
Articulated pose estimation with tiny synthetic videos

Dennis Park
UC Irvine

iypark@ics.uci.edu

Deva Ramanan
UC Irvine

dramanan@ics.uci.edu

Abstract

We address the task of articulated pose estimation from
video sequences. We consider an interactive setting where
the initial pose is annotated in the first frame. Our sys-
tem synthesizes a large number of hypothetical scenes with
different poses and camera positions by applying geomet-
ric deformations to the first frame. We use these synthetic
images to generate a custom labeled training set for the
video in question. This training data is then used to learn
a regressor (for future frames) that predicts joint locations
from image data. Notably, our training set is so accu-
rate that nearest-neighbor (NN) matching on low-resolution
pixel features works well. As such, we name our underlying
representation “tiny synthetic videos”. We present quanti-
tative results the Friends benchmark dataset that suggests
our simple approach matches or exceed state-of-the-art.

1. Introduction
Humans have remarkable abilities to synthesize mental

imagery “with the minds eye” [25, 10]. To examine this
phenomena, consider the practical problem of tracking hu-
man poses in a one-take video clip, say “Phoebe” in the tele-
vised show “Friends”. Given the first frame of the video,
humans can immediately picture in mind what the other
frames might look like. Phoebe, who was folding arms in
the first frame, may be reaching her arm to grab a cup or be
answering the phone in the other frames. In addition, the
plate of salad might become empty; the ketchup bottle on
the table might be in her hand or moved to the other side of
the table. Even though such a generative approach to recog-
nition seems intuitively plausible, most contemporary ap-
proaches takes a decidedly discriminative route [17, 34, 11].

Our approach: We describe a radically simple architec-
ture for articulated pose estimation based on scene synthe-
sis. We consider the setting where the articulated pose of the
person is provided in the first frame. Our system works by
synthesizing a large number of hypothetical scenes with dif-
ferent poses, dynamic objects (e.g., cups) and camera loca-
tions using image-based rendering algorithms. We use these

Figure 1: Overfit the video! We propose to use synthetic
video frames that emulate hypothetical test frames as train-
ing data for performing recognition in video. Previous ap-
proaches use as base models generic detectors trained using
images in the wild (left). We show that, by using train-
ing data customized to a particular video (right), one can
achieve state-of-the-art performance on challenging pose
estimation problem even with simple models and features.

synthetic scenes to generate a custom labeled training set
for the video in question. This custom training data is then
used to learn a classifier (or rather regressor) that predicts
joint locations from image features. Notably, our training
set is so accurate that nearest-neighbor (NN) matching on
pixel values produce state-of-the-art performance. Specifi-
cally, we find that low-resolution pixel features work well.
As such, we name underlying representation tiny synthetic
videos.

Tracking by detection: We tackle the problem of ar-
ticulated tracking using a tracking-by-detection framework,
applying a detector/estimator at each frame. Typically, one
makes use of a generic pose detector trained using images
of arbitrary persons and backgrounds. This seems to be
overkill, since it forces the detector to recognize Obama’s
pose in the Whitehouse even though the detector only needs

1



Figure 2: Synthesis overview. We assume the first frame of the video, as well as its pose label, is available upon test time
(left). We define a generic library of poses that represents all potential poses (top). We use an image-based rendering
engine to warp body parts from the first frame into target poses from the library (middle). Notably, we make use of layered
compositing to accurately render self-occlusions between the arm and torso, a notoriously difficult problem for articulated
models. We use the collection of rendered frames to construct a custom “Rachel” training data as shown in Fig. 1. This
training set is powerful enough to produce state-of-art pose estimation results using low-resolution pixel features (bottom).

to recognize Phoebe in her living room. Instead, we pro-
pose to train a highly-tuned appearance model that overfits
the particular video using a large set of synthetic training
data.

