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Abstract

In this paper, we present a complete framework for
video-based age and gender classification which performs
accurately on embedded systems in real-time and under un-
constrained conditions. We propose a segmental dimen-
sionality reduction technique using Enhanced Discriminant
Analysis (EDA) to reduce the memory requirements up to
99.5%. A non-linear Support Vector Machine (SVM) along
with a discriminative demographics classification strategy
is exploited to improve both accuracy and performance.
Also, we introduce novel improvements for face align-
ment and illumination normalization in unconstrained en-
vironments. Our cross-database evaluations demonstrate
competitive recognition rates compared to the resource-
demanding state-of-the-art approaches.

1. Introduction
Recently, automatic demographic classification has

found its way into industrial applications such as surveil-
lance monitoring, security control, and targeted marketing
systems. Implementing a demographic classifier on embed-
ded platforms can extend its usefulness to even a wider
variety of applications in mobile services. Ng et al. [1]
surveyed potential embedded applications such as human-
robot interaction, or gender recognition to speed-up face
recognition on mobile devices. Electronic Customer Rela-
tionship Management (ECRM) [2] is another fast-growing
technology that facilitates marketing customized products
and services based on customer’s age or gender in an au-
tomatic and non-intrusive way. Many of such systems de-
mand a robust and real-time demographic classifier that is
able to process 15 to 25 frames per second (fps). To achieve
this, the arising challenge is the constrained memory and
computation power of the embedded systems.

Training with 200,000 images, Irick et al. [3] imple-
mented an appearance-based gender classifier on FPGA us-
ing neural networks, achieving 83% accuracy on a database

of 3,826 images. Utilizing a Support Vector Machine
(SVM) with Radial Basis Function (RBF), Moghaddam
et al. [4] reported 96.6% recognition rate for classifying
gender on 1,775 images of FERET database [5]. How-
ever, with a cross-database evaluation, Baluja et al. [6]
achieved only 93.5% accuracy using the same approach.
Beikos-Calfa et al. [7] proposed a holistic but resource-
intensive strategy that employed Linear Discriminant Anal-
ysis (LDA) and Principal Component Analysis (PCA) for
gender recognition, and reported 93.33% accuracy. Later,
Fazl-Ersi et al. [8] proposed a feature-based method using
SVM and Local Binary Pattern (LBP) operator [9], and
achieved the recognition rate of 91.59% for gender, and
63.01% for age classification on Gallagher [10] dataset.

Typically, in holistic approaches, a single large feature
vector is meant to feed the classifier, but the bulky nature of
this vector is at odds with the limited resources of embed-
ded platforms. Moreover, the high degree of redundancy
and presence of textural noise can degrade the accuracy of
classification. In this paper, we present practical solutions
to these problems in order to enable the implementation of
a real-time age and gender classifier on the resource-limited
embedded platforms.

Our contributions are summarized into different sections
as follows: We start by proposing an improvement in face
alignment using the nose in Section 2.1, and a robust illu-
mination normalization strategy in Section 2.2. A review
of local patterns and our further optimizations are presented
in Section 2.3. Next, a segmental dimensionality reduction
method for multi-resolution feature vectors is introduced in
Section 2.4. We generalize a discriminative demographics
classification approach in Section 2.5 to improve the perfor-
mance. Finally, we present our experimental setup, results
and conclusions in Sections 3, 4, and 5, respectively.

2. Methodology
Generally, the face classification methods are sensitive

to face localization errors and variations in illumination.
Therefore, the face image should be normalized prior to fea-



Figure 1. Face alignment using nose and eyes.

(a) PS on Masculine Face (5◦, 10◦) (b) PS on Feminine Face (0◦,−35◦)

Figure 2. The effect of illumination on gender perception of a male subject. Original
images [11] illuminated from (azimuth, elevation). Masculine look after applying
Pre-processing Sequence (PS) [12] on both faces.

ture extraction. On the other hand, in our application the
limitations of embedded systems in terms of memory and
computational requirements must be taken into considera-
tion. In here, we investigate these issues and present robust
solutions for them.

