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Abstract

Pain is a vital sign of human health and its automatic de-
tection can be of crucial importance in many different con-
texts, including medical scenarios. While most available
computer vision techniques are based on RGB, in this pa-
per, we investigate the effect of combining RGB, depth, and
thermal facial images for pain intensity level recognition.
For this purpose, we extract energies released by facial pix-
els using a spatiotemporal filter. Experiments on a group of
12 elderly people applying the multimodal approach show
that the proposed method successfully detects pain and rec-
ognizes between three intensity levels in 82% of the ana-
lyzed frames, improving by more than 6% the results that
only consider RGB data.

1. Introduction

Pain plays an essential role as part of a complex system
for dealing with injury [27]. Distinguishing harmful from

harmless situations, prompting avoidance of harm and its
associated cues, giving a high priority to escape from dan-
ger, and promoting healing by inhibiting other activities that
might cause further tissue damage has great adaptive value
[4]. Pain serves to promote the organisms health and in-
tegrity, to the extent that congenital absence of pain on in-
jury significantly shortens human life [10]. There are rare
cases of people with no pain sensation. An often-cited case
is that of F.C., who did not exhibit a normal pain response
to tissue damage. She repeatedly bit the tip of her tongue,
burned herself, did not turn over in bed or shift her weight
while standing, and showed a lack of autonomic response
to painful stimuli. She died at the age of 29 [25].

Physiological measures of pain vary significantly from
person to person, failing to reflect its intensity [24]. Indica-
tors of pain include changes in heart and respiratory rates,
blood pressure, vagal tone, and palmar sweating [8]. In ad-
dition to physiological responses, facial expressions play a
critical role for communicating pain [30, 28, 12].

The main way of assessing pain in clinical contexts is by
self report. This can be sometimes problematic because of
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the lack of reliability and consistency and in the case of per-
sons with limited communication abilities (infants, young
children, patients with certain neurological impairments, in-
tubated and unconscious persons) this option is simply not
available [14]. One alternative is to have human experts to
asses pain. Unfortunately a considerable amount of training
is needed and the process is burdensome. Another alter-
native is the automatic assessment of pain. Even though
there is no consensus about the physiological measures of
pain [6] brow-lowering, tightening the eyelids, raising the
cheeks (orbit tightening), nose wrinkling or upper-lip rais-
ing and eye closure were identified as a core set of actions
during facial expression of pain [29, 26].

Pain is a complex behavioural expression. While until
now research has mostly concentrated on facial pain recog-
nition from RGB, in the case of human affect perception
there is strong evidence supporting the integration of multi-
ple modalities over using a single modality [2, 32, 35]. For
instance, depth information offers important advantages. It
is more invariant to rotation and illumination and it captures
more subtle changes on the face. It also facilitates recog-
nizing a wider range of expressions which would be more
difficult to detect from only RGB. Pain experience is highly
correlated with cardiovascular changes such as increase in
heart rate, blood pressure, cardiac output and blood flow
[17], which in turn has a direct effect on skin temperature.
Radiance at different facial regions, captured through ther-
mal infrared imaging, varies according to emotions [38].
While we could not find a similar study in the case of pain,
thermal imaging could add valuable information in the auto-
matic assessment of pain. Because the different modalities
can be redundant, concatenating features might not be effi-
cient. A common solution is to use fusion. Many studies
have demonstrated the advantage of classifier fusion over
the individual classifiers [19]. Finally, another important
aspect of pain assessment from facial expressions is tem-
poral information [9, 1]. For instance, it has been shown
that temporal dynamics of facial behavior represent a crit-
ical factor for distinction between spontaneous and posed
facial behavior [3, 11, 36] and for categorization of com-
plex behaviors like pain [11, 42].

In this paper, we present a multimodal dynamic pain
recognition method from RGB, depth and thermal facial im-
ages. We extract energies released by facial pixels in these
three modalities using a spatiotemporal filter, and test the
methodology in a real case scenario consisting of 12 sub-
jects, obtaining high recognition rates measuring the level
of pain, and showing the benefits of including multimodal
information.