Data-augmentation: Our approach of image-based
synthesis is inspired by learning architectures that ap-
ply synthetic perturbations to training data. Such “data-
augmentation” appears to be crucial components of state-
of-the-art methods like deep learning [27, 17]. However,
instead of applying simple perturbations like rotations, we
make use of an image-based rendering engine to “cut and
paste” regions of image in a layered fashion, generating new
scene configurations. With a rich enough synthesis engine,
the resulting learning algorithm (a) does not need to gen-
eralize to unseen test poses (because they can be directly
synthesized) and (b) does not need to be invariant to nui-
sance factors like color (because only scene-specific colors
will be synthesized). Both observations imply that “its all
about the data”, and that simple learning architectures (such
as NN-matching) and pixel features will suffice.

Self-occlusions: Our simple approach addresses a no-
torious difficulty of articulated pose estimation - self-
occlusions. It is difficult to estimate poses where the torso is
occluded by the arm. This is because the resulting edge pat-
terns are heavily dependent on clothing. Our approach syn-
thesizes the “right” clothing and edge patterns. To synthe-
size accurate self-occlusions, our rendering engine makes
use of a 2.1D layered depth model. Similarly, our approach
synthesize body parts that appear shrunk due to out-of-plane

rotation. This is particularly effective for lower arms [29].
Overview: After discussing related work in Sec.2, we

describe our synthesis engines in Sec.3. Pixel synthesis is
the process of generating a synthetic frame given a target
pose and pose-annotated first frame; pose synthesis defines
a set of target poses to synthesize. In Sec.4, we describe a
simple nearest-neighbor algorithm for estimating pose. In
Sec.5, we diagnose and evaluate our approach for the task
of estimating upper body pose using Friends dataset.

2. Related work

Visual tracking: The problem of visual tracking have
been addressed in various settings of inputs and initializa-
tions; first-frame labeled [38], online tracking [36], inter-
active tracking [5], etc. Articulated tracking [12], [39],
[29], [3] recently gained attention. See [32] for com-
plete discussion. Much recent work has focused on single-
frame pose estimation, as such methods will likely be use-
ful to (re) initialize a tracker. Our work requires the first
frame to be labeled (a historically commonplace assump-
tion [8, 31, 15, 22]), but differs from past initialized track-
ers in that no temporal tracking is performed (making our
approach resistant to drift).

Appearance models: Tracking with learned appearance
models [26, 14] have proved to be effective. Our work is
closest to [15] in that they use labeled first frame to learn
an appearance model that is then used to track the articu-
lation of human body in subsequent frames. Our work is



also well aligned with [26], [39] in that they attempt to use
consistency existing throughout the video. But our work is
unique in that our system synthesizes custom training data
to exploit consistency without using temporal cues.

Layered shape models: Since the pioneering work of
[35], layered shape model as a weak form of a 3D model
has been widely accepted as a useful representation for im-
age formation. Our work is closely related to [37], where
the authors introduce generative probabilistic models that
formulate layered models for object detection and segmen-
tation.

Synthetic training data: There exists a steady body of
work that has examined pose estimation using (partially)
synthetic training data. Perhaps the earliest example dates
back to [30], who use a large set of rendered poses for
nearest-neighbor (pose) regression. [18] generate synthetic
rendering of real objects under synthetic backgrounds, us-
ing green-screening. The recent work of [13] has generated
3-million frame dataset of synthetic images of 3D articu-
lated models in real backgrounds. Our work differs in that
we perform “image-based rendering”, cutting and pasting
existing images to yield novel ones. From this perspective,
our approach is most related to [24], who fit 3D articulated
models to real images, and generate synthetic renderings by
slightly perturbing joint angles. However, in our case, we
do not need to synthesize appearance variations since we
want to train a model that “overfits” to the appearance of a
particular figure in the video.

3. Synthesis engine

At the heart of our approach is a simple 2.1D syn-
thesis engine that artificially generates hypothetical video
frames, given the labeled first frame of the video. Un-
like other synthesis-based approaches which produce high-
quality synthetic images ([24], [13]) our goal is to produce
a large set of reasonably photorealistic images which cap-
tures most of the variability expected in the future frames.
Most importantly it captures various poses, but also loca-
tions, scale, camera movement, and other dynamic objects
in the scene (assuming they are also labeled in the first
frame). The synthesis process consists of two components:
pose synthesis and pixel synthesis, which are discussed in
the following subsections. Fig. 2 summarizes the overall
process.