2.1. Face Alignment

A popular approach in face alignment is the positioning
of frontal face images into an upright canonical pose based
on the position of eyes [13]. To locate the eyes, we use
the open-source flandmark library [14] which is a memory
efficient, real-time, and fairly accurate facial landmark de-
tector. Figure 1 illustrates some detected facial landmark
points on the eyes and nose. The eyes can be aligned hor-
izontally by an in-plane rotation of the face image into an
upright pose using the angle θ = arctan

(
Pr,y−Pl,y

Pr,x−Pl,x

)
where

the points (P l,x, P l,y) and (P r,x, P r,y) denote the center
positions of the left and right eye.

Typically, the distance between the eyes deyes is used to
compute the dimensions of the cropping area where deyes =√
(Pr,x − Pl,x)2 + (Pr,y − Pl,y)2. However, in uncon-

trolled environments as the head’s yaw angle increases, the
eyes distance shortens. As a result, the dimensions of the
cropping area shrink, causing an over-scaling error propor-
tional to the yaw angle and, consequently, the loss of infor-
mation from the upper and lower parts of the face. On the
other hand, as shown in Figure 1, the horizontal distance
between the points Pn and Pm on the nose increases when
the eyes distance deyes shortens.

Therefore, we propose to use the horizontal positions of
the upper nose Pm,x and the lower nose Pn,x to compen-
sate for the over-scaling in face alignment. In Equation 1,
we apply the ratio of these points to find the scale factor S0.
In this work, the detected face region is an Li × Li square,
and the resulting aligned and cropped face is an Lo × Lo
square image on which the left eye is fixed at the top-left
offsetΩo. From the scale factor S0, we compute the dimen-
sions Lc × Lc of the cropping area with Lc = S0 ∗ Lo, its
horizontal offset Ωx = Pl,x − S0Ωo, and its vertical off-

set Ωy = Pl,y − S0Ωo. Indeed, the maximum size of the
cropping area is limited as a sub-region of the detected face
region in order to avoid under-scaling in the case of unrea-
sonably large distance between the points Pn and Pm.

S0 =

(
deyes

Lo − 2Ωo

)
∗max

(
Pm,x
Pn,x

,
Pn,x
Pm,x

)
(1)

2.2. Effects of Illumination

As a matter of fact, in unconstrained environments the
facial texture is prone to uneven illumination which may
impact the demographics perception. Russell [15] demon-
strated the Illusion of Sex on an androgynous face by only
increasing the facial contrast, resulting in a feminine look
on a male subject. Similarly, in our experiments we have
observed the same effect on various lighting conditions.
Figure 2 shows an androgynous male subject [11], illumi-
nated from two different light source positions. In Figure
2(b), the light source is 35◦ below the horizon inducing
non-monotonic gray value transformations by which the ob-
server perceives a feminine look from the male subject. In
order to normalize the photometry and reduce the effects of
local shadows and highlights, we propose to apply the Pre-
processing Sequence (PS) approach [12] on the aligned face
image. The results of applying the PS are shown in Figures
2(a) and 2(b). Nevertheless, a large amount of textural noise
is still present. We provide a practical solution to this issue
in section 2.3.

2.3. Face Representation

The Local Binary Patterns (LBP) operator [9] has been
widely used as a means of extracting local features of tex-
ture. Basically, for each pixel at a center of a neighbor-
hood, the LBPP,r operator builds a binary sequence by
applying the value of the center pixel as a threshold to P
pixels in a circular neighborhood of radius r (Figure 3(b)).
Typically, to reduce the redundancy and size, the uniform
LBP operator LBPu2

P,R is used to capture the binary pat-
terns that contain at most two bit-wise transitions from 1 to
0, or 0 to 1 [16], and the final feature vector is represented



(a) Original (b) LBP8,1 (c) Original PS (d) PS+LBP8,1

(e) Filtered PS (f) FPS+LBP8,1 (g) FPS+LBP8,3 (h) FPS+LBP8,5

Figure 3. LBP on the original, PS, and Filtered PS (FPS) images.

by an LBP histogram (LBPH). Ahonen et al. [17] extended
this strategy by first dividing the LBP image into J non-
overlapping regions [M0,M1, . . . ,MJ−1], then extracting
the local histograms of regions, and finally concatenating
the histograms into a single and spatially enhanced feature
vector, as illustrated in Figure 4. Essentially, LBP operator
performs robustly in the presence of monotonic intensity
transformations. However, as can be seen in Figures 3(a)
and 3(b), the thresholding process in LBP is highly sensi-
tive to noise and non-monotonic transformations. A solu-
tion is to apply the Pre-processing Sequence (PS) normal-
ization prior to LBP (Section 2.2). Surprisingly, as shown
in Figures 3(c) and 3(d), the PS only intensified the nega-
tive effects of LBP noise, and tuning its default parameters
could not improve the results.

