
Abstract

Vision-based localization on robots and vehicles
remains unsolved when extreme appearance change and
viewpoint change are present simultaneously. The current
state of the art approaches to this challenge either deal
with only one of these two problems; for example FAB-
MAP (viewpoint invariance) or SeqSLAM (appearance-
invariance), or use extensive training within the test
environment, an impractical requirement in many
application scenarios. In this paper we significantly
improve the viewpoint invariance of the SeqSLAM
algorithm by using state-of-the-art deep learning
techniques to generate synthetic viewpoints. Our approach
is different to other deep learning approaches in that it
does not rely on the ability of the CNN network to learn
invariant features, but only to produce “good enough”
depth images from day-time imagery only. We evaluate the
system on a new multi-lane day-night car dataset
specifically gathered to simultaneously test both
appearance and viewpoint change. Results demonstrate
that the use of synthetic viewpoints improves the maximum
recall achieved at 100% precision by a factor of 2.2 and
maximum recall by a factor of 2.7, enabling correct place
recognition across multiple road lanes and significantly
reducing the time between correct localizations1.

1. Introduction
Appearance or condition-invariant place recognition

systems must learn and then recognize a route, even when
changing time of day, weather conditions or seasons have
drastically affected the appearance of the environment.
The most successful condition-invariant place recognition
systems (Milford and Wyeth 2012, Pepperell, Corke et al.
2013, Sünderhauf, Neubert et al. 2013, Naseer, Spinello et
al. 2014) combat extreme changes in appearance by using

1 This research was partially supported by the ARC Centre of
Excellence in Robotic Vision CE140100016 and an ARC Future
Fellowship FT140101229 to MM.

temporal information in the form of image sequences
combined with global descriptors that describe the whole
image. As global descriptors are not viewpoint invariant,
these approaches fail if the same place is seen from a
different viewpoint (Sünderhauf, Neubert et al. 2013).

Figure 1: Sample depth images and RGB frames for a correctly
matched frame sequence across a day-night cycle and two lane
offset using the synthetic viewpoint system presented in this
paper.

In road-based applications, viewpoint change along a
route tends to come from lateral camera shifts due to lane
changes. The relative difference in camera pose is thus
generally limited to a few possible discrete lateral shifts in
viewpoint. Recent work has proposed a solution using
sideways-facing cameras to perform place recognition
across lane changes (Pepperell, Corke et al. 2014). Using
the assumption that the scene was planar and distant,
perspective effects were ignored and image scaling alone
was used to determine the likely appearance of the scene.
However, the requirement for dual sideways views
requires either dual mounted cameras on each car side, or
external mounting of a waterproof catadioptric sensor on
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the car roof; both relatively expensive solutions involving
custom installs.

Our motivation in this paper is the creation of a cheap
camera-based GPS module that would easily incorporate
into current dashboard-mounted GPS units. To address the
challenge of viewpoint change, we use deep convolutional
neural fields (Liu, Shen et al. 2014) to estimate the depth
of elements in the scene and generate synthetic views of
the current scene at different lateral shifts to improve place
recognition performance.

The paper proceeds as follows. In Section 2 we review
related work, including current viewpoint- and condition-
invariant systems, and state of the art depth estimation
techniques. Section 3 provides an overview of our
approach, comprising the estimation of scene depth from
single images using a deep convolutional neural field, the
generation of synthetic viewpoint images and the
application of a multi-lane version of SeqSLAM to these
images to perform place recognition. Section 4 describes
the experimental setup and a new dataset that
simultaneously tests both condition- and viewpoint
invariance, with results presented in Section 5. Finally we
conclude in Section 6 with a discussion of several
promising areas for future research.

2. Related Work
Here we briefly review the state of the art in depth

condition- and viewpoint-invariant place recognition
algorithms and single frame depth estimation.

2.1. Condition-invariant place recognition

A visual place recognition system should ideally be both
viewpoint-invariant and condition-invariant. Viewpoint
invariance – where place recognition occurs regardless of
small changes in the camera pose or orientation – can be
achieved in unchanging conditions (Cummins and
Newman 2008) using keypoint-based feature detectors
such as SURF (Bay, Ess et al. 2008). However, when
conditions change due to weather, seasonal or illumination
variance, keypoint-based feature detectors are unreliable
(Valgren and Lilienthal 2007, Furgale and Barfoot 2010,
Valgren and Lilienthal 2010, Ranganathan, Matsumoto et
al. 2013). Furthermore, visual place recognition systems
may need to operate during the night or in snow-covered
environments, when images display little texture and
contrast, resulting in only a small number of keypoints
being detected (Naseer, Spinello et al. 2014).