Pose parameterization: We parameterize the appear-
ance of a person as “cardboard puppet” model [15]. Specif-
ically, each part p is represented by a triple: its relative ori-
entation to its parent part, foreshortening ratio, and depth
layer (θ, r, d). A pose P is defined by its root location and
scale (x0, y0, s0) and a collection of N = 9 upper body
parts: left/right upper arms, lower arms, hands; and torso,
neck, face. That is, P = (x0, y0, s0, (θ, r, d)1:N ).

Figure 3: Pose synthesis. The pose pool consists of diverse
poses in different scales and locations. It includes challeng-
ing cases, such as (from left to right) self-occlusion, inter-
acting parts, various scales, and truncation.

Assumption: Our synthesis process assumes that the
first frame of the video is given with a human annotationP1.
The annotation is in the skeleton format shown in Fig. 2,
which require users to provide 9 body joint keypoint loca-
tions and their depth layers. From this annotation, we derive
the pose parameters with a anthropometric-based heuristic
to decide scales of parts (e.g., we assume all arms are .5
headlength-wide [19]).

3.1. Pose synthesis

In this section, we describe a generic library of poses P .
We use this library to synthesize a custom training set given
the first annotated frame of a test video. Ideally, we would
synthesize all possible poses, locations and scales of the hu-
man, all possible camera translations, and all possible dy-
namic scene elements. We make simplifying assumptions
that the video mostly stabilized (implying we need to only
synthesize small camera translations) and that the central
figure and interacting objects are the only dynamic parts of
the scene. It turns out that such assumptions hold for a large
amount of televised footage.

Specifically, we uniformly sample parameters in P by
enumerating over discrete values in the following domain:

(x0, y0, s0) ∈ Near(x′0, y
′
0, s
′
0) (1)

θshld ∈ [0, π), θelb ∈ [0, 2π)

r ∈ [0.2, 1], d ∈ D,

where (x′0, y
′
0, s
′
0) is the root location and scale of the figure

P1 in frame 1, θ are joint angles of shoulders and elbows,
and D is a small set of depth layer configurations consis-
tent with frontal and side viewpoints (e.g. arms are always
in front of torsos for frontal viewpoints). The above syn-
thesizes root locations and scales around a neighborhood of
those from the first frame. This simple procedure works
well for synthesizing plausible upper-body poses. We show
example poses in Fig. 3.

3.2. Pixel synthesis

The pixel synthesis engine takes the labeled first frame,
(I1,P1), and target pose from a pose library P ∈ P as in-
put, and produces a synthetic image I . We illustrate this
process in Fig. 4. It is based on a 2.1D image representation



Figure 4: Pixel synthesis. Our rendering engine is based on
a 2.1D representations of images. We first decompose the
labeled first frame (a) into multiple depth layers (b). Oc-
clusion (black) regions are estimated using standard hole-
filling algorithms (c). Given a target pose (d), we warp cor-
responding body parts from (c) into new locations (e) by
rotating and scaling them. By compositing each layer ac-
cording to a target depth ordering, we produce a synthetic
frame (f).

[37, 35], where each pixel is augmented by its depth layer.
To derive a part region from pose parameters (s, θ, r, d),
we need to define a forward kinematics model and a shape
model.

Forward kinematics. P represents pose in a local co-
ordinate frame because it more natural for the pose synthe-
sis algorithm in Sec. 3.1. To render an associated image,
we need to compute part locations in global image coordi-
nates. This is straightforward with classic forward kinemat-
ics ([23], [21]). Specifically, given P and a tree-structured
graph T = (V,E) specifying part connectivity, we derive
two global pose parameters for a part indexed by i; orien-
tation angle θgi and translation vector tgi . tgi is the pixel po-
sition of part i’s joint (e.g. elbow for lower arm). For no-
tational simplicity, we drop the dependance on global scale
s0:

θgi = θgpar(i) + θi (2)

tgi = tgpar(i) + Rot(θpar(i))liri (3)