To suppress the noise, we propose to add a Bilateral fil-
tering stage to the PS approach. Unlike Gaussian filter, a
bilateral filter can effectively suppress the noise while pre-
serving important image features like edges. It is notewor-
thy that, as advised in [18], we apply the bilateral filtering
in two separate iterations: before and after the PS approach.
Filtering the image in Figure 3(c), we obtain the photomet-
rically enhanced image in Figure 3(e). As a result, the cor-
responding LBP images are invariant to variations in illu-
mination and noise. Figures 3(f), 3(g), and 3(h), show the
LBP images extracted at three different radii from our Fil-
tered PS image.

As a further enhancement, we employ Multi-scale Lo-
cal Binary Patterns (MSLBP) [16] operator to build a scale-
invariant feature vector. In our experiments, it has demon-
strated its superior descriptive performance against face lo-
calization errors compared to regular LBP. The MSLBP re-
inforces the face descriptor by combining the histograms
from multiple LBP transformations at R different radii in J
regions. Equation 2 defines the uniform LBP histogram of
region Mj at radius r and bin i ∈ [0, L) [19]. Herein, L
denotes the total number of bins in uniform LBP histogram.
An extra bin has been added for non-uniform feature accu-

Figure 4. Extracting multi-scale local histograms

mulation; therefore, L = P (P − 1) + 3.

Hu2
P,r,j(i) =

∑
x,y∈Mj

B(LBPu2
P,r(x, y) = i) (2)

where r ∈ [1, R], and B(u) is 1 if u ≥ 0 and 0 otherwise.
Fusing R histograms at each region j, we obtain the raw
face descriptor segment Qj ∈ R1×(L.R):

Qj=
[
Hu2
P,1,j , H

u2
P,2,j , . . . ,H

u2
P,R,j

]
(3)

Q =
[
Q0,Q1, . . . ,QJ−1

]
(4)

In this paper, we refer to partitions of the LBP image as re-
gions, and partitions of the feature vector as segments. The
raw feature vector Q ∈ R1×(J.L.R) is the ensemble of face
descriptor segments for each sample, and is meant to feed
the classifier’s input with multi-resolution LBP features.
However, its high dimensionality makes this impractical
due to large time and space complexity. This so-called curse
of dimensionality also contributes to accuracy degradation
due to data redundancy and noise. Inspired by [20, 21],
we minimize these problems by applying a segmental di-
mensionality reduction on each descriptor segment Qj , sep-
arately. With respect to face recognition applications, we
emphasize three major advantages in using LDA on a parti-
tioned feature vector in demographics classification:

1. In holistic models LDA suffers from the curse of
dimensionality, and a large dimensionality reduction
prior to LDA can overly discard texture information.
In contrast, applying LDA on separate small regions
can mitigate its singularity problems while preserving
important texture information.

2. In demographics classification the number of classes is
finite, but theoretically, an infinite number of samples
can be used to train the classifier. A low dimensional
feature vector along with a large number of training
samples work best to lift the curse of dimensionality
from discriminant analysis.

3. Unlike face recognition, the resource-demanding
Eigen-decomposition and PCA+LDA computations
are only required in the training stage, and not in test-
ing stage. We take advantage of this fact in our real-
time embedded application.



2.4. Segmental Dimensionality Reduction

In general, Linear Discriminant Analysis (LDA) is a su-
pervised reduction method that can linearly separate the
classes to capture the most discriminant features from the
face representation. It aims to maximize the ratio of
between-class and within-class separability among N sam-
ples of C classes by projecting the samples into a new sub-
space with C − 1 dimensions. LDA requires the dimen-
sionality of data to be less than N − C to avoid singularity
problems. Herein, we have partitioned the feature vector
into J smaller segments; therefore, the low dimension of
the face descriptor segments Qj can prevent singularity.