The rest of this paper is organized as follows. In Section
2 we review related methods in the field. Methodology is
described in Section 3. Section 4 presents the experimental
results. Finally, Section 5 concludes the paper.

2. Related Work

While the vast majority of related work described in
the literature focuses on pain recognition from RGB (e.g.
[21, 3, 31], works based on 3D [39] or multimodal [40, 41]
also exist. A first category of RGB methods do not include
temporal information [13, 22, 21, 23]. In [13] a method
for automatically detecting four levels of pain intensity is
proposed based on SVM trained with the responses of Log-
normal Filters. In [22], Littlewort et al. classify real and
fake pain with 88% accuracy compared to the 49% obtained
by naive human subjects. In [3], a pain no pain classifica-
tion is proposed, achieving a hit rate of 81% using AAM and
SVM. Similar to [22], [21] obtains above naive human dis-
crimination between posed and genuine facial expression of
pain (72% compared to 52%) by using boosted Gabor filters
and SVM. Finally in [23], Lucey et al. show that detecting
pain by fusing pain associated AUs is more efficient than
using extracted features to directly detect pain/no-pain. A
distinct group of RGB methods use temporal information
[31, 40, 18, 15]. In [18] Kaltwang et al. propose what
they claim to be the first fully automatic continuous pain
intensity method. It is based on a late fusion of a set of re-
gression functions learned from appearance (DCT and LBP)
and geometric (shape) features. In [31] facial expressions
of pain intensity is detected by using Conditional Ordinal
Random Fields (CORF). In [15] an approach based on the
Transferable Belief Model are proposed capable of obtain-
ing above human observers performance when recognizing
the pain expression among the six basic facial expressions
and neutral on acted and spontaneous sequences. Examples
of using other modalities include 3D [39] and physiological
signals in a multimodal context [41, 40]. [39] is based on
a SVM classifier and a function model for intensity rating.
The intensity model is trained using Comparative Learning,
a technique that simplifies labelling of data. In [40, 41]
it is proposed a multimodal (RGB+physiological) dataset
(BioVid Heat Pain Database) and dynamic methods for rec-
ognizing pain by combining information from video and
biomedical signals, namely facial expression, head move-
ment, galvanic skin response, electromyography and elec-
trocardiogram. In contrast to previous works, the method
we propose here is the first one to combine RGB, depth and
thermal facial images for pain recognition.

3. Methodology

The block-diagram of the proposed system is shown in
Fig. 1. Having a trimodal input video, first the RGB modal-
ity is used to detect the face and facial landmark positions.
The registration information between the three modalities is
used to estimate the positions of the landmarks in the other
two modalities. Afterwards, an energy-based method us-
ing steerable separable spatiotemporal filters, which uses
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Figure 1: The block diagram of the proposed system.

the landmark positions, is applied to each modality. This
gives an indication of visible pain in each of these modali-
ties. Finally, a fusion unit is used to combine the results of
the three modalities to recognize the pain level. These steps
are explained in the following subsections.

3.1. Landmark detection in RGB

In order to develop a fully automatic pain recognition
method, first a landmark detection approach is applied over
the RGB modality. Two steps are required in order to ef-
ficiently detect landmarks in video sequences. Firstly, the
Viola&Jones [37] face detection algorithm is applied to the
first frame. Landmarks are then located inside the facial re-
gion by using the Supervised Descent Method (SDM) [43].
In the subsequent frames, the facial region is obtained from
the previous frame geometry, applying SDM inside that re-
gion to estimate the new landmark locations. The SDM
algorithm consists on a custom implementation trained for
the detection of 68 landmarks (see Figure 2(a)). For train-
ing, a combination of the LFPW [5], HELEN [20], AFW
[44] and IBUG [33] datasets is used, amounting to 3837 in-
stances. The ground truth of the 68 facial landmarks over
these datasets is obtained from the 300 Faces In-The-Wild
Challenge (300-W) [34].