θgroot = θroot (4)
tgroot = (x0, y0) (5)

where par(i) is the part index of parent of i as defined in
graph T , Rot is a 2D rotation matrix, and li is the location
offset of joint with i with respect to the joint of its parent
(e.g. default location of elbow in the reference frame of
shoulder). We now can write the global location, orienta-
tion, and foreshortening of part i as

gi = (tgi , θ
g
i , ri)

Part shapes: Let us write Mi ∈ {0, 1}W×H for a bi-
nary support mask for part i transformed to location gi.
This mask is computed by translating, rotating, and scal-
ing a canonical support mask for part i [1, 9, 15]. We use
a mean shape mask obtained by averaging annotated part
support masks from a generic dataset of segmented people
(not from the testset). We visualize example shape masks in
Fig.5.

Part textures: Let us write Ri ∈ RW×H×3 for a RGB
texture map for part i transformed to location gi. We learn
part-specific texture maps from the first frame I1. We do
this by computing a binary pixel region mask for each part
i. Each region is divided into two types of subregions: vis-
ible regions and occluded regions (due to overlapping parts
in a closer depth layer). Most layers include occluded re-
gions. We estimate occluded pixel values using standard
hole-filling algorithms [4, 6]. We experimented with var-
ious approaches such as PatchMatch [2], but found simple
linear interpolation to look well. We visualize the procedure
for part texture extraction in Fig. 4(a)-(c).

Compositing layers: Given a target pose P with asso-
ciated global part positions {gi}, we wish to create the im-
age by recompositing the layered part textures. Let us write
Mi ∈ {0, 1}W×H for the binary support mask for part i
at global position gi. If parts have been ordered from back
(i = N ) to front (i = 1), the final rendered image is gener-
ated by initializing the back layer CN = MN and iterating
to the front:

I = C1 where Ci = (1−Mi)Ci+1 +MiRi (6)

The compositing process is visualized in Fig. 4(d)-(f).

3.3. Low resolution rendering

An ideal synthesis engine needs to generate a training
set with two computationally demanding properties; (1) it
needs to be photorealistic enough so that it matches well



Figure 5: Upper body shape model. The 2D shape of each
body part is a polygon parameterized by scale, orientation,
and foreshortening ratio, which are mostly represented by
pose skeletons (black).

Figure 6: Low resolution color space. Typically, synthe-
sized images are presented with significant artifacts (top).
In order to mitigate the effect, we render images in low res-
olution space. Even with quite low resolution (s = 4), hu-
mans can reasonably estimate upper body poses. The res-
olution s is represented by the length of full upper arm in
pixels.

with the real test images, and (2) it needs to be compre-
hensive enough to cover all expected test frames. In order
to enhance photorealism, one can add more parameters to
the synthesis engine, e.g. shearing parameters for out-of-
plane rotation or parameters for face expression and detailed
clothing models. However, since each of those introduces
another axis in the joint parameter space, the number of im-
ages one need to synthesize grows exponentially.

One way to address both problems is to use low resolu-
tion training images. As shown in Fig. 6, the artifacts from
our simple warping methods and heuristics for resolving
occlusion is significantly reduced in low resolution space.
Interestingly, humans still reasonably perform pose estima-
tion with a resolution as low as s = 4, where s represents
the length of the full upper arm. We quantitatively show in
Sec. 5 that our approach exhibits similar behaviour.

Pose discretization: Furthermore, one needs to synthe-
size only a small set of images that are distinct in appear-
ance in the low resolution space. Recall that we synthesize
poses by enumerating over our pose space in (1). When re-
ducing the image resolution by a factor ofR, we also reduce
the number of enumerable poses by a factor of R2N , where
N is the number of parts (assuming joints can only lie at
discrete pixel locations). We further analyze performance
as a function of image resolution and the amount of training

poses in Sec. 5.
Efficiency: As a by-product of using low-resolution

training images, one can significantly speed up the syn-
thesis process by directly rendering the images in the low-
resolution space. This is achieved in Sec. 3.2 by project-
ing the 2.1D layered model and labeled/queried poses to
smaller scales. In practice, synthesizing a single image of
s = 16 from Fig.6 takes 0.04s, while s = 50 takes 0.28s in
a 3.0GHz single-core desktop.

