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Abstract

The daily interpretation of SAR sea ice imagery is very
important for ship navigation and climate monitoring. Cur-
rently, the interpretation is still performed manually by ice
analysts due to the complexity of data and the difficulty of
creating fine-level ground truth. To overcome these prob-
lems, a semi-supervised approach for ice-water classifica-
tion based on self-training is presented. The proposed al-
gorithm integrates the spatial context model, region merg-
ing, and the self-training technique into a single framework.
The backscatter intensity, texture, and edge strength fea-
tures are incorporated in a CRF model using multi-modality
Gaussian model as its unary classifier. Region merging is
used to build a hierarchical data-adaptive structure to make
the inference more efficient. Self-training is concatenated
with region merging, so that the spatial location informa-
tion of the original training samples can be used. Our algo-
rithm has been tested on a large-scale RADARSAT-2 dual-
polarization dataset over the Beaufort and Chukchi sea, and
the classification results are significantly better than the su-
pervised methods without self-training.

1. Introduction

The operational mapping of sea ice is beneficial for sev-
eral important purposes, including ship navigation, weather
forecasting, and environmental science. Among many satel-
lite sensors, synthetic aperture radar (SAR) is very suit-
able for sea ice mapping because of its all-weather and
all-day imaging capability. Also, the recently-launched
RADARSAT-2 satellite makes dual-band polarization on
large scale available, so that more information can be pro-
vided for the operational sea ice mapping.

In the Canadian Ice Service (CIS), the interpretation of
sea ice imagery is currently performed manually by ice an-
alysts everyday. An example of the manual ice chart is
shown in Fig. 1. The manually-outlined irregular poly-

gons are “egg codes” defined by World Meteorological Or-
ganization, which record the ice conditions such as the ice
concentration in the polygons estimated by the ice experts
based on their experiences. The ice chart provides good in-
terpretation in a large scale, but is lack of details because
the ice-water boundaries are coarsely outlined. Also, the
result may not be consistent for different ice analysts [14].
By comparison, automated interpretation approaches have
the potential of generating high-volume pixel-level classifi-
cation maps with no inter-operator bias.

Figure 1. Example of an ice chart [8] and the egg codes, recording
the total ice concentration, the partial ice concentration, the stage
of ice development, and the form of ice in the polygon.

The automated classification of SAR sea ice imagery has
been studied for over a decade [6, 10–12, 18, 21]. However,
there is no existing algorithm that can be in operational use
so far. There are mainly two reasons. On one hand, the
properties of ice and open water in the SAR imagery are af-
fected by many factors such as incidence angle, snow condi-
tion, and wind speed, resulting in tremendous within-class
variability across scenes and even within a scene. Also,
SAR imagery is corrupted by speckle noise, which de-
grades the image details and further decreases class separa-



bility. As a result, traditional pixelwise classification meth-
ods [10, 11] would be incapable of achieving satisfactory
result. On the other hand, traditional supervised classifi-
cation methods require sufficient labeled samples for train-
ing. However, the ground-truthing requires the expertise
and experience of interpreting sea ice, and it is a very time-
consuming and tedious task considering the large size of
SAR images. Otherwise, if only a small amount of pixels
are labeled for training, they might not enough for charac-
terizing the true data distribution and thus yield to inferior
classification results.

In recent years, semi-supervised learning techniques
have been applied to remote sensing image classification
tasks [2–4, 13]. These methods incorporate additional un-
labeled pixels into training to compensate the insufficiency
of the original training samples. However, these methods
usually require high computational cost, and the improve-
ment is sometimes limited if “bad” unlabeled samples are
selected for training. Recently, Dópido et al. [7] used a self-
training technique for classification of hyperspectral im-
agery, and only pixels that are near the initial training sam-
ples in their spatial coordinates can be selected for training.
In the remote sensing context, the selection of training sam-
ples and the classification are usually performed in the same
image, and therefore the spatial location information of the
original training samples can be used to guide the selection
of new training samples. According to the Tobler’s first law
of geography [19], pixels that are near the original training
samples are more likely to be in the same class as the train-
ing samples, and are thus more reliable if they are used for
self-training.