Since the tracking approach uses the previous frame
landmarks to select the facial region, it is important to have
a robust algorithm for landmark localization. SDM is less
prone to local minima when compared to other minimiza-
tion methods [43], learning the descent direction and step
size towards the global minima regardless of the gradient
at the current estimate. This is achieved with a cascaded

approach, where an initial shape estimate S0 is iteratively
adjusted to the image though linear regressors. At each step
a simplified version of SIFT is used to extract features from
the landmarks. These are concatenated into a feature vec-
tor F tSIFT , where the dimensionality has been reduced by
using PCA to keep 95% of the original variance. A linear
regression W t estimates the displacement between the cur-
rent shape estimate St and the face geometry, as shown in
Equation 1.

St+1 = St + F tSIFT ·W t (1)

This robustness can be further improved by using mul-
tiple initializations. For this purpose, n = 10 plane rota-
tions of the mean shape are homogeneously sampled from
the range [−π/2, +π/2] and fit to the image during test.
The distance between each pair of fits Di,j = d(Si, Sj) is
stored into a matrix D<n×n> of distances, being d(x, y)
the the sum of euclidean distances between corresponding
landmarks. The fit minimizing the sum of distances to the
others, i.e. the centroid fit, is selected as the best one. This
criterion is used because it corresponds to the fit towards
which most other alignments, regardless of the initialization
orientation, tend to converge, thus having a higher probabil-
ity of corresponding to the global minima.

3.2. Landmark detection in depth and thermal

The landmarks obtained from the RGB frames are trans-
lated to the corresponding frames in the depth and thermal
modalities by first finding a registration between the three
modalities. Once the registration is found, we transform
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the landmarks coordinate system from RGB to both depth
and thermal, representing the geometry in those spaces. The
registration of these modalities is explained in the following
subsection.

3.2.1 Registration of different modalities

The registration between the RGB and depth modalities
uses the built-in calibration tool of the KinectTM for Win-
dows 2.0 SDK. Although the calibration parameters used
for the registration are not directly visible, it is possible
to obtain an accurate registration of each depth image to
the corresponding RGB frame. Registration of the thermal
modality to RGB requires considering two modalities cap-
tured by two separate devices, whose relative positions are
not know beforehand. Therefore, we obtain a separate cal-
ibration of the thermal and RGB modalities by moving a
custom-made multimodal checkerboard in the region where
the upper body of test participants is located. The multi-
modal calibration board consists of a white, A3-sized 10
mm polystyrene backdrop which is heated by a heat gun im-
mediately before the calibration, and thick card board plate
where a chessboard pattern is cut out. The differences in
temperature and color of the two boards enable the detec-
tion of point correspondences between RGB and thermal.

The point correspondences from the calibration stage is
used to obtain a homography which is accurate for points
near the face of the participants.

3.3. Feature extraction

Having found the positions of the landmarks in all the
three modalities, the next step is to use these positions to
extract a feature that can give us an indication of the pain in
each modality. The following steps should be performed for
all the three modalities similarly, thus we will explain them
only for RGB modality.

Since changes due to pain in facial expression are spa-
tiotemporal phenomena, we need to employ a descriptor
that considers both spatial and temporal domains, and can
be independently applied to all three modalities. For these
reasons a steerable separable spatiotemporal filter has been
chosen, which considers the second derivative of a Gaussian
filter and their corresponding Hilbert transforms. This filter
measures the orientation and level of energy in the 3D space
of x, y, and t, representing the spatial and time spaces, re-
spectively. The spatial responses of the filter describe the
spatial texture of the face, while the temporal responses de-
scribe the dynamic of the features, e.g., the velocity. For
each pixel, the energy is calculated by:

E(x, y, t, θ, γ) = [G2(θ, γ) ∗ I(x, y, t)]2

+ [H2(θ, γ) ∗ I(x, y, t)]2, (2)

where ’*’ stands for a convolution operator, (x, y, t)
shows the pixel value located at the position (x, y) of the tth
frame (temporal domain) of the aligned video sequence I ,
and E(x, y, t, θ, γ) shows the energy released by this pixel
at the direction θ and scale γ. To make the above obtained
energy measure comparable in different facial expressions,
we normalize it using:

Ê(x, y, t, θ, γ) =
E(x, y, t, θ, γ)∑
E(x, y, t, θi, γ) + ε

, (3)

where θi considers all the directions and ε is a small bias
used for preventing numerical instability when the overall
estimated energy is too small. Finally, to improve the local-
ization, we weight the above normalized energy using [7]:

Ė(x, y, t, θ, γ) = Ê(x, y, t, θ, γ).z(x, y, t, θ), (4)

where:

z(x, y, t, θ) =

{
1
∑
γi
Ê(x, y, t, θ, γi) > Zθ

0 Otherwise
, (5)

in which Zθ is a threshold for keeping energies at the di-
rection θ, as too small energies are likely to be noise. The
weighted normalized energy obtained in Eq. 4 assigns a
number to each pixel (corresponding to the level of the re-
leased energy by that pixel) in each of the four chosen di-
rections of θ = 0, 90, 180, and 270. Following [16] these
pixel based energies are then combined into region based
energies using their histograms of directions by:

HRi
(t, θi, γ) =

∑
Ri

Ė(x, y, t, θi, γ), (6)

where HRi
is the histogram of the directions, and Ri,

i = 1, 2, or 3 is the ith region of the face [16]. Since the
muscles are moving back to their original locations, after
they are moved due to, e.g., pain, we need to combine the
regional histograms, by considering the regions that are di-
rectly related to each other during the pain process. Follow-
ing [16] two directions of up-down (UD) and left-right (LR)
are considered for combining the histograms. These direc-
tional histograms are obtained for each modality of RGB,
depth, and thermal. Then, they will be separately used to
obtain the pain level, which is explained in the next section.

3.4. Pain recognition

In the previous subsection two histograms where ob-
tained for the energy orientation of facial regions of each
modality, resulting in six directional histograms of energy.
The two histograms of the RGB modality are combined by:
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(a) (b) (c)

Figure 2: (a) Sample images from the 300-W dataset labeled with 68 facial landmarks. (b) The hand-held device used for
introducing the pain. (c) The cameras used for capturing the three modalities.

PIRGB =

3∑
i=1

wRiUD
ARiUD

+

3∑
i=1

wRiLR
ARiLR

, (7)

in which PIRGB is the pain index in RGB modality and
ARiUD

and ARiLR
are defined as the integrals of UD and

LR for the ith region (i = 1, 2, 3), respectively [16]:

ARiUD
=

n∑
t=1

UDt, ARiLR
=

n∑
t=1

LRt, (8)

where n is the number of the frames in the video. Sim-
ilarly pain indexes are determined for the other two modal-
ities, resulting in PID and PIT , representing pain indexes
obtained for depth and thermal modalities, respectively.
These three pain indexes are then fused together to recog-
nize the pain level using:

PI = wRGBPIRGB + wDPID + wTPIT , (9)

where wRGB , wI , wT are the weights associated to cor-
responding modalities, and PI is the fused pain index. It
should be noted that wRGB +wD+wT = 1. In the follow-
ing subsection, it is explained how PI is used to determine
the pain level based on experimentally found thresholds.

4. Experimental results
In order to present the results, we first discuss the setup

and data considered for the experiments, and evaluation
measurements and parameters.

4.1. Setup and data

12 healthy elderly volunteers (all females) between the
ages of 66 and 90 years (mean age 73.6 years) participated

in the study. Participants were screened with an interview
prior participation to exclude conditions that could affect
pain perception and pain report. Exclusion criteria were, if
the participant reported the presence of severe ongoing pain,
neuropsychological and psychiatric disorders, diabetes, or
had signs of a rheumatic or arthritic disease, especially on
the neck/shoulders. During the interview, subjects were also
tested with the Mini Mental State Examination (MMSE) in
order to ensure intact cognitive capabilities.