Synthesizing blur: Our layered synthesis engine pro-
duces crisp edges across layers, while actual low-resolution
images are quite blurred (Fig. 6). We mimic this blur during
our synthesis by rendering at b = 2 times the target reso-
lution, and then subsampling the rendered image with an-
tialiasing. Such a procedure actually improves performance
in two ways. First, generated image features appear more
realistic due to blurred edges. Second, we can now repre-
sent a larger family of poses, specifically b2N more poses.
Perhaps surprisingly, we show that one can still resolve such
“sub-pixel” pose configurations in a low-resolution image
space.

4. Inference
Intuitively, given highly customized training data for a

particular video, training an accurate recognition machine
may be greatly simplified. We verify this hypothesis by
performing upper body pose estimation using very simple
image features and learning/inference algorithms. As im-
age features, we use (low-resolutional) raw pixel values of
the entire frame in perceptually uniform color spaces such
as LUV or LAB. As a classifier, we use a nearest-neighbor
regressor. That is, for each test frame we independently find
the training image with the least L2 distance in given fea-
ture space, and report its pose (after converting to skeleton
format).

(I∗,P∗) = arg min
(I,P )

‖Φ(I)− Φ(Itest)‖2 (7)

It is widely accepted that the most crucial property of
robust image features is their invariance to affine defor-
mation, luminance, albedo, etc. As a result, modern im-
age features are based on normalized edge-orientations ([7],
[20]) or gabor-like filter responses ([28], [16]). However, in
the scenario of tracking where there exist large consistency
in appearance, less invariant features are likely to perform
competitively. In Sec. 5, we compare pixel-value features
with edge-based features to demonstrate this idea.

5. Experimental results
Dataset: We use Friends dataset [29] to investigate the

effect of key parameters (resolution, features, size of train-
ing data) and to compare our approach with state-of-the-



Figure 7: Image features. We show how the choice of im-
age feature affects the pose estimation accuracy. Overall,
with the exception of RGB, less invariant features performs
better than standard image features. Particularly, raw pixel
values in perceptually uniform color space such as LUV and
LAB significantly outperform standard edge-based features
(HOG). Color-augmented HOG (oHOG, [33]) with no con-
trast normalization performs better than HOG.

arts. Of the 18 test clips in the dataset, we use only 13 con-
taining frontal view of humans. These 13 clips are grouped
and concatenated to form 5 longer videos, each of which
contains a single character and background scene. (5 takes
are split into 13 clips in the dataset.) The length of videos
range from 50 to 120 frames. Background scenes are mostly
stable, but there exists mild motion due to movement of
camera and/or objects. The target task is to accurately pre-
dict joint locations of arms (elbows and wrists), which is
known to be notoriously hard compared with other body
parts.

Evaluation: In all diagnostic experiments, we use as
a scalar evaluation metric, the percentage of correctly pre-
dicted joints with 25-pixel threshold in a normalized scale.
This radius roughly corresponds to the width of fist of given
character. We consider 4 joints; two elbows and wrists.
When comparing with other approaches, we present the re-
sult with full range of thresholds as in [39] and [29].

Feature invariance: We first compare features of var-
ious degree of invariance (Fig.7). HOG has rich machin-
ery to generate invariant feature space, such as spatial and
orientation pooling and contrast normalization [7]. We at-
tempted to alleviate its invariance by building 3-channel
color histograms (inspired by OpponentSift in [33]) and re-
moving contrast normalization (oHOG). This modification
yields 3% improvement in accuracy. We explored different
sizes of spatial/orientation bin, and report the best one.

