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Abstract

We propose a novel algorithm for stitching multiple syn-

chronized video streams into a single panoramic video with

spatial-temporal content-preserving warping. Compared

to image stitching, video stitching faces several new chal-

lenges including temporal coherence, dominate foreground

objects moving across views, and camera jittering. To

overcome these issues, the proposed algorithm draws upon

ideas from recent local warping methods in image stitch-

ing and video stabilization. For video frame alignment,

we propose spatial-temporal local warping, which locally

aligns frames from different videos while maintaining the

temporal consistency. For aligned video frame composi-

tion, we find stitching seams with 3D graphcut on over-

lapped spatial-temporal volumes, where the 3D graph is

weighted with object and motion saliency to reduce stitch-

ing artifacts. Experimental results show the advantages of

the proposed algorithm over several state-of-the-art alter-

natives, especially in challenging conditions.

1. Introduction

Stitching multiple synchronized video streams into a sin-

gle panoramic video becomes increasingly important nowa-

days, given the wide applications of high definition, 360-

degree videos such as wide area video surveillance, tele-

conferencing and tele-presence, and immersive virtual real-

ity and augmented reality experiences.

One possible misconception many people may have is

that video stitching is a somewhat solved problem. This is

because of the success of image stitching algorithms [16]

in generating panoramas from images taken from the same

viewpoint or about a roughly planar scene. However,

video stitching is, actually, a much more challenging prob-

lem [17], especially for non-ideal inputs (e.g., the optical

centers of the cameras are not exactly at the same loca-

tion, the scene is non-planar, and/or dominate foreground

objects move across cameras). Figure 1 gives an exam-

ple of stitching such non-ideal inputs where problems can
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Figure 1. Video stitching is non-trivial. This figure shows the

stitching of three video cameras, with AutoStitch from OpenCV

(each frame stitched separately or using a single common align-

ment for all frames), a commercial software VideoStitchStu-

dio2 [1], parallax-tolerant stitching (i.e., CPW) for each frame

separately [20], and our proposed method (i.e., spatial-temporal

content preserving warping STCPW). Left: one of the stitched

frames. Right: zoomed insets over multiple frames. Please refer

to the supplementary material for stitched videos.

be clearly seen. In the example, three video cameras1 are

stitched together using AutoStitch (from OpenCV, which

implements the work of [16]) with each frame stitched sep-

arately or using a single common alignment for all frames, a

latest commercial software VideoStitchStudio2 [1], the re-

1Full resolution images are embedded in this PDF. Please zoom in for

viewing details, or refer to the supplementary materials.
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Figure 2. An overview of the proposed video stitching algorithm. Video frame alignment is done in two steps: a pre-warp with spatial

and temporal global transformations, and a spatial-temporal local warping with STCPW. After alignment, a weighted 3D graphcut is used

to find optimal seams (i.e., 2D surfaces) in the overlapped volumes of the aligned videos for composition. The zoomed insets show that

STCPW effectively reduces mis-alignment (i.e., ghosting) after the pre-warp for dominate foreground moving objects.

cent parallax-tolerant image stitching method (i.e., content-

preserving warping or CPW) working on each frame sep-

arately [20], and our proposed method. As shown, video

stitching is non-trivial — not only do we have to handle par-

allax as in challenging image stitching scenarios [19, 20],

we also have to make stitching consistent over time. More-

over, camera jittering often adds additional complexity

for video stitching, e.g., for outdoor surveillance cameras,

hand-held camcorders, or mobile phone cameras.

Recent advances in image stitching shows that local

stitching is effective to deal with parallax problem in im-

age alignment [20] for challenging scenarios with non-

concentric cameras and non-planar scenes. In such meth-

ods, a global homography transformation handles global

alignment and local CPW [11] adjusts the alignment in lo-

cal regions to handle parallax issues. Interestingly, a similar

local approach [12] based on CPW has also been success-

fully used in video stabilization by optimizing a bundle of

camera paths (i.e., one camera path per image grid).