Motivated by [7], a semi-supervised approach called
self-training IRGS (ST-IRGS) is presented in this paper. It
inherits some useful properties of the iterative region grow-
ing using semantics (IRGS) algorithm, an unsupervised seg-
mentation algorithm that has been successfully applied for
SAR sea ice imagery [21]. In the ST-IRGS, hierarchi-
cal region merging is integrated with a conditional random
field (CRF) to iteratively reduce the number of nodes, and
edge strength is used in both classification and region merg-
ing. The key feature of the ST-IRGS is an embedded self-
training procedure. Compared to [7], the ST-IRGS can iter-
atively expand the training candidate set owing to its region
merging property, so that the abundant unlabeled samples
can be explored even if they are not near the original train-
ing samples. Also, the correctness of the labels can be en-
sured by the region properties.

The rest of the paper is structured as follows. Section
2 describes the proposed ST-IRGS algorithm in the context
of the ice-water classification problem. Experiments on a
RADARSAT-2 SAR dual-polarization dataset are reported
in Section 3. Section 4 concludes and outlines a direction
for future work.

2. Methodologies
2.1. Problem formulation

Figure 2. Overview of the ice-water classification using the ST-
IRGS algorithm

Fig. 2 shows an overview of the ice-water classification
using the proposed ST-IRGS algorithm. Given a few labeled
pixels in an image, we aim to learn the optimal labeling
configuration of all the pixels in the image. For a first-order
CRF model, the posterior probabilities P (y | x) can be
formulated as [9, 17]:

logP (y | x, θ) =
∑
s

φs(ys,x
φ; θφ)

+ β
∑
s

∑
t∈ηs

ξst(ys, yt, gst(x
ξ); θξ)− log Z(θ,x)

(1)

where φs(·) and ξst(·) are unary and pairwise clique poten-
tials respectively, s indexes nodes in a discrete rectangular
lattice, ηs refers to the 4-connected neighbors of node s,
gst(x

ξ) is the edge feature for two adjacent nodes s and t,
Z(θ,x) is a partition function, {xφ,xξ} ⊂ x are data for
the potentials, β is a weight parameter, and θ =

{
θφ, θξ, β

}
are model parameters.

In our approach, we use a combination of backscatter
intensity and texture features for xφ in the unary potentials.
In the previous literature, grey-level co-occurrence matrix
(GLCM) parameters have been demonstrated to be effective
in distinguishing different ice types and open water [5]. In
our approach, we adopt a total of 28 features including the



mean, standard deviation, and GLCM measures in different
window sizes extracted for ice-water classification using a
RADARSAT-2 image dataset [12].

The unary potentials are defined using Gaussian models.
Even if the distribution of features is not strictly Gaussian,
the Gaussian models can still be used to approximate it [6,
21]. For SAR sea ice imagery, a single Gaussian modality is
usually insufficient of modeling a class even within a scene.
Fig. 3 shows an example that the principal component of
the water class has multiple mixtures. Therefore, we use
multiple Gaussian mixtures to model each class. The unary
potentials are defined as:

φs(ys,x
φ;αk, µk,Σk, Cys)

= log

p(ys)
Cys∑
k

αkN(xφs , µk,Σk)

 (2)

where p(ys) is a class prior, Cys is the number of mixtures in
the class, µk and Σk are mean and variance of the mixture
k, and αk is the mixture prior in the class Cys . Although
other state-of-the-art classifiers can be used as the unary
classifier, the multi-modality Gaussian model performs very
well for ice-water classification in our experiment given suf-
ficient training samples, and the estimated mixture param-
eters can be used for region merging and determining the
weight parameter later.

For xξ in the pairwise potentials, we only use the
backscatter intensity in the HV polarization which is less
sensitive to incidence angle effect compared to the HH po-
larization. The edge feature is set to measure the gradient
between neighboring pixels [20]. Thus, the pairwise poten-
tial is defined as:

ξst(ys, yt,x) =

{
βgst(x

ξ) ys 6= yt

0 otherwise
(3)

gst(x
ξ) = exp

−(xξs − xξt
K

)2
 (4)

where β is a weight parameter, andK is a gradually increas-
ing parameter during the optimization iterations, which has
been demonstrated to be experimentally satisfactory for
SAR sea ice imagery [20].

2.2. Problem solving

An alternating procedure is used to perform both param-
eter estimation and inference in (1). Fig. 4 shows the flow
chart of the ST-IRGS algorithm. In each iteration, the model
parameters are first fixed, and the label configuration is op-
timized. Then, the model parameters are updated based on

Figure 4. Flow chart of the ST-IRGS algorithm

the current labels. In the parameter estimation step, the pa-
rameters related to the unary potentials are estimated in-
dependently. The number of mixtures is estimated using
Bayesian information criterion [16], and then αk, µk, and
Σk are estimated using expectation maximization (EM).
After the parameters are estimated, Gibbs sampling is used
for inference. Each node is processed only once in one iter-
ation.