Nonetheless, the redundancy and noise in Qj can still
deteriorate the classifier’s performance. In some researches
[7], an oval mask is used to eliminate the background noise;
however, the eyeglasses, facial expression, and the lighting
and skin conditions may still influence the results. Hence,
prior to LDA, we can wisely make use of PCA along with a
robust feature preservation criterion in order to only retain
the most descriptive features. PCA is formulated as a max-
imization problem, and its segmental projection matrix can
be computed as:

WPCA
j = argmax

Wj

tr
(

WT
j SjΣWj

)
(5)

where for each region j, SjΣ =
∑N
k=1(Q

k
j −µj)(Qkj −µj)T

is the total scatter matrix computed from each feature seg-
ment Qkj of every k-th sample which are centered using the
mean of all N samples µj ∈ R1×(L.R).

Our criterion for eigenvector selection in PCA is that
the i-th eigenvector can be preserved only if the retained
energy ei =

∑i
m=1 λm∑n
m=1 λm

from the first i eigenvalues λm is
greater than a threshold τe [22]. This enhancement stage
can be considered as an efficient weighting mechanism to
attain more influence from more discriminative regions of
face. Afterwards, the preserved information can be passed
for discriminant analysis.

In LDA, we model the segmental between-class and
within-class separation of samples with scatter matrices Sjb
and Sjw, respectively. For each segment Qj , the LDA pro-
jection matrix WLDA

j can be obtained from maximizing the
modified Fisher’s criterion [20]:

WLDA
j = argmax

Wj

tr

(
WT
j

(
WPCA
j

)T
Sjb WPCA

j Wj

WT
j

(
WPCA
j

)T
Sjw WPCA

j Wj

)
(6)

In our method, Qj is already low-dimensional, and N is
large, so the matrix Sjw will be non-singular. As a con-
sequence, the matrix WLDA

j can be composed from the

(C − 1) largest eigenvectors of the matrix
(
Sjw
)−1

Sjb in
each segment j.

An often neglected issue in using LDA for face process-
ing applications is the generalization problem. Although a
minimized within-class measure is desirable for matrix Sjw,
the within-class samples may be transformed into such a
narrow region that the LDA may lose its ability to generalize
test data. To prevent over-fitting and improve the numerical
stability, we add a regularization term to the diagonal of Sjw
using a small positive constant γ and the same-size identity
matrix I, such that Sjw = Sjw + γI [23].

Now, to acquire the most descriptive and discriminant
set of features, each segment Qkj of k-th sample can be pro-
jected into our Enhanced Discriminant Analysis (EDA) sub-
space Fkj ∈ R1×(C−1) using the EDA transformation matrix
WEDA
j ∈ R(LR)×(C−1). It is noteworthy that Qkj must be

normalized to have a zero mean, as Equation 7 illustrates.

Fkj =
(
WEDA
j

)T (
Qkj − µj

)
(7)

where
(
WEDA
j

)T
=
(
WLDA
j

)T (
WPCA
j

)T
. Finally, we

concatenate the Fkj of all samples into a single feature ma-
trix F ∈ RN×(J.(C−1)) to feed the training stage (Section
2.5). However, prior to concatenation we L2-normalize the
rows of matrix F in order to provide the classifier with a co-
herent descriptor and regularize the similarity quantification
among the samples. Needless to say, each row Fk of this
matrix represents the EDA projection of the feature vector
Qk extracted from the k-th training image. In testing stage,
F only has a single row representing the query image.

2.5. Classification

There exist various classification and similarity measure-
ment techniques in LDA space, such as Euclidean or cosine
distance measurement between samples. However, in this
work we employ the supervised and discriminative SVM
classifier [24] with an RBF kernel to guarantee an accurate
classification in LDA space. Typically, a soft margin SVM
with a penalty cost Cp is used to compensate for misclassi-
fication due to asymmetric class sizes and over-proportional
influence of larger classes. We obtain the optimal values for

Figure 5. Demography-based discriminative classification tree



Figure 6. Our illumination normalization approach. Origi-
nal images (top), Filtered PS (middle), and corresponding
LBP8,1 images (bottom).

Figure 7. Color maps showing the percentage of retained energy from
PCA in each region for gender (left; τe = 0.98) and age (right; τe =
0.97). Notice the high variance regions around the eyes and mouth.