Built upon the success of prior work, in this paper, we

propose a novel video stitching algorithm, which performs

local warping and composition in both spatial and temporal

domains based on content-preserving warping. For video

frame alignment (Sec. 3.1), we propose a spatial-temporal

content-preserving warping (STCPW) algorithm that simul-

taneously optimizes a homography mesh per frame per

camera by minimizing spatial and temporal matching costs.

STCPW locally adjusts the alignment of frames from dif-

ferent videos while maintaining the temporal consistency

of the alignment. For aligned video frame composition

(Sec. 3.2), we formulate it as a weighted 3D graphcut prob-

lem within the overlapped spatial-temporal volumes of the

aligned videos. Pixels around salient and moving objects

are set with higher weights to avoid being cut through,

which further reduces stitching artifacts.

We evaluate the proposed algorithm over two differ-

ent multi-camera rigs, a high-end RED camera rig and a

consumer-grade PointGrey Cricket IP camera rig, with an

emphasis of the challenging case where dominant fore-

ground objects move across cameras. A number of videos

were captured for testing, covering various types of fore-

ground object motion. Experimental results in Section 4

shows that the proposed method consistently outperforms

several state-of-the-art alternatives in stitching videos of

challenging conditions.

2. Related Work

Image Stitching Image stitching is a well-studied, yet

still active research area [3, 16]. Recent research focuses

on spatially-varying warping algorithms [9, 19] and local

stitching methods [20]. Our work extends the local stitch-

ing algorithms to the temporal domain for video stitching.

There are also prior work on video mosaic [14], where the

goal is to create a panoramic still image from a video. Our

goal is to create a panorama video from multiple videos.

Video Stitching Compared to image stitching, there are

only very limited prior work on video stitching. Most prior

video stitching methods either use a fixed alignment from

still images [1, 21], or conducts stitching frame by frame

separately [5]. Shimizu et al. proposed to stitch videos with

pure translation motion for sport events [15]. El-Saban et al.

studied video stitching of free-moving mobile devices [6].

Xu and Mulligan [18] used multi-grid SIFT for acceleration.

To the best of our knowledge, ours is the first video stitch-

ing method that jointly optimizes the frame alignment and

frame composition in both spatial and temporal domains to

deal with non-ideal challenging videos.

Video Stabilization An area closely related to our work

is video stabilization, To remove camera shakiness, in

video stabilization, a smooth 2D or 3D camera motion is

estimated to synthesize a stabilized video from an input

video [7, 11]. Recent advances [12, 13] also show that a

spatially-varying 2D camera motion (e.g., one homography



per image region) is more effective to deal with parallax and

other non-linear motion. Our work extends this idea and si-

multaneously optimizes multiple camera paths over time.

3. Proposed Algorithm

The proposed algorithm includes two parts, as shown

in Fig. 2. The first part is video frame alignment, which

is done in two steps: (1) pre-warp all frames with spa-

tial and temporal global transformations for coarse geomet-

ric alignment; and (2) locally refine the geometric align-

ment by optimizing spatial-temporal local warps to mini-

mize matching costs across cameras and over time. The

second part is to composite the aligned video frames into

a single panoramic video, where we formulate the spatial-

temporal seam finding as a weighted 3D graphcut problem

on overlapped spatial-temporal volumes, in which salient

regions (e.g., faces, foreground objects with dominate mo-

tion) are set with higher weights to avoid being cut through.

3.1. Frame Alignment of Multiple Videos

Given a set of N input videos (each with T frames), Ii,t,

i = 1, · · · , N , t = 1, · · · , T , the goal is to find a warp-

ing map for each video frame so that all the frames of all

videos will be aligned to a common reference canvas. A set

of feature points {Pi,t,k} are extracted from each frame Ii,t,

and correspondences between these feature points are estab-

lished. We used SIFT features in our work. Please refer to

[16] for a survey on feature choices for image stitching.