Similar to the IRGS algorithm [20], we incorporate the
hierarchical region growing procedure into the iterations to
build a hierarchical data-adaptive structure in order to make
the optimization more efficient. A region adjacency graph
(RAG) is first generated from the initial over-segmentation



(a) (b)
Figure 3. (a) RADARSAT-2 SAR imagery in HH polarization captured over Beaufort sea on July 30, 2010. (b) Probability density function
of the principal component of the 28 features for the water class, which clearly shows multiple mixtures due to the incidence angle effect.

result. Then, similar neighboring pixels are iteratively
merged into regions, so that the number of nodes can be
significantly reduced, and thus the convergence rate can be
increased. In our approach we also assume each region to be
single-modality Gaussian distribution, so the same merging
criterion as the IRGS can be used:

∂Eij =
∑
s∈Ωk

log(σk)−
∑
s∈Ωi

log(σi)−
∑
s∈Ωj

log(σj)

−β
∑

〈s,t〉∈C;s∈Ωi,t∈Ωj

gst(x
ξ)

(5)

where Ωi and Ωj are two neighboring regions for merging,
Ωk is the region after merged, and σ is the variance of the
region.

The detailed derivation of (5) can be found in [20]. To
preserve the single-modality property of the regions, each
region is assigned a mixture label based on the previous es-
timated number of mixtures and Gaussian parameters. Only
regions that are in both the same predicted class label and
mixture label are allowed to be merged. In each iteration,
the edges of adjacent nodes with negative ∂Eij are put into
a merging list in an ascending order to make the merging
more efficient, and the corresponding region and edge in-
formation is updated after each merging. Also, each node is
only allowed to be merged once in the first a few iterations
to avoid extremely-large regions that may result in imbal-
anced number of training samples. For SAR sea ice imagery
and other kinds of remote sensing imagery that contain ho-
mogeneous regions, the number of nodes can be finally re-
duced to a very small number, so that even a very simple
optimization method can achieve near-optimal solutions.

To address the problem of insufficient training samples,
a self-training procedure is followed by region merging in

each iteration. Self-training is a kind of semi-supervised
technique that iteratively retrains the classifier using the pre-
dictions that are confident [22]. However, traditional self-
training methods are largely dependent on the performance
of the classifier. If the classifier performs very badly, the
predictions are not be reliable and will degrade the classi-
fication performance if they are used for retraining. In our
approach, we only select pixels which are in the same re-
gions as the original training samples to be new training
samples.

Another important issue is to determine the weight pa-
rameter β between the unary and pairwise potentials. Tra-
ditional classification approaches usually seek for the op-
timum weight parameter using grid search, which is time-
consuming and unreliable when only limited training sam-
ples are available. In the ST-IRGS, we use the scheme for
adapting the weight parameter of the IRGS. The parameter
β is updated based on class separability in each iteration:

β = C1
J/C2

1 + J/C2
β0 (6)

where β0 is the ratio of the current total class boundary
length over the image size [15], C1 and C2 are constants,
and J is the separability of ice and water classes.

To calculate the pairwise class separability, we still use
the Fisher’s criterion, but we need to sum up the values of
all the pairwise mixtures because each class has multiple
mixtures:

J =
∑
i∈Cice

∑
j∈Cwater

{
αiαj

|µi − µj |
σ2
j + σ2

j

}
(7)

where µi and σi are the mean and variance of the HV
backscatter intensity for pixels that belong to the mixture
i.



In each iteration, the β and K in (3) and (4) are up-
dated correspondingly until a maximum number of itera-
tions τmax is reached.

3. Experiments and Analysis
3.1. Data

The data for testing include eight scenes obtained from
the C-band RADARSAT-2 SAR satellite over the Beaufort
and Chukchi Sea area from May to December in the year
2010. They were captured in the ScanSAR Wide mode,
which is the most useful beam mode for sea-ice monitor-
ing. HH and HV dual-polarizations are provided in the
ScanSAR Wide mode. The spatial resolution of images is
50 m, and the image sizes are around 10 000 × 10 000 pix-
els. The test images were acquired from both ascending and
descending passes, with an incidence angle ranging from
20◦ to 49◦. Each scene contains both ice and open water.