RBF constants γ and Cp using a 10-fold cross-validation
method to avoid the under or over-fitting in training stage.
However, in a multi-class problem (C > 2) with dispro-
portionate class sizes, the classifier must be balanced us-
ing a dedicated weight for each class. For instance, in age
classification the penalty cost of a smaller dataset (e.g., se-
nior) should be decreased to counterbalance and diminish
the influence of a larger dataset (e.g., adult). After training,
the resulting support vectors are of dimension R1×(J.(C−1))

each, where C is the class size. We model the multi-class
age classifier as a binary classification problem using one
vs. one comparison amongst all classes, and a max-wins
voting scheme to determine the age group.

Furthermore, we generalize the work in [25] to improve
the performance on embedded system using a demography-
based discriminative model for classification. As shown in
Figure 5, we build a tree that discriminates the classifica-
tion of gender based on the recognized ethnicity (n groups),
and age (m groups) based on the recognized gender, using
n separate classifiers for gender, and 2n separate classifiers
for age recognition. The rationale behind this method roots
in the differences of facial structures among different races
and genders. For instance, usually middle-aged females and
males do not show the same facial aging signs due to bet-
ter skin-care in females. Or, different cranial structures or
skin colors among races may impact the results. Thus, dis-
crimination based on the parent stage within this tree can
effectively improve the recognition rate.

On the other hand, video-based classification is more
challenging than still-image-based techniques, since still-
to-still classification in video sequences is an ill-posed prob-
lem [26]. In this case, regardless of the robustness of the
classifiers, the transient variations in head-pose, facial ex-
pressions, or improper photometric conditions can cause
misclassification in each frame of the video. To stabilize the

results, a solution is to employ a majority voting scheme to
vote for the best decisions across multiple video frames. We
have integrated this temporal voting technique in our real-
time architecture to effectively increase the confidence and
reliability of decisions. Also, a face tracker can accelerate
and stabilize the recognition process by continuously pre-
serving the best classification results until the tracked face
is lost. As presented in [27], detecting the best quality face
images among the frames of a video sequence is another vi-
able strategy to feed the real-time classifiers with only high
quality face images, and ignore the non-informative video
frames.

3. Experimental Setup

In this work, our embedded benchmarking platform was
a non-real time Android system running on a multi-core 1.7
GHz Snapdragon 600 (ARMv7) SoC, with 2 GB of RAM
and camera resolution 720×1280 pixels. We have imple-
mented our framework in C++, and used Java Native Inter-
face (JNI) to connect with Android system. Notably, sev-
eral standard routines from OpenCV [28] have been inte-
grated into our framework for face detection, photometric
corrections, and SVM training. Also, a self-contained and
portable binary file format is designed which includes all
the parameters, support vectors, and the segmental projec-
tion matrices WEDA

j and µj for J segments (Section 2.4).
The floating-point values have single-precision for support
vectors and double-precision for projection matrices.

For our embedded system we have created a training data
file for gender, and two separate training data files for dis-
criminative age recognition based on the subject’s gender
(Figure 5). Our age classifier categorizes four age groups
of: 0-19, 20-36, 37-65, and 66+ years old. Considering
the same notations used in previous sections, we begin by
aligning the detected face and cropping it to size Lo = 100



Table 1. Databases and the number of images used for training
Training

#Images Controlled #Subjects
Gender Age Group (male+female)

Database Male Female 0 - 19 20 - 36 37 - 65 66+
FERET (fa) [5] 1,762 Yes 1,010 0 0 0 489+357 270+101 20+0

MORPH [29] 55,134 Yes 13,000 790 470 1590+800 1111+1332 850+875 15+0

Gallagher [10] 5,080 No 28,231 7,350 7,350 1410+1350 4000+3911 1650+1800 307+312

Total 8140 7820 3000+2150 5600+5600 2770+2776 342+312

Table 2. Databases and the number of images used for evaluation
Evaluation

#Images Controlled #Subjects
Gender Age Group (male+female)

Database Male Female 0 - 19 20 - 36 37 - 65 66+
FERET (fb) [5] 1,518 Yes 1,009 840 490 0 0 0 0