3.1.1 Pre-warping with Global Transformation

Based on the matched feature points, we first compute a spa-

tial global homography transformation HS
i for each camera

using the first K frames Ii,t, i = 1, · · · , N , t = 1, · · · ,K.

This initial global alignment defines the common reference

frame for the remaining video frames. We use all matched

features in the first K frames and RANSAC for computing

HS
i , in order to alleviate the instability of the computed HS

i

caused by both camera movements and object movements

in the scene. Alternatively, one can use a selective subset

of features [20] for the initial global alignment when large

scene parallax is present.

To make the global alignment smooth over time, we also

need to compute a temporal global homography transfor-

mation HT
i,t for each frame to align with the corresponding

reference frame, i = 1, · · · , N , t = 2, · · · , T . This step

is similar to video stabilization, in which we aim to find a

smooth path for each camera to the reference frame so that

the final stitched video will be stable. This is beneficial es-

pecially when the multi-camera rig is moving or jittering

during the capture. To compute HT
i,t, we first compute the

average of the homography transformations between con-

secutive frames ĀT
i = 1

T−1

∑T

t=2
AT

i (t−1, t) to account for
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Figure 3. Spatial-temporal local warping is done by simultane-

ously optimizing vertices {V̂i,t,k} of homography meshes for all

frames of all cameras. First, pre-warping is done for each Ii,t

and feature Pi,t,k based on Eq. (1), with global spatial and tem-

poral transformations HS
i and HT

i,t, respectively. Second, the pre-

warped {V̄i,t,k} are optimized to obtain {V̂i,t,k} using matched

feature pairs across multiple cameras (i.e., spatial matched feature

pairs) and over time (i.e., temporal matched feature pairs). In this

figure, the first frame of Camera 2 is the reference frame.

the global camera movement, where AT
i (t−1, t) is the ho-

mography between Ii,t−1 and Ii,t. ĀT
i can be viewed as

the target camera motion for camera i. Here we assumed a

constant target camera motion and thus ĀT
i is an averaged

homography. Other options for target camera motion path

over time can also be used [7]. Given the target camera

motion paths, we have HT
i,t = ĀT

i H
T
i,t−1

(

AT
i (t− 1, t)

)−1
,

t = 2, · · · , T , and HT
i,1 equals to the identity matrix I .

As shown in Fig. 3, with the spatial global transforma-

tions HS
i and the temporal global transformations HT

i,t, we

pre-warp each image frame Ii,t and its associated feature

points {Pi,t,k} to the reference frame as follows:

Īi,t = HS
i ·HT

i,t · Ii,t, P̄i,t,k = HS
i ·HT

i,t · Pi,t,k. (1)

3.1.2 Spatial-Temporal Local Warping

After the global transformation, a spatial-temporal local

warping is used to handle parallax in the video frames. As

shown in Fig. 3, the warping map is represented as a mesh of

homography transformations for each frame. Specifically,

we uniformly divide each image frame into an M1×M2 grid.

Let Vi,t,k and V̄i,t,k, k = 1, · · · , (M1+1)(M2+1) denote the

vertices of the grid mesh on image Ii,t and the pre-warped

image Īi,t, respectively. Our goal is to simultaneously op-

timize the target vertices V̂i,t,k on the reference canvas of

all the NT meshes so that the corresponding matched fea-

tures {Pi,t,k} in these image frames are well aligned and

the shape of the meshes are best preserved. The objective

function is defined as a linear combination of matching cost

terms in the spatial domain and temporal domain as follows:

E = Eds+w1Egs+w2Ess+w3Edt+w4Egt+w5Est, (2)

where Eds, Egs, Ess are the terms in the spatial domain

similar to those in [20] that measure, respectively, the local

alignment, the global alignment, and the mesh smoothness;



Edt, Egt, Est are the corresponding terms in the temporal

domain; and {wi}i=1,··· ,5 are the weights.