The most successful prior work on purely condition-
invariant place recognition (Milford and Wyeth 2012,
Naseer, Spinello et al. 2014) explicitly or implicitly rely on
each image being described by a single, dense descriptor.
In (Milford and Wyeth 2012, Milford 2013, Milford,
Turner et al. 2013, Sünderhauf, Neubert et al. 2013,

Hansen and Browning 2014) low-resolution gray-scale
images are contrast enhanced and compared using a Sum
of Absolute Differences (SAD) calculation. In (Naseer,
Spinello et al. 2014), the images are tessellated into a grid
of regular cells, and a HOG descriptor (Dalal and Triggs
2005) computed for each cell. Each image is then
described by the combined descriptors of all the cells, and
images are compared using the cosine distance. While
such description techniques allow for condition-invariant
localization, the trade-off is the loss of viewpoint
invariance (Sünderhauf, Neubert et al. 2013).

Condition-invariant place recognition is achieved by
combining these dense image descriptors with temporal
information. This paper builds on SeqSLAM (Milford and
Wyeth 2012), which matches sequences of images rather
than individual images to achieve condition-invariant
matching on very long journeys (Sünderhauf, Neubert et
al. 2013), with motion blur (Milford, Turner et al. 2013),
or with very low-resolution images (Milford 2013). Other
approaches formulate the problem of path matching as a
minimum cost flow in a data association graph (Naseer,
Spinello et al. 2014) or use the Viterbi algorithm (Hansen
and Browning 2014).

2.2. Depth estimation

Depth estimation from a monocular image is a
challenging problem (Eigen, Puhrsch et al. 2014),
particularly in unstructured, outdoor environments.
Successful approaches often enforce geometric
assumptions, such as box models, to infer the spatial layout
of a room (Gupta, Hebert et al. 2010, Hedau, Hoiem et al.
2010) or outdoor scenes (Gupta, Efros et al. 2010), but
these models are not applicable for general scene depth
estimations, as they only model specific scene structures.

Non-parametric methods (Karsch, Ce et al. 2014)
consist of candidate image retrieval, scene alignment and
then depth inference using optimizations with smoothness
constraints. This approach is based on the assumption that
scenes with semantically similar appearance should have
similar depth distributions when densely aligned.
However, this method is prone to propagate errors through
the different decoupled stages and relies heavily on
building a reasonable sized image database to perform the
candidate retrieval.

In recent years, efforts have been made towards
incorporating additional sources of information such as
user annotations (Russell and Torralba 2009) and semantic
labellings (Liu, Gould et al. 2010, Ladicky, Shi et al.
2014). Depth estimation and semantic labelling can both
be improved by jointly performing the two operations
(Ladicky, Shi et al. 2014). However, such an approach
requires hand-annotation of the semantic labels of the
images beforehand as such ground-truth information is



generally not available.
Recently approaches using deep convolutional neural

networks (CNNs) have been proposed. Eigen et al. (Eigen,
Puhrsch et al. 2014) train two CNNs for depth map
prediction from a single image. This method tends to learn
depths with location preferences, which is prone to fit into
specific layouts, and requires a large number of labelled
data to cover all possible layouts for training the networks.

In (Tompson, Jain et al. 2014), Tompson et al. present a
hybrid architecture for jointly training a deep CNN and an
MRF for human pose estimation. A unary term and a
spatial model are trained separately and then jointly
learned as a fine tuning step.

This paper uses the approach from (Liu, Shen et al.
2014), which learns a deep CNN for constructing unary
and pairwise potentials of conditional random fields
(CRFs). As depth estimation can naturally be formulated
as a CRF learning problem (Liu, Shen et al. 2014) this
approach has shown state-of-the-art performance on both
indoor and outdoor scene depth estimations. Furthermore,
as the unary potentials do not contain coordinate
information and thus do not learn location preferences this
method, in contrast to (Eigen, Puhrsch et al. 2014), can be
trained on a standard dataset without requiring additional
training data.