In the pre-processing step, the log-transformed original
images were down-sampled using 4 × 4 block averaging
to meet operational requirement [12]. The test images are
cropped from the blocked-averaged images to eliminate the
land area, and each test image has the same size of 2000 ×
2000 pixels. Even though the down-sampled images yield
to coarser classification results, the results are still far more
detailed than the expected human interpretation [12]. The
vector-based ground truth for the test images was made by
an experienced ice analyst. To make a better evaluation of
the algorithms, accurate pixelwise ground truth for each im-
age has been created based on the vector-based ground truth
for both training and validation.

3.2. Experimental setup

The ST-IRGS algorithm is implemented in Microsoft Vi-
sual C++ 2010. C1 and C2 in (6) are set to 3 and 0.4 sep-
arately. We use the same weight parameter for all the test
images considering its adaptability, even though the accu-
racy could be improved by carefully tuning the parameters
for each scene. τmax is set to 100. The setting of K in
(4) is the same as the IRGS algorithm [20]. The maximum
number of mixtures Ci for each class i is set to 5. When
the number of training samples in a class is less than 200, a
single-modality Gaussian model is used in order to guaran-
tee sufficient samples for estimating the model parameters.
To reduce the computational cost, we randomly select 5000
samples for parameter estimation in the EM algorithm if the
number of available training samples in a class is greater
than 5000, and empirically the selection of more training
samples does not show additional improvement. Also, the
parameters are only updated when the available training
samples for a class are increased by 2%. In the first 30
iterations, each region is only allowed to be merged once.

In the experiment, only ten pixels for each class

are randomly selected for training samples. We use
the multi-modality Gaussian maximum likelihood classier
(MGMLC) and GMRF which are both closely related to
the proposed ST-IRGS algorithm for comparison. MGMLC
uses the pixels in the same watershed algorithm as the orig-
inal training samples for parameter estimation, and it serves
as the unary classifier for both GMRF and ST-IRGS. GMRF
combines MGMLC with the standard MRF model, and the
graph-cut algorithm [1] is used for inferencing the labels.
The weight parameter of GMRF adopts the one with highest
test accuracy in a set {20, 21, 22, ..., 28}. For all the meth-
ods, PCA is first applied to the 28 features and the first five
principal components are remained.

3.3. Experimental results and analysis

The classification result of the whole test dataset is
shown in Table 1. Each image is tested for 10 times, and the
averaged mean and standard deviation of the overall classi-
fication accuracy (OA) and the Kappa coefficient for all the
images in the dataset are reported in the table. The ST-IRGS
achieves about 95 percent classification accuracy, which is
significantly higher than the other two methods. Moreover,
the variation of the OA due to random sampling is signifi-
cantly reduced by the ST-IRGS. This is because as the train-
ing set is expanded, the classification performance becomes
less sensitive to the initial training samples. Considering
that the initial samples of the ST-IRGS are also selected to-
tally by random, the OA could be even higher in practice
because an experienced human interpreter may be able to
label more representative samples.

Table 1. Overall classification accuracy (OA%) and Kappa coef-
ficient for MGMLC, GMRF, and ST-IRGS on a RADARSAT-2
SAR dual-polarization dataset.

OA(%) Kappa
MGMLC 78.67±9.31 0.48±0.13
GMRF 82.06±9.40 0.54±0.17

ST-IRGS 94.38±0.89 0.84±0.03

Fig. 5 shows the result on a RADARSAT-2 image scene
captured over the Beaufort sea on October 3, 2010. The
ice usually starts to freeze in the Beaufort Sea in early Oc-
tober. The air temperature was -1.0◦C at the moment. In
Fig. 5 (a), different stages of ice growth including new ice,
grey ice, and grey-white ice are observed. There is also
some multi-year ice in the North East. It had survived the
summer and began to build up together with the first-year
ice that is freezing. The wind speed at PRDA2 tower was
12.6 m/s, which results in the wind-roughened texture of the
open water on the image.