Spatial local alignment term Eds

Eds=
T
∑

t=1

N
∑

i6=j

∑

k∈Si,j,t

||
4

∑

c=1

λi,t,k(c)V̂i,t,k(c)−P̃j,t,k||
2, (3)

where Si,j,t = {k|
(

P̄i,t,k, P̄j,t,k

)

} is the set of matched

features between camera i and camera j at frame t (i.e.,

spatial matched feature pairs), λi,t,k(c) are the barycentric

weights for representing the corresponding feature P̄i,t,k

with the four vertices V̄i,t,k(c) of a quad that contains P̄i,t,k

in the mesh, and P̃j,t,k is P̄j,t,k on the final reference frame.

P̃j,t,k can be assumed known, if we solve the stitching prob-

lem sequentially, i.e., by setting one frame as the reference

frame, and stitch with the remaining frames one at a time.

Spatial global alignment term Egs

Egs =
∑T

t=1

∑N

i=1

∑K

k=1
τi,t,k||V̂i,t,k − V̄i,t,k||

2, (4)

where τi,t,k = 1 if no matched feature is close to V̄i,t,k (e.g.,

within r = 10 pixels) and τi,t,k = 0 otherwise. Therefore,

Egs encourages the target vertex V̂i,t,k to remain the same

with the pre-warped V̄i,t,k if there are no matched features

in the local neighborhood to guide its refinement.

Spatial mesh smoothness term Ess

Ess =
∑T

t=1

∑N

i=1

∑

k∈∆
ws · g(V̂i,t,k, V̄i,t,k)

2, (5)

where ∆ is the set of vertex triplets of the mesh, ws is the

spatial edge saliency of the triplet (set similar as in [11]),

and function g(·) measures the triangle similarity [20]:

g(V̂ , V̄ ) = ||V̂1− (V̂2+u(V̂3− V̂2)+ vR(V̂3− V̂2)||, (6)

where {V̄i}i=1,2,3 and {V̄i}i=1,2,3 are the three vertices of

the vertex triplet in the pre-warped mesh and the final mesh,

R =
(

0 1
−1 0

)

, and u and v are computed by solving

V̄1 = V̄2 + u(V̄3 − V̄2) + vR(V̄3 − V̄2). (7)

Minimizing Ess encourages the mesh to undergo a similar-

ity transformation, which reduces local distortion.

Temporal local alignment term Edt

Edt=
T
∑

t=2

N
∑

i=1

∑

k∈Si,t−1,t

||
4

∑

c=1

λi,t,k(c)V̂i,t,k(c)−P̃i,t−1,k||
2, (8)

where Si,t−1,t={k|
(

P̄i,t−1,k, P̄i,t,k

)

} is the set of matched

features between frame t−1 and t for camera i (i.e., tem-

poral matched feature pairs), and P̃i,t−1,k is P̄i,t−1,k on the

final reference frame. Similar to Eq. (3), P̃i,t−1,k can be

assumed known, if we solve the stitching problem sequen-

tially. Minimizing Edt encourages original frames Ii,t to

align with the corresponding reference frame for camera i.

Temporal global alignment term Egt

Egt=
∑T

t=2

∑N

i=1

∑K

k=1
σi,t,k||V̂i,t−1,k−V̂i,t,k||

2, (9)

where σi,t,k is a non-negative weight that is linearly pro-

portional to the scale of pixel movement in the neighbor-

hood of V̄i,t,k. Intuitively, if the neighborhood region of the

pre-warped vertex V̄i,t,k remains static over time, the cor-

responding vertex V̂i,t,k should remain unchanged through

time, and thus σi,t,k should be larger, and vice versa. We set

σi,t,k to be the average distance between matched features

within the neighborhood of V̄i,t,k and normalize to [0, 1].