We also evaluate the simplest and the least invariant type
of features, pixel-value features. Interestingly, these fea-
tures work better than the best setting of HOG by significant
margin (with the exception of RGB color space). We found
that using perceptually uniform color space such as LUV or

(a)

(b)

Figure 8: Low resolution color features and training data. In
(a), we show the accuracy of pose estimation with respect to
the resolution of features. The number of synthesized train-
ing images is fixed (∼280k). The x-values are scales repre-
sented by the length of full upper arm (See Fig. 6). In (b),
we plot performance as a function of the number of training
images (i.e sampling rate in pose space) for each resolution
of LUV features. “ub” denotes an upper bound obtained by
reporting the training pose closest to the ground truth test
pose, measured in high-resolution image coordinates. This
plot reveals that high accuracy (85%) can be theoretically
obtained with a small number of rendered training images
(∼4k). The “x” denotes the number of unique quantized
poses that are resolvable at a fixed resolution (only shown
for s = 2 and s = 4). It may appear strange that one can
continue to improve accuracy for s = 2 by adding addi-
tional poses. This additional performance comes from ren-
dering “subpixel” poses, as discussed in Sec. 3.3.

LAB is important, presumably because they were designed
to make L2 distance more meaningful.

Resolution: The next question we answer is about the
working resolution of color features and its interplay be-
tween the number of training frames. Interestingly, as



shown in Fig.8a, we achieve competitive accuracy using
quite low resolution (s = 4), and observe a sharp drop for
s = 2. This is consistent with visual inspection of the pixel
data as well; it is quite hard for a human to see structure at
low resolutions (Fig.6).

In fact, the correlation between feature resolution and
accuracy is more subtle, since the accuracy also depends
on the number of rendered poses (or the pose space sam-
pling rate mentioned in Sec.3.3). Intuitively, the number of
visually distinguishable poses must decrease at low resolu-
tions. This observation suggests that one may need to render
only those poses with unique quantized configurations at a
given resolution. Fig8b shows that “subpixel” pose configu-
rations further improves accuracy. An upper-bound analysis
reveals that a small number of poses (∼ 4K) can poten-
tially achieve a quite high accuracy (∼ 85%), but this may
require complex image matching function (capable of de-
forming images while matching). Rather, our approach is
to synthesize a set of deformations with consistent depth-
layering.

Benchmark comparisons: Lastly, we compare our ap-
proaches with the state-of-the-art on the Friends dataset.
[29] uses an ensemble of tree models, each of them
rooted on one of the 6 parts and temporally linked only
through roots, to approximate underlying loopy spatiotem-
poral model. [39] uses optical flows and learned 2D ar-
ticulated shape models as means to exploit pixel informa-
tions of adjacent frames and to propagate part assignments
temporally. Both methods use optical flows and designated
off-the-shelf hand detector based on assumptions on skin
colors.

Our nearest-neighbor regressor predicts elbow locations
significantly better than other two methods; 93.7% versus
73.2% and 74.2% at 25-pixel threshold. For wrist, our
methods is less accurate than [29] and [39]; 54.8% ver-
sus 69.9% and 59.8% at 25-pixel threshold (Fig.9). Un-
like other two methods, we independently estimate poses in
each frame without using temporal models or motion fea-
tures. Plus, there is no extra effort for detecting hands.

Error analysis: One of the benefits of simple features
and learning algorithms are that visualizing and understand-
ing the predictor is straightforward (Fig.10). For instance, a
common mistake is that hands are often confused by back-
ground objects with similar color (failure of the model to
correctly explain-away the background). In addition, our
approach of using customized synthetic frames facilitate
further error analysis. For instance, one can synthesize im-
ages with ground-truth test poses to compare the accuracy
of our pose-synthesis and pixel-synthesis engines.

6. Conclusion
In this paper, we described an approach of using syn-

thetic training dataset to train models highly customized to

Figure 9: We compare our best result (LUV features, s =
5.7, ∼ 280k training frames) to other two state-of-the-arts
reported on Friends dataset, [29] and [39]. We outperform
with large margin (25% at 25-pixel threshold) in the task of
predicting elbow locations (left). We perform competitively
in predicting wrist locations (right)

the particular video. We show that, with simple image-
based rendering algorithms, one can generate reasonably
photorealistic training data that captures important modes
of variation (human poses) of given video, while maintain-
ing its invariants. We showed that this custom training data
greatly simplify learning and inference. We demonstrated
our approach on the challenging task of estimating upper
body pose of humans in videos.



(a) (b)

(c) (d)

Figure 10: Pose estimation. We independently estimate upper body pose in each test frame by finding the nearest training
frame in low-resolutional color spaces. Although simple, our method is robust against (self) occlusion (a) and challenging
interaction of parts (b). A common mistake is due to confusing color in the background (c, d), which are also readily confused
by human in such low-resolution space.

