. Keskin, D. Robertson, J. Taylor, J. Shotton,
D. Kim, C. Rhemann, I. Leichter, A. Vinnikov, Y. Wei,
D. Freedman, P. Kohli, E. Krupka, A. Fitzgibbon, and
S. Izadi. Accurate, robust, and flexible real-time hand track-
ing. In CHI, 2015. 1, 2

[18] J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio,
R. Moore, A. Kipman, and A. Blake. Real-time human pose
recognition in parts from a single depth image. In CVPR,
2011. 2

[19] E. Simo-Serra. Kinematic Model of the Hand using Com-
puter Vision. Degree thesis, BarcelonaTech (UPC), 2011. 5

[20] J. Taylor, R. Stebbing, V. Ramakrishna, C. Keskin, J. Shot-
ton, S. Izadi, A. Hertzmann, and A. Fitzgibbon. User-specific
hand modeling from monocular depth sequences. In CVPR,
2014. 5

[21] J. Tompson, M. Stein, Y. Lecun, and K. Perlin. Real-time
continuous pose recovery of human hands using convolu-
tional networks. In SIGGRAPH, 2014. 2

[22] http://www.intel.com/content/www/
us/en/architecture-and-technology/
realsense-overview.html. 1, 5

[23] http://www.microsoft.com/en-us/
kinectforwindows/. 1

[24] R. Y. Wang and J. Popović. Real-time hand-tracking with a
color glove. In SIGGRAPH, 2009. 2

[25] W. Zhao, J. Chai, and Y.-Q. Xu. Combining marker-based
mocap and rgb-d camera for acquiring high-fidelity hand mo-
tion data. In SIGGRAPH/SCA, 2012. 2

http://www.intel.com/content/www/us/en/architecture-and-technology/realsense-overview.html
http://www.intel.com/content/www/us/en/architecture-and-technology/realsense-overview.html
http://www.intel.com/content/www/us/en/architecture-and-technology/realsense-overview.html
http://www.microsoft.com/en-us/kinectforwindows/
http://www.microsoft.com/en-us/kinectforwindows/