Unlike Eq (4), both V̂i,t−1,k and V̂i,t,k are unknowns.

Temporal mesh smoothness term Est

Est=
∑T

t=2

∑N

i=1

∑

k∈∆
wt · g(V̂i,t,k, V̄i,t−1,k)

2, (10)

where the function g(·) is the same as defined in Ess and

wt is the temporal edge saliency for each triplet (defined

similarly as ws). Minimizing Est encourages the mesh of

each camera undergoes similarity transformation over time

to reduce distortion.

Intuitions of The Six Terms The six terms above con-

strain the video stitching problem similar way to that in

image stitching in [20]. The local alignment terms, Eds

and Edt, are the data terms, which adjust local homography

based on matched features to avoid parallax. The global

alignment terms, Egs and Egt, are designed for areas with-

out many matched features — they enforce the local warp-

ing to be stable in those areas. Ess and Est are the smooth-

ness terms to prevent extreme distortion. The relative im-

portance of these terms depends on scene content, camera

layout, and user preference. Their weights are given below.

Please note all the six terms are in fact quadratic functions

and can be solved efficiently with linear least square. De-

tails are shown below.

STGlobal: M1 = M2 = 1 One important special case

is when M1 = M2 = 1, i.e., we optimize only one quad

(i.e., one global homography transformation) per frame per

camera. We refer this special case as STGlobal. Note that

STGlobal uses the pre-warping output as its initial value,

and then simultaneously optimizes the NT global homog-

raphy transformations based on all the matched feature

pairs. As we will show later, in some cases, STGlobal is

a good trade-off between computational costs, robustness,

and stitched video quality. In general, if the homography

meshes have more quads, it is more flexible to handle par-

allex problem, but it needs more computation to optimize,

and it may be more vulnerable when the scene does not have

sufficient matched features.
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Figure 4. Frame alignment results of stitching three videos. No

composition is done in order to visualize the quality of align-

ment only. Top: examples of input frames. Bottom Left: one

of the stitched frames. Bottom Right: zoomed insets over multi-

ple frames. As shown, CPW per frame can align part of the image

well but exhibits large ghosting artifacts in other regions over time.

STGlobal (i.e., STCPW when M1=M2=1) reduces temporal in-

consistency, but both regions still have ghosting artifacts due to the

limitation of global transformation. The proposed STCPW method

has the least amount of ghosting consistently over time.

Bundle Adjustment To minimize the energy function in

Eq. (2), we note that all the terms from Eq. (3) to Eq. (10)

are quadratic functions of V̂i,j,k. Thus, if we solve it sequen-

tially, i.e., by setting one frame as the reference and stitch

with one other frame at a time, each step can be solved ef-

ficiently with linear least square. This procedure, however,

may accumulate significant errors for stitching a large num-

ber of cameras or video frames.

Alternatively, we use the sequential method to obtain an

initial solution, and perform bundle adjustment to simul-

taneously optimize V̂i,t,k for all frames and all cameras.

Specifically, to obtain the initial solution, we first choose a

reference camera by building a connectivity graph among

cameras based on matched features and picking the one

with the highest degree, and then find a camera with the

most matched features with the reference camera to stitch.

We repeat this step sequentially until all cameras are vis-

ited. For bundle adjustment, we note that because of Eq. (3)

and Eq. (8), this is an iterative procedure, since the quads

containing matched features may change during each iter-

ation. In practice, the bundle adjustment converges with

fewer than five iterations. We use the CERES-Solver [2] for

bundle adjustment. With V̂i,t,k solved, we warp Īi,t to the

final reference frame Ĩi,t.