References

[1] M. Andriluka, S. Roth, and B. Schiele. Pictorial structures
revisited: People detection and articulated pose estimation.
In Proc. CVPR, volume 1, page 4, 2009. 4

[2] C. Barnes, E. Shechtman, A. Finkelstein, and D. B. Gold-
man. Patchmatch: A randomized correspondence algorithm
for structural image editing. In ACM SIGGRAPH 2009 Pa-
pers, SIGGRAPH ’09, pages 24:1–24:11, New York, NY,
USA, 2009. ACM. 4

[3] V. Belagiannis, X. Wang, B. Schiele, P. Fua, S. Ilic, and
N. Navab. Multiple human pose estimation with temporally
consistent 3D pictorial structures. In ChaLearn Looking at
People (ECCV workshop), September 2014. 2

[4] M. Bertalmio, G. Sapiro, V. Caselles, and C. Ballester. Image
inpainting. In Proceedings of the 27th annual conference on

Computer graphics and interactive techniques, pages 417–
424. ACM Press/Addison-Wesley Publishing Co., 2000. 4

[5] A. Buchanan and A. Fitzgibbon. Interactive feature tracking
using kd trees and dynamic programming. In Computer Vi-
sion and Pattern Recognition, 2006 IEEE Computer Society
Conference on, volume 1, pages 626–633. IEEE, 2006. 2

[6] A. Criminisi, P. Pérez, and K. Toyama. Region filling and
object removal by exemplar-based image inpainting. Image
Processing, IEEE Transactions on, 13(9):1200–1212, 2004.
4

[7] N. Dalal and B. Triggs. Histograms of oriented gradients for
human detection. In CVPR, pages I: 886–893, 2005. 5, 6

[8] J. Deutscher, A. Blake, and I. Reid. Articulated body motion
capture by annealed particle filtering. In Computer Vision
and Pattern Recognition, 2000. Proceedings. IEEE Confer-
ence on, volume 2, pages 126–133. IEEE, 2000. 2



[9] M. Eichner, M. Marin-Jimenez, A. Zisserman, and V. Fer-
rari. 2D articulated human pose estimation and retrieval in
(almost) unconstrained still images. International Journal of
Computer Vision, 99(2):190–214, 2012. 4

[10] M. J. Farah. The neural basis of mental imagery. Trends in
neurosciences, 12(10):395–399, 1989. 1

[11] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ra-
manan. Object detection with discriminatively trained part-
based models. Pattern Analysis and Machine Intelligence,
IEEE Transactions on, 32(9):1627–1645, 2010. 1

[12] D. M. Gavrila. The visual analysis of human movement:
A survey. Computer vision and image understanding,
73(1):82–98, 1999. 2

[13] C. Ionescu, D. Papava, V. Olaru, and C. Sminchisescu. Hu-
man3.6m: Large scale datasets and predictive methods for
3d human sensing in natural environments. Technical report,
Institute of Mathematics of the Romanian Academy and Uni-
versity of Bonn, September 2012. 3

[14] A. D. Jepson, D. J. Fleet, and T. F. El-Maraghi. Robust online
appearance models for visual tracking. Pattern Analysis and
Machine Intelligence, IEEE Transactions on, 25(10):1296–
1311, 2003. 2

[15] S. X. Ju, M. J. Black, and Y. Yacoob. Cardboard people: A
parameterized model of articulated image motion. In Auto-
matic Face and Gesture Recognition, 1996., Proceedings of
the Second International Conference on, pages 38–44. IEEE,
1996. 2, 3, 4

[16] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks. In
Advances in neural information processing systems, pages
1097–1105, 2012. 5

[17] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-
based learning applied to document recognition. Proceed-
ings of the IEEE, 86(11):2278–2324, 1998. 1, 2

[18] Y. LeCun, F. J. Huang, and L. Bottou. Learning methods
for generic object recognition with invariance to pose and
lighting. In CVPR, volume 2, pages II–97. IEEE, 2004. 3