Adience [30] 26,580 No 2,284 3948 5060 1608+2294 1330+1724 921+1008 56+78

BioID [31] 1,521 Yes 23 467 341 0 0 0 0

PAL [32] 575 Yes 575 200 315 0 0 0 0

Total 5455 6206 1608+2294 1330+1724 921+1008 56+78

pixels with the left eye offset at Ωo = Lo

4 (Section 2.1).
Next, the 100 × 100 aligned image is photometrically cor-
rected utilizing our Filtered PS method (Sections 2.3). As
the samples in Figure 6 show, this method along with uni-
form LBP can effectively reduce the effects of illusion of
sex (Figure 2), difference in skin colors, facial cosmetics
and lighting conditions while preserving facial wrinkles for
age classification. In order to compensate for face local-
ization errors, each feature segment Qj is composed of five
different radii (R = 5) of uniform (L = 59, if P = 8)
multi-scale LBP histograms. According to our experiments,
greater radii (R > 5) in uniform LBP could not improve the
results further. Similar to Figure 4, the resulting LBP im-
ages are partitioned into 10 × 10 non-overlapping regions
(J = 100) to extract the feature vector Q ∈ R100×(59∗5) for
each sample.

For eigenvector selection in our segmental dimensional-
ity reduction approach, we have obtained the energy thresh-
old values τe (Table 3), experimentally. The color maps in
Figure 7, illustrate the percentage of retained eigenvectors
in each segment Qj for age and gender classifiers. Matching
the regions in the color maps and the LBP image of Figure
4, the importance of discriminative regions around the eyes
and mouth is evident. Thereby, the effects of eyeglasses
and facial expressions can be minimized. Furthermore, to
improve the numerical stability in discriminant analysis we
chose the regularization constant γ = 0.01 to avoid near-
zero eigenvalues (Section 2.4). Tuning the constant γ with
other values did not affect the results significantly. Table

Table 3. Configuration of the age and gender classifiers

Classifier #Classes
#Training PCA RBF
Images τe γ Cp

Gender 2 15,960 0.98 1.0125 2.5

Age (M) 4 11,712 0.97 1.0125 2.5

Age (F) 4 10,838 0.97 1.5187 2.5

3 lists the configuration of our classifiers such as the total
number of training images, values for the threshold τe, and
the RBF parameters. To balance the age training set, the
class weights were adjusted experimentally, based on the
size of each class and their influence on other classes.

In order to evaluate these classifiers, a variety of face
databases have been used as a cross-database benchmark
for training and testing stages. As demonstrated in [7],
the single-database evaluations in many researches are opti-
mistically biased due to disproportionate diversity of races
and ages, or specific lighting or head pose conditions in
each database. Hence, we have trained our classifiers using
a combination of selected face images from the databases
listed in Table 1, and evaluated the same classifiers on a dif-
ferent set of databases in Table 2. Except the in-the-wild
face images of Gallagher [10] and Adience [30] databases,
the rest are captured in controlled lighting and head pose
conditions. From Adience database, even though we have
used only near-frontal version (13,649 images with ±5◦
yaw angle), the evaluation on this unconstrained dataset is
still very challenging. Eidinger et al. [30] demonstrated that
the difficulty level of this dataset is more than Gallagher
dataset. Moreover, unlike some researches [6] that have
performed evaluation on manually aligned and normalized
images, we have evaluated the classifiers using our full
recognition pipeline; from face detection to age and gen-
der recognition. Therefore, our evaluation results closely
reflect the real-world conditions.

4. Results and Discussion

In this section, we present the evaluation results as well
as the memory and computation requirements on the em-
bedded system. In spite of the memory-efficient and real-
time performance of our method, the success rates are
closely comparable with other state of the art but resource-
demanding approaches. Although, the classification param-



Table 4. Age recognition rates per age group and gender (our MSLBP+EDA+SVM method vs. the state-of-the-art classifier). Note: only
the total success rate is available for the cited paper (#: No. of images used). See Table 2 for no. images we used for evaluation.

Database
Classifier 0 - 19 20 - 36 37 - 65 66+ Total

(*:embedded system) F M F M F M F M F M

Adience
MSLBP+EDA+SVM* 82.74% 93.03% 85.56% 83.53% 75.79% 75.35% 80.47% 83.59% 82.27% 85.48%

Dropout-SVM[30] #2989 #2487 #1692 #1602 #1027 #1148 #309 #272 80.7%

Table 5. Gender recognition rates (our MSLBP+EDA+SVM
method vs. the state-of-the-art classifiers). Note: only the total
success rate is available for the cited papers (#: No. of images
used). See Table 2 for no. images we used for evaluation.