3. Approach
Our approach uses a deep convolution neural field

model to estimate depth from individual frames in order to
generate synthetic viewpoints representing lateral camera
shifts. These synthetic viewpoints are processed in parallel
by a multi-viewpoint version of SeqSLAM to generate
overall place recognition hypotheses.

3.1. Depth Estimation

The system uses a deep convolutional neural field
model for depth estimation (Liu, Shen et al. 2014). This
approach uses a conditional random field (CRF) which for
an image x models the conditional probability of each
superpixel depth y by the density function:
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A unified deep convolutional neural network (CNN)

framework learns the value of U and V. This framework is
shown in Figure 2 and is composed of a unary part, a
pairwise part and a CRF loss layer, and is trained using
back propagation. The unary potential is constructed from
the output of a CNN by considering the least square loss,
while the pairwise potential enforces smoothness by
exploiting consistency information of neighboring
superpixels.

Figure 2: The deep convolutional neural field model for depth
estimation (from (Liu, Shen et al. 2014)).

The depth of a new image is predicted using the closed-
form maximum a posteriori (MAP) inference:
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The network training is based on the VLFeat
MatConvNet CNN toolbox (Vedaldi 2013). Training is
done on a standard desktop with an NVIDIA GTX 780
GPU with 6GB memory.

During implementation, the first 6 layers of the unary
part are initialized using a CNN model trained on the
Make3D dataset. These layers are kept fixed and the rest
of the network is pre-trained with the following settings:
momentum is set to 0.9, and weight decay parameters λ1,
λ2 are set to 0.0005. During pre-training, the learning rate
is initialized at 0.0001, and decreased by 40% every 20
epochs. The pre-training takes a total of 60 epochs (with
the learning rate decreased twice).

Figure 3: Sample images from the Make3D dataset.
The whole network is then trained with the same

momentum and weight decay, using a dropout probability
of 0.5 in the first two fully-connected layers. When
training the whole network, ~700 superpixel patches need
to be processed per image, and each image takes around
10s to process.



Applying the depth prediction model is computationally
efficient. The depth prediction involves 3 major steps:
super-pixel generation, CRF pairwise input feature
generation and the CNN forward step of our model. The
network forward step only takes around 0.25 seconds for
an input image with 640×480 pixels running on a GPU
(NVIDIA Titan), providing the potential for low frame-
rate real-time operation on a vehicle.

3.2. Synthetic Viewpoint Generation

Depth masks are used to generate a range of synthetic
viewpoints representing lateral shifts (i.e. lane changes) for
the vehicle. Image warping is performed using an crude
simple inverse depth model – pixel shifts being inversely
proportionate to their depth.

Due to the higher accuracy of day-time depth masks, we
generate synthetic day-time viewpoints and match them to
existing night-time images. Figure 4 shows an example of
a day-time image and associated depth mask, accompanied
by the warped synthetic view and the night-time image
from the same location. Note that the result is far from
perfect; amongst other factors, depth compression (the
dynamic depth range of the image being smaller than
reality) means that the nearby sections of road are not
transformed nearly enough. We generated a total of 3
viewpoints approximately covering the range of expected
viewpoint variation within the dataset.

Figure 4: (a) Day-time image, (b) associated depth mask, (c)
synthetic sideways shifted viewpoint and (d) corresponding
night-time frame from the same location. Note the nearby
roadway is not transformed sufficiently due to depth
compression issues.

3.3. SeqSLAM

In this section we describe SeqSLAM, which has local
best match and sequence recognition components, and the
process by which multiple viewpoint streams are processed
in parallel.

SeqSLAM frames the image recognition problem not as
one of finding the single template that best matches the

current image (global best match), but rather as one of
finding all the templates within local neighborhoods that
are the best match for the current image (local best match).
We apply a local contrast enhancement (analogous to a 1D
version of patch normalization) process to each element i
in the image difference vector D to produce a contrast
enhanced image difference vector D̂ :

l

li
i

DDD



ˆ (5)

where lD is the local mean and σl is the local standard
deviation, in a range of Rwindow templates around template i.
Figure 5 shows a schematic of the local contrast
enhancement process operating on a number of D̂ vectors
calculated at different times.