[19] T. G. Lohman, A. F. Roche, and R. Martorell. Anthropomet-
ric standardization reference manual. 1988. 3

[20] D. Lowe. Distinctive image features from scale-invariant
keypoints. International journal of computer vision,
60(2):91–110, 2004. 5

[21] J. M. McCarthy. Introduction to theoretical kinematics. MIT
press, 1990. 4

[22] T. B. Moeslund, A. Hilton, and V. Krüger. A survey of ad-
vances in vision-based human motion capture and analysis.
Computer vision and image understanding, 104(2):90–126,
2006. 2

[23] R. P. Paul. Robot manipulators: mathematics, programming,
and control: the computer control of robot manipulators.
Richard Paul, 1981. 4

[24] L. Pishchulin, A. Jain, M. Andriluka, T. Thormahlen, and
B. Schiele. Articulated people detection and pose estimation:
Reshaping the future. In CVPR, pages 3178–3185. IEEE,
2012. 3

[25] Z. W. Pylyshyn. What the mind’s eye tells the mind’s
brain: A critique of mental imagery. Psychological bulletin,
80(1):1, 1973. 1

[26] D. Ramanan, D. Forsyth, and A. Zisserman. Tracking peo-
ple by learning their appearance. IEEE PAMI, pages 65–81,
2007. 2

[27] A. S. Razavian, H. Azizpour, J. Sullivan, and S. Carls-
son. CNN features off-the-shelf: an astounding baseline for
recognition. arXiv preprint arXiv:1403.6382, 2014. 2

[28] X. Ren and D. Ramanan. Histograms of sparse codes for
object detection. In Computer Vision and Pattern Recogni-
tion (CVPR), 2013 IEEE Conference on, pages 3246–3253.
IEEE, 2013. 5

[29] B. Sapp, D. Weiss, and B. Taskar. Parsing human motion
with stretchable models. In CVPR, 2011. 2, 5, 6, 7

[30] G. Shakhnarovich, P. Viola, and T. Darrell. Fast pose esti-
mation with parameter-sensitive hashing. In CVPR, pages
750–757. IEEE, 2003. 3

[31] H. Sidenbladh, M. J. Black, and L. Sigal. Implicit proba-
bilistic models of human motion for synthesis and tracking.
In Computer VisionECCV 2002, pages 784–800. Springer,
2002. 2

[32] A. Smeulders, D. Chu, R. Cucchiara, S. Calderara, A. De-
hghan, and M. Shah. Visual tracking: An experimental sur-
vey. 2013. 2

[33] K. van de Sande, T. Gevers, and C. Snoek. Evaluating color
descriptors for object and scene recognition. IEEE Trans.
Pattern Anal. Mach. Intell., 32(9):1582–1596, Sept. 2010. 6

[34] P. Viola and M. Jones. Rapid object detection using a boosted
cascade of simple features. In Computer Vision and Pattern
Recognition, 2001. CVPR 2001. Proceedings of the 2001
IEEE Computer Society Conference on, volume 1, pages I–
511. IEEE, 2001. 1

[35] J. Y. Wang and E. H. Adelson. Representing moving im-
ages with layers. Image Processing, IEEE Transactions on,
3(5):625–638, 1994. 3

[36] Y. Wu, J. Lim, and M.-H. Yang. Online object tracking:
A benchmark. In Computer Vision and Pattern Recogni-
tion (CVPR), 2013 IEEE Conference on, pages 2411–2418.
IEEE, 2013. 2

[37] Y. Yang, S. Hallman, D. Ramanan, and C. C. Fowlkes.
Layered object models for image segmentation. Pattern
Analysis and Machine Intelligence, IEEE Transactions on,
34(9):1731–1743, 2012. 3

[38] A. Yilmaz, O. Javed, and M. Shah. Object tracking: A sur-
vey. Acm computing surveys (CSUR), 38(4):13, 2006. 2

[39] S. Zuffi, J. Romero, C. Schmid, and M. J. Black. Estimating
human pose with flowing puppets. In IEEE International
Conference on Computer Vision (ICCV), pages 3312–3319,
2013. 2, 6, 7