Database
Classifier

Female Male Total
(*:embedded system)

BioID
MSLBP+EDA+SVM* 92.08% 98.50% 95.79%

SHORE[34]* N/A 94.3%

FERET
MSLBP+EDA+SVM* 96.12% 94.64% 95.19%

LUT Adaboost[13] #450 #450 93.33%

SVM+RBF[7] #403 #591 93.95%

PAL
MSLBP+EDA+SVM* 91.43% 90.50% 91.07%

Adaboost[6, 7] #357 #219 87.24%

SVM+RBF[7] #357 #219 89.81%

Adience
MSLBP+EDA+SVM* 90.77% 65.93% 79.88%

Dropout-SVM[30] #6455 #5824 75.8%

eters can be tuned to achieve a high success rate for a spe-
cific database, it may fail to generalize the success on other
databases. Some of such non-generic parameterization in-
clude: retaining eigenvectors selectively per database [7],
existence of multiple same identity subjects in evaluation
[4], or targeted and very low number of evaluation samples
[33]. In contrast, we aim to evaluate our classifiers with the
same configurations on every database. Table 5 shows the
recognition rates obtained from our experiments for gender
classification on databases mentioned in Table 2, and the
comparisons to some existing robust classifiers.

According to our observations, the reason for lower gen-
der recognition rate in male group (65.93%) of Adience
database can be attributed to the existence of numerous chil-
dren of under 6 years old who are very similar in appear-
ance to females. Also, the low gender recognition rate on
PAL database, confirms the influence of ethnicity on de-
mographics classification. Provided that our training set
is mostly consisted of White subjects (Table 1), the gen-
der (or age) classifier may fail for some African subjects in
this database due to different facial structures and features.
Likewise, the same conditions may apply for other miss-
ing races in the training set. Exploiting the demographics
discriminative classification strategy (Section 2.5), the clas-
sifier can better generalize on faces of different races.

As Table 4 shows, our evaluation results for age clas-
sification on Adience dataset outperform the results of
the state-of-the-art dropout-SVM method of Eidinger et al.
[30]. The improved accuracy can be attributed to the uti-
lization of our illumination normalization technique, multi-

scale face image representation, demography-based age
classification, and non-linear SVM classification. Neverthe-
less, in Adience database the existence of numerous faces
with masks, makeup, occlusions, and severe distortions, in-
creases the classification errors, considerably. Particularly,
in contrast to males of this dataset, many 15-19 years old
females are misclassified due to high resemblance to the
20-36 age group. We believe the lower intensity of facial
aging signs due to cosmetics and skin-care in females may
contribute to these errors. Also, the senior age group in
Gallagher (training database) starts from 66 years old, but
in Adience (evaluation database) from 60 years old. This
discrepancy and confusion could be the reason for lower
success rates in our 37-65 and 66+ age groups.

4.1. Resource Requirements for Embedding

Technically, the SVM classifier with RBF kernel is ac-
curate but in addition to large memory requirements, it can-
not perform in real-time using a large and high-dimensional
training set. For this purpose, our enhanced segmental di-
mensionality reduction approach is designed to supply the
SVM classifier with a low-dimensional enhanced feature
vector which reduces the memory and computational re-
quirements on embedded system, remarkably. In addition,
our demography-based discriminative classification model
(Section 2.5) can accelerate the classification process by
splitting a large training set into several smaller training sets
each of which are dedicated to a specific group of gender or
ethnicity. In this case, since in training stage we only in-
clude a very limited number of samples per group of train-
ing sets (e.g., Asian Females), then much fewer support vec-
tors are generated for each group. Consequently, the num-
ber of computations for similarity measurement (query im-
age vs. training data) will be reduced in testing stage.

Table 7 lists the approximate computation time of dif-
ferent stages of our framework using the experimental plat-
form mentioned in Section 3. As can be seen in this table,
most of the computation time for face alignment stage is
spent on landmark detection. In this system, we have used
the OpenCV’s detection-based face tracker [28] which runs
on a separate thread and we do not take its computation time
into account. This face tracker searches the whole image
only at specific intervals, and otherwise limits its search-
ing scope to the neighborhood of the previously detected
faces in each video frame. Therefore, its fast performance
is less dependent on the dimensions of input image. For il-



lumination normalization (Section 2.3), the exact bilateral
filters are computation-intensive, but there exist several fast
approximation algorithms [18] that are embedded-friendly
and can perform in real-time. On this platform, our exper-
iments demonstrate a performance of 15 to 20 frames per
second depending on the input frame rate, on-screen display
parameters and, more importantly, the status of face tracker.
In the latter case, the last recognition results are preserved,
and it is not required to re-perform the classification until
the tracked face is lost.