3.3.1 Local Best Match

Figure 5: Contrast enhancement of the original image difference
vectors increases the number of strongly matching templates.
Darker shading = smaller image difference = stronger match.
3.3.2 Localized Sequence Recognition

Localized image template matching produces a number
of candidate template matches at each time step. To
recognize familiar place sequences, a search is performed
through the space M of recent image difference vectors:
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where ds determines how far back in time the search goes,
and T is the current time. Because car-based scenarios
have an accurate source of translational odometry with
which frame spacing can be normalized, the search is
drastically simplified to a set of 45 degree diagonal
trajectories through the difference matrix. A difference
score S is calculated for the search trajectory line based on
the difference values the line passes through in travelling
from time T-ds to the current time T:
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where k is the particular difference value the trajectory
passes through at time t:
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where s is the template number the trajectory originated in,
and V is the unitary trajectory velocity due to the odometry
normalization.

After all the trajectory scores have been evaluated, the
minimum scoring (i.e. best matching) trajectory for each
template is placed in vector S. We generate precision-
recall performance curves by sweeping a matching
threshold over the vector S of scores.

3.3.3 Multi-Viewpoint Integration
We generate parallel difference matrices for each

synthetic viewpoint and sequence search each matrix
independently. The best-matching sequence scores at each
point in time are found by taking the minimum sequence
matching score across all difference matrices representing
each viewpoint.

Figure 6: Searching for matching sequences across the difference
matrices representing each synthetic viewpoint.

4. Experimental Setup
Experiments were run using a new dataset consisting of

two 1.1 km day and night car traverses along a multi-lane
road (Figure 7). The night traverse was obtained entirely in
one lane, while the day traverse ranged approximately
evenly over three lanes, resulting in lateral viewpoint
changes of zero, one and two lanes. Raw footage was
taken at 30 fps using a forward facing 752×480 pixel
Micron camera (model MT9V022I77ATC, approximately
80 degree horizontal FOV). Odometry was collected with
an OBDPro USB Scantool and a laptop computer.

4.1. Ground Truth

Ground truth was determined by synchronising the start
and end points of the dataset videos and interpolating in-
between frame correspondences using odometry, with
verification by manual inspection. Ground truth can be
considered correct to within approximately 3 metres, and
we used an accuracy threshold of 10 metres to generate the
precision-recall performance curves.

4.2. Image Pre-Processing and Comparison

SeqSLAM requires an individual image comparison
method. In this work, we used a Sum of Absolute
Differences (SAD) calculation on resolution reduced,
patch-normalized images (Fig. 8) to produce an image
difference score d:
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where Rx and Ry are the dimensions of the resolution
reduced image, and A and B are matrices containing the
grayscale pixel intensity values for the two images being
compared. Patch-normalization subtracts the local mean
intensity and then divides by the local intensity standard
deviation. Image comparison was performed over sliding
window (xoffset, yoffset) to provide some additional viewpoint
invariance. Cropping was necessary to overcome the poor
depth estimation for the road just in front of the car.

Fig. 7: Experiments were run using a dataset consisting of day
and night car traverses along a multi-lane road. The night
traverse was obtained entirely in one lane, while the day traverse
ranged approximately evenly over three lanes including the same
lane as traversed during the day.

Fig. 8: Original images and low resolution patch-normalized
versions used by SeqSLAM

To simplify the difference matrix search, we use
odometry to provide a constant spatial frame separation of
1 metre, as in the SMART modification (Pepperell, Corke
et al. 2014) of the SeqSLAM algorithm. In contexts where
relatively-accurate wheel-based odometry is not available,
visual odometry could be used to the same effect (Milford,
Vig et al. 2014).



4.3. Parameter Values

TABLE I
PARAMETER LIST

Parameter Value Description

Rx,Ry 128,32 Whole image matching resolution
Psize 4 Patch-normalization radius

xoffset 4 Sliding image comparison window
(horizontal)

yoffset 2 Sliding image comparison window
(vertical)

5. Results
In this section we present results showing the effect on

place recognition performance of using deep learning to
generate synthetic scene viewpoints. We present precision-
recall curves comparing vanilla SeqSLAM performance
(using a sliding offset window only) to the depth-based
system, and frame correspondence graphs showing the
distribution and coverage of correct and incorrect place
matches over the entire dataset. Finally we show example
frames from correctly and incorrectly matched sequences.