Due to the high wind and the incidence angle effect,
some areas of the open water have similar properties to ice
in both intensity and texture. In Fig. 5 (b), the rough wa-
ter area in the West and the open water in the near range in



(a) Data (b) MGMLC (c) GMRF

(d) ST-IRGS (e) Self-training set (f) Region map
Figure 5. Classification results of the data captured on October 3, 2010. (a) shows the HV polarization of the data, with original training
samples overlain on the image (red: ice; blue: open water). (b), (c), and (d) are classification results of MGMLC, GMRF, and ST-IRGS
respectively. (e) is the final training sample map expanded by self-training of ST-IRGS. (f) is the final region map of ST-IRGS.

the South East are misclassified as ice. Conversely, some
newly-formed ice that has similar backscatter to water is
also misclassified. Moreover, class boundaries are not accu-
rate because the edges of the texture images are blurred due
to the large GLCM window size used. This is unavoidable
because if smaller texture window size is used, some texture
patterns might fail to be extracted. In Fig. 5 (c), GMRF can
refine some of the labeling with the aid of the spatial con-
text, but in some open water area, there is even more mis-
classification due to the poor estimation of the unary classi-
fier. Also, there is no improvement on the correction of the
class boundaries. In Fig. 5 (d), the classification result is
significantly improved owning to the expanded training set
by the self-training technique. Fig. 5 (e) shows that most
pixels of the image expanded into the training set are cor-
rectly labeled. There are a few unexpanded regions in the
South East due to the strong incidence angle effect, but they
can be finally labeled correctly. An average of 97.2% over-
all classification accuracy can be achieved in 10 tests using
different randomly-selected samples. Also, the class bound-
aries are corrected after the incorporation of edge strength
into the CRF energy function.

Beyond the improvement, there are two obvious errors
in Fig. 5 (d). First, the grease ice in the middle of the image
is mostly misclassified. Even though a human interpreter
is able to identify some grease ice by its difference from
the surrounding open water, the feature space of grease ice

is overlapped with that of open water in other areas of the
scene. The correct labeling of the grease ice may be at the
cost of misclassifying some open water, as shown in Fig. 5
(b) and (c). Also, the small pieces of ice in the South East
are labeled as open water. Due to the texture window size,
there is little difference between those small ice floes and
the open water in the texture feature space. Also, the small
regions tend to be considered as noise in a spatial context
model. Nevertheless, neither of these misclassifications in-
curs significant operational issues [12].

Another result is shown in Fig. 6, using the scene cap-
tured over the Chukchi sea on November 14, 2010. The
air temperature was -15.1◦C. The wind speed measured at
PRDA2 tower was 6.7 m/s. In mid November, the ice cov-
erage is increasing towards the South West in the Chukchi
Sea, and new ice starts to form. In this image, there is a
mixture of first-year ice, grey ice, and grey-white ice in the
North East. Some ice area has very dark intensity, and is dif-
ficult to be distinguished from open water from in a small
scale. As a result, MGMLC that is only based on small
watershed regions is unable to achieve satisfactory classifi-
cation result. GMRF can correct some misclassifications of
open water into ice, but does not help improve the classifica-
tion accuracy of ice. The ST-IRGS correctly classifies most
of the pixels by expanding the training set, and achieves an
OA of 96.0% over 10 tests. In Fig. 6 (e), we can see that
the training set of ice is expanded to most of the ice region



(a) Data (b) MGMLC (c) GMRF

(d) ST-IRGS (e) Self-training set (f) Region map
Figure 6. Classification results of the data captured over Chukchi sea on November 14, 2010. (a) shows the HV polarization of the data,
with original training samples overlain on the image (red: ice; blue: open water). (b), (c), and (d) are classification results of MGMLC,
GMRF, and ST-IRGS respectively. (e) is the final training sample map expanded by self-training of ST-IRGS. (f) is the final region map of
ST-IRGS.

except the area between ice and open water, where the ice
is relatively new and the characteristics is different from the
rest of ice. This area can also be correctly labeled in the
final result.

Fig. 7 shows the change of the OA during the itera-
tions for the dataset. The OA fluctuates at the beginning
of the iterations because even though the number of train-
ing samples increases, they are still incapable of character-
izing the whole image. Once new samples are incorporated,
the classifier will change greatly. Such an intermediate re-
sult is not reliable. If the self-training is only based on this
result without the region constraint, the subsequent result
might be even worse. Instead, the ST-IRGS only trusts the
predictions in the regions that contain the original training
samples, in order to guarantee the correctness of the self-
training samples. After 30 iterations, the OA starts to in-
crease as more samples are added into the training set, and
become stable both after 80 iterations.