In our experiments, we set w3=1, w4=0.3w1, and w5=
0.3w2. We set w1 and w2 empirically in a similar way as in

CPW [20], and w1=0.5, w2=0.1 in the paper. We use the
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Figure 5. Spatial-temporal seam finding is formulated as a

weighted 3D graph-cut problem over the overlapped space-time

volume of two aligned videos. As shown, the four white nodes,

pt, qt, pt+1 and qt+1, are of interests. They are linked with both

spatial edges ES
i,j,t(p, q) and temporal edges ET

i,j,p(t, t+1), with

each other and their neighboring pixels. The neighboring pixels

are linked to one of the two videos with infinity cost. The goal is

to find a minimal cut of the graph so that each white node can link

to either the source Ĩi or the sink Ĩj .

first K=10 frames to compute HS
i , and M1×M2=15×15

meshes for all the experiments.

Figure 4 shows an example of frame alignment of stitch-

ing three videos. This example is challenging, due to the

small overlapped regions and the small amount of salient

features in foreground. As shown, CPW per frame can align

part of the image well but exhibits large ghosting artifacts

in other regions over time. STGlobal (i.e., STCPW when

M1=M2=1) reduces temporal inconsistency, but still has

ghosting artifacts due to the limitation of global transforma-

tion. The proposed STCPW method has the least amount of

ghosting and it consistently outperforms others over time.

3.2. SpatialTemporal Seam Finding

Next, we need to composite the aligned frames into a

single panoramic video. We again consider all the frames

together and perform spatial-temporal seam finding. As

shown in Fig. 5, we formulate the spatial-temporal seam

finding as a graph-cut problem over a space-time volume,

similar to video texture synthesis [8]. Moreover, we assign

higher weights to spatial edges and temporal edges that con-

tains salient features (e.g., faces, pedestrian) so that these

regions will not be cut through.

Specifically, we construct a graph where each node is a

pixel in the overlapped regions of all the aligned frames.

There are two types of edges between each pair of graph

nodes: spatial edges and temporal edges. The spatial edge

is the edge between two graph nodes that corresponds to

pixels at the same time index but different cameras. The

temporal edges is the edge between two graph nodes that

corresponds to pixels at the same camera but different time

indices. The cost of a spatial edge between pixels p and q

from camera i and camera j at time t is defined as:

E
S
i,j,t(p, q)=opD(Ĩi,t(p), Ĩj,t(p))+oqD(Ĩi,t(q), Ĩj,t(q)), (11)
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Figure 6. Composition results for stitching three aligned videos. Top: we use the standard seam finding and blending method in AutoStitch

in OpenCV, which is based on 2D graphcut. Bottom: we use the proposed spatial-temporal seam finding method, which is a 3D weighted

graphcut method. The alignment is the same for both methods. Each row shows two stitched frames, with zoomed insets. As shown, the

standard 2D seam method has artifacts and temporal inconsistency while the proposed 3D seam method works well.

where D(·) is the distance measurement between pixel

value Ĩi,t(p) and Ĩj,t(p), and op and oq are the weights for

object saliency. The cost of temporal edges ET
i,j,p(t, t + 1)

is defined similarly, as the weighted combination of the dis-

tance between the pixel values of the corresponding pixels

in two consecutive frames. In our experiments, D(·) is set

simply as the sum of squared difference (SSD), and the ob-

ject saliency o is set by first performing face detection and

motion detection and then setting high saliency for regions

with face or dominate motion.

After the graph is constructed, the standard max-flow al-

gorithm is performed to find the optimal labeling of the pix-

els in the overlapped volume of the two videos. When more

than two videos are being stitched, this process is conducted

by adding one video at a time to the stitched result. After

seam finding, we used the same multi-band blending and

color correction procedures from AutoStitch in OpenCV.

Figure 6 shows the composition results for stitching three

aligned videos. We compared with the standard seam find-

ing method in AutoStitch in OpenCV, which is 2D graphcut.

The alignment is the same for both methods. As shown, the

standard 2D seam finding method has artifacts and temporal

inconsistency while the proposed 3D (i.e., spatial-temporal)

seam finding method works well.