Using vanilla SeqSLAM with image offsetting, a
maximum recall of 20% recall at 100% precision is
achieved (Figure 9). Allowing precision to drop below
100% results in only a minimal increase up to a maximum
recall achieved of 25.6%. Note we are using the more
conservative recall calculation where:

matchesexpectedtotal
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Examining the frame correspondence graph shown in
Figure 10, the distribution of matches is primarily centered
on a region where the day and night traverses were
obtained in the same lane, hence removing the requirement
for viewpoint invariance. Correct localization coverage is
discontinuous, with the maximum period of incorrect
localization being approximately 260 metres in length.

When the synthetic viewpoint system is used, the system
achieves a maximum recall of 43.7% at 100% precision,
an improvement of 220% over the vanilla SeqSLAM case.
Allowing precision to drop below 100% results in an
increase up to a maximum recall achieved of 68.9%, with
more continuous correct place recognition coverage over
the entire dataset. The maximum period of incorrect
localization is approximately 118 metres.

Figure 9: Using vanilla SeqSLAM with image offsetting, a
maximum recall of 20% recall at 100% precision is achieved.

Figure 10: Using vanilla SeqSLAM, the distribution of correct
place matches are primarily centered on a region where the day
and night traverses were in the same lane, hence removing the
requirement for viewpoint invariance (blue cross = true positive
place match, red dot = false positive).

Figures 1 and 13-14 show frames from sample sequence
matches. Each column shows 5 frames evenly distributed
over the 100 frame matching sequence. Figure 13 shows a
sequence with one lane viewpoint change that is correctly
matched using the synthetic viewpoint system but not
vanilla SeqSLAM, while Figure 1 shows a sequence with
two lanes viewpoint change that is correctly matched using
the synthetic viewpoint system but not vanilla SeqSLAM.
Despite the performance improvements, the synthetic
viewpoint approach is not perfect; Figure 14 shows an
incorrect sequence match; both the synthetic and vanilla
methods incorrectly matched this sequence, perhaps due to
environmental aliasing.

Figure 11: When the synthetic viewpoint system is used, the
system achieves a maximum recall of 43.7% at 100% precision,
an improvement of 220% over the vanilla SeqSLAM case.



Figure 12: More continuous correct place recognition coverage is
achieved over the entire dataset when using synthetic views. The
maximum period of incorrect localization is approximately 118
metres.

Figure 15a shows the selected synthetic viewpoints that
resulted in the best place matching scores throughout the
dataset. Figure 15b shows the ground truth relative lane
shift between the night-time traverse and the day-time
traverse throughout the dataset. It is interesting to observe
that despite periods of “incorrect” viewpoint selection (e.g.
between frames 250 and 300 where the system selects the
original camera viewpoint whereas there is actually a 2
lane viewpoint change, the system is still able to achieve
some correct place recognition matches (Figure 12).

6. Discussion and Future Work
The results presented here demonstrate the potential for

using state of the art deep learning-based depth estimation
techniques to provide condition-invariant place recognition
techniques with more viewpoint invariance. Here we
discuss the outcomes and several areas of promising future
research.

The depth estimation model performed well on
predicting relative depth information instead of predicting
an accurate depth map in terms of quantitative measure.
However, the estimated depth map sometimes had depth
compression issues; the variation in range to the road just
in front of the vehicle to near the horizon was too small.
There are several possible reasons for this issue. Firstly,
ground truth in the training dataset is not accurate
especially on distant regions. Secondly, road scene images
are not common in the Make3D dataset; it is likely that
training our model on more dedicated outdoor road scene
images will help improve the performance. As future work,
we will collect a larger outdoor RGBD dataset. Finally,
the trained model may have had difficulties predicting the
vanish direction that goes to infinity, e.g., a road that
vanishes at the horizon. A possible solution to this
problem is to estimate the surface normals simultaneously.

For the specific scenario of camera-based car
localization along a road, one obvious area of future
research is to add temporal information into the depth
learning model, possibly through some form of model
recurrency. Other conventional depth techniques could
also be investigated, such as using conventional structure

from motion estimates. Ultimately some form of boosting
framework incorporating all available depth information
would likely result in the best overall performance.

Figure 13: Sample correct place recognition sequence at a one
lane offset using the synthetic viewpoint system. This sequence
is not correctly matched using vanilla SeqSLAM.

Figure 14: Sample sequence incorrectly matched by both the
synthetic viewpoint system and vanilla SeqSLAM.



Figure 15: (a) Selected synthetic viewpoints that resulted in the
best place matching scores throughout the dataset and (b) ground
truth lane viewpoint changes throughout the dataset.
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