In Fig. 8, the number of regions is gradually reduced
from about 100,000 at the beginning to less than 400 at the
end of the iterations. There are two advantages. On one
hand, the reduction of regions makes the optimization more
efficient and can help for the extraction of high-level fea-
tures. On the other hand, it is very convenient to correct the
classification results manually by re-labeling the misclassi-
fied regions using the region maps in any previous iteration.

Figure 7. Overall classification accuracy by ST-IRGS during the
iterations.

4. Conclusions

The ST-IRGS algorithm is capable of accurately distin-
guishing ice and open water in large-scale dual-polarization
SAR images using a very small number of labeled samples.
The multi-modality Gaussian model is suitable for describ-
ing the class distributions considering the complexity of the
SAR sea ice data. The inherent combination of self-training
in the IRGS framework can iteratively and correctly expand
the training set and improve the classifier. Robust classifica-
tion results have been achieved in testing of a RADARSAT-



Figure 8. Number of regions by ST-IRGS during the iterations.

2 dual-polarization dataset captured over the Beaufort and
Chukchi sea area. Future work includes improving the iden-
tification of grease ice and small ice floes.
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[7] I. Dópido, J. Li, P. R. Marpu, A. Plaza, J. M. Bioucas-Dias,
and J. A. Benediktsson. Semi-supervised self-learning for
hyperspectral image classification. IEEE Trans. Geosci. Re-
mote Sens., 51(7):4032–4044, 2013.

[8] D. Fequest. MANICE: manual of standard procedures
for observing and reporting ice conditions. Environment
Canada, 2005.

[9] X. He, R. S. Zemel, and M. Carreira-Perpindn. Multiscale
conditional random fields for image labeling. In CVPR, vol-
ume 2, pages II–695, 2004.

[10] J. A. Karvonen. Baltic sea ice sar segmentation and classifi-
cation using modified pulse-coupled neural networks. IEEE
Trans. Geosci. Remote Sens., 42(7):1566–1574, 2004.

[11] R. Kwok, E. Rignot, B. Holt, and R. Onstott. Identifica-
tion of sea ice types in spaceborne synthetic aperture radar
data. Journal of Geophysical Research: Oceans (1978–
2012), 97(C2):2391–2402, 1992.

[12] S. Leigh, Z. Wang, and D. A. Clausi. Automated ice-water
classification using dual polarization sar satellite imagery.
IEEE Trans. Geosci. Remote Sens., 52(9):5529–5539, 2014.

[13] J. Li, J. M. Bioucas-Dias, and A. Plaza. Semisupervised hy-
perspectral image segmentation using multinomial logistic
regression with active learning. IEEE Trans. Geosci. Remote
Sens., 48(11):4085–4098, 2010.

[14] M.-A. Moen, A. P. Doulgeris, S. N. Anfinsen, A. H. Renner,
N. Hughes, S. Gerland, and T. Eltoft. Comparison of feature
based segmentation of full polarimetric SAR satellite sea ice
images with manually drawn ice charts. The Cryosphere,
7(6):1693–1705, 2013.

[15] A. Qin and D. A. Clausi. Multivariate image segmentation
using semantic region growing with adaptive edge penalty.
IEEE Trans. Image Process., 19(8):2157–2170, 2010.

[16] G. Schwarz et al. Estimating the dimension of a model. The
annals of statistics, 6(2):461–464, 1978.

[17] J. Shotton, J. Winn, C. Rother, and A. Criminisi. Texton-
boost: Joint appearance, shape and context modeling for
multi-class object recognition and segmentation. In ECCV,
pages 1–15. Springer, 2006.

[18] L.-K. Soh, C. Tsatsoulis, D. Gineris, and C. Bertoia. Ark-
tos: An intelligent system for sar sea ice image classification.
IEEE Trans. Geosci. Remote Sens., 42(1):229–248, 2004.

[19] W. R. Tobler. A computer movie simulating urban growth
in the Detroit region. Economic geography, pages 234–240,
1970.

[20] Q. Yu and D. A. Clausi. IRGS: image segmentation using
edge penalties and region growing. IEEE Trans. Pattern
Anal. Mach. Intell., 30(12):2126–2139, 2008.

[21] Q. Yu, D. A. Clausi, et al. SAR sea-ice image analysis based
on iterative region growing using semantics. IEEE Trans.
Geosci. Remote Sens., 45(12):3919, 2007.

[22] X. Zhu. Semi-supervised learning literature survey. Techni-
cal Report 2, University of Wisconsin-Madison, 2006.