Since both frame alignment and composition are done

simultaneously in the spatial and temporal domains, it may

require large amount of memory and computation time

for processing long videos. In practice, we use a slid-

ing window of (−L,L) frames around each frame for

such computation. Larger values of L mean stronger spa-

tial/temporal smoothing but require more computation and

memory. Specifically, we used L = 1 ∼ 3 in the paper.

The computation cost of L=1 is only about 20% more than

individual frame processing, and it is often good enough to

largely improve stitching quality.

4. Experimental Results
Since there is no publicly available video stitching

benchmark data, we evaluated the algorithms on several

AutoStitch(Baseline)

CPW

STGlobal

STCPW

t=t1 t=t2 t=t3

Figure 7. Video stitching results of three PointGrey Cricket cam-

eras. Left: one of the stitched frames. Right: zoomed insets over

multiple frames. Note the distortion and cut-through artifacts on

the foreground moving object. Please refer to the supplementary

material for stitched videos.

sets of videos we captured. We have two multi-camera rigs

with different FoV, image quality, and resolution. One rig

consists of three PointGrey Cricket cameras, each captur-

ing 1080p (1920× 1080) video at 30fps. The second rig

consists of three RED Scarlet Dragon cameras, each cap-

turing 4K (4096×2160) video at 60fps. All these cameras

are synchronized for video capture. Our test videos cov-

ers a set of challenging cases (i.e., camera not co-centered,

dominant foreground objects moving across cameras): hor-

izontal single person motion, multiple person motion, and

person moving towards cameras with scale change.

We compare the proposed algorithm with three meth-

ods: the baseline of running AutoStitch in OpenCV for

each time instance separately (we also tried AuthStitch with



AutoStitch(Baseline)

CPW

STGlobal

STCPW
t=t1 t=t2 t=t3

Figure 8. Video stitching results of three RED Scarlet Dragon 4K

cameras. Left: one of the stitched frames. Right: zoomed insets

over multiple frames. Note the ghosting and distortion artifacts on

the foreground moving objects. Please refer to the supplementary

material for stitched videos.

fixed seam but it often has more artifacts than the base-

line); CPW per frame (performing local warping [20] for

each time instance separately); and STGlobal (i.e., STCPW

when M1 =M2 = 1). CPW is one of the best methods for

still image stitching, and comparing with it shows the ben-

efit of joint spatial-temporal alignment. Comparing with

STGlobal shows the benefit of local warping. All methods

have the same color correction and blending steps from Au-

toStitch in OpenCV after seam finding.

Figures 7 and 8 show two examples of video stitching re-

sults. Please refer to the supplementary material for stitched

videos and more results. As shown, the baseline method

has severe ghosting artifacts. CPW per frame effectively

reduces ghosting, but the stitched video is not stable since

there is no temporal constraint enforced. STGlobal is more

consistent over time, but still has ghosting in some frames

due to the limitation of global transformation. The proposed

STCPW consistently outperforms these methods.

5. Limitations and Discussions
We proposed a novel video stitching algorithm, which

draws upon ideas from recent advances in parallax tolerant

image stitching and video stabilization to perform spatial-

temporal local warping and seam finding. Experimental re-

sults show its effectiveness for handing parallax and domi-

nate foreground object moving problems.

The proposed algorithm is a first step for seamless video

stitching. It has several limitations. (1) Like most image

stitching algorithms, it relies on matched feature points for

local warping. When foreground moving objects have few

matched feature points, explicit foreground object detec-

tion/tracking maybe helpful. (2) The relative positions of

the cameras are fixed and the algorithm can handle certain

level of jittering. Video stitching of multiple freely moving

cameras would require a dynamic definition of the refer-

ence frame. (3) The algorithm does not address the issue

of stitching videos with large appearance differences, e.g.,

exposures, color, depth of fields, etc. Existing solutions for

still images [4, 10] can not be easily applied to videos be-

cause of the temporal consistency challenge. This will be

another direction of our future work.
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