On the other hand, in terms of space complexity, both
volatile and non-volatile memory requirements are mini-
mized. Originally, the OpenCV’s SVM trainer stores the
support vectors in a very large human/machine readable file
format (YAML) that is too bulky to be stored on embedded
architectures. As Table 6 shows, our self-contained file for-
mat along with low dimensional training data is appropriate
for most embedded architectures due to its high compres-
sion ratio of up to 99.5%. Normally, without dimensionality
reduction (i.e., compression) a regular multi-scale LBP face
representation with an SVM+RBF classifier would need a
training data (single-precision floating-point) of dimension
RV×(R.L.J), where V denotes the number of support vec-
tors. However, utilizing our enhance dimensionality reduc-
tion technique, the dimension is reduced to RV×(J.(C−1))

along with a small overhead to store the EDA transforma-
tion matrix WEDA

j ∈ R(LR)×(C−1) and the mean of all
samples µj ∈ R1×(L.R) for J segments. Based on these
dimensions, we formulate the uncompressed training data
size su (Equations 8), and the compressed training data size
sc (Equation 9), as follows:

su = V ×R× L× J × E (8)
sc = (V (C − 1) + 2LR (C − 1) + 2LR) (JE) (9)

where E denotes the number of bytes in floating-point type.
For instance, for gender classifier in Table 6, if V =

5978 support vectors, C = 2 classes, R = 5 radii, L = 59
bins, J = 100 regions, andE = 4 bytes floating-point, then
the training data of size su = 5978 × 5 × 59 × 100 × 4 =
672 MB, is compressed to size sc = (5978× 1 + 2× 59×
5 × 1 + 2 × 59 × 5)(100 × 4) = 2.8 MB (meta-data in-
cluded). Although we have fewer samples for age classifier,
its training data (i.e., support vectors) is larger than gender
classifier due to higher number of classes and larger value
for RBF parameter γ.

4.2. Limitations

The most limiting factor in LDA-based classifiers is the
sparsity of training samples in high-dimensional LDA sub-
space which can lead to overfitting. To increase the gen-
eralization capability of our approach, the number of train-
ing samples must be much larger than the number of di-
mensions. If the available samples are too few, utilizing

Table 6. Memory Requirements: Regular MSLBP+SVM+RBF vs.
Our compressed file format

Classifier #Support
Vectors

MSLBP+
SVM+RBF

Our Format Compression
Ratio

Gender 5,978 672 MB 2.8 MB 99.5%
Age (M) 8,085 909 MB 10.3 MB 98.8%
Age (F) 8,311 935 MB 10.5 MB 98.8%

Table 7. Computational analysis per recognition stage
Landmark Face Illumination
Detection Alignment Normalization
19.1 ms 4.3 ms 15.5 ms

EDA Projection SVM Classification
Gender 5.9 ms 2.3 ms

Age 11.0 ms 3.5 ms

PCA before LDA to reduce the dimensionality may overly
discard the useful texture information. Another limitation
in our current system is the lack of an ethnicity classifier
which can enable us to separate the age and gender clas-
sifiers based on the subject’s ethnicity, so that our classi-
fiers can generalize their prediction capability to non-white
races. Similar to [25], our experiments showed that mix-
ing non-white faces into a single training set consisting of
mostly White subjects, decreases the recognition rates of
our classifiers (even by evaluating only on White subjects).

5. Conclusion
In this paper, we have proposed a complete frame-

work for real-time and accurate age and gender classi-
fication on embedded systems in unconstrained environ-
ments. Several improvements were presented for face align-
ment, illumination normalization, and feature extraction
using a multi-resolution binary pattern method. To con-
quer the limitations of embedded systems, we introduced
a segmental dimensionality reduction technique, and uti-
lized a SVM+RBF classifier along with a discriminative
demographics classification strategy to improve the perfor-
mance. The low memory and computational requirements,
makes our methodology a viable choice for real-time pat-
tern recognition in embedded vision applications.
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