All subjects were pain-free and none of them had taken
any analgesic or sedative for at least 48 hours prior to the ex-
periment. The study protocol was approved by the regional
ethics committee. Experimental pressure pain was applied
on the subjects trapezius muscle. Eight stimuli of different
intensities: No-Pain, Light-Pain, Moderate Pain and Strong
Pain were applied on left and right trapezius muscles of the
participants.

An electronic hand-held pressure algometer (Somedic
AB, Stockholm, Sweden) was used to produce noxious me-
chanical pressure (Fig. 2(b)). A force gauge fitted with
a rubber disk with a surface of 1 cm2 was used in this
study. Pain and no-pain stimuli were determined for each
subject on the base of the individual pain detection thresh-
old (PDT). Pain stimuli were calculated as follow: No-Pain:
0.2 X PDT, Light Pain: 1.10 X PDT, Moderate Pain: 1.30
X PDT, and Strong Pain: 1.5 X PDT.

Subjects pain self-reports were recorded using a numeri-
cal rating scale (NRS) that measured the perceived intensity
of the stimulation. The NRS ranges from 0 (no pain) to 10
(the worst pain you can imagine). Participants NRS was
recorded after each stimulus.

During each pain and no-pain stimulation subjects face
was video-recorded in order to identify specific pain behav-
iors on the participants face.

During the process the subjects were filmed using a de-
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Figure 3: RGB (first row), depth (second row), and thermal (third row) of a test subject during the experimental process: first
column (before introducing pain), second column (under pain), and third column (after the pain).

vice capturing all the three modalities of RGB, depth, and
thermal. The first two modalities were recorded by a Mi-
crosoft Kinect for Windows V2 device and the thermal
modality by an AXIS Q1921 thermal camera. Setup is
shown in Fig. 2(c).

Fig. 3 shows a test subject in these three modalities dur-
ing our experimental process. The first, second, and third
rows show the RGB, depth, and thermal modalities of this
test subject.

4.2. Evaluation measurements and parameters

Having obtained pain index PI for each of the subjects
using Eq. 9, if this pain is smaller than 1, it is considered
as no-pain, if it is between 2 and 5, it is considered as a
weak pain, and if it is larger than 6, it is considered as a
strong pain. These thresholds were experimentally defined
in agreement with the team of psychologists. Furthermore,
the weights wRGB , wD and wT in Eq. 9 have been set
via cross-validatio, being 0.6, 0.35, and 0.05, respectively.
The obtained weights indicate that RGB provide the pri-
mary source of information, followed by depth features and
finally by the thermal ones. The obtained weights greater
than zero show that the use of all three modalities can be
useful and complementary for pain recognition.

4.3. Results and discussion

Table 1 shows the results of the proposed system com-
pared to [16], which considers the same recognition ap-
proach only using the RGB modality. One can observe that
the proposed system achieves high recognition rates for the
three levels of pains, improving the results provided in [16],
and showing the benefits of the multimodal approach over
just considering RGB data.

More specifically, one can see in Table 1 that for the first
two levels of pain (no pain and weak pain) the proposed
system outperforms the previous system of [16] with a large
margin of 16% and 8%, respectively. However, there is no
difference in detecting pains of the strong level among the
two systems for the considered data. It is mainly produced
because for the strong level of pain almost all the details
and changes of the facial expressions can be observed in the
RGB modalities, and thus adding the other two modalities,
at least for the collected video sequences, do not provide
any further improvement. However, for the two levels of no
pain and weak pain, depth and thermal features are useful
to complement visual information from RGB modality and
extract more subtle visual features, being useful to discrim-
inate among categories with lower inter-class variability.

Finally, Fig. 4 shows the results of the proposed system
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Semantic Ground Truth Pain Index Ground Truth Number of Frames System of [16] (in %) Proposed System (in %)
No Pain 0 and 1 757 72 88
Weak 2,3,4,5 427 79 87
Strong >6 1204 76 76

sum: 2388 weighted avg:75.26 weighted avg: 81.77

Table 1: Comparing the results of the proposed system against the system of [16] applied to our RGB-D-T facial database.

against the RGB-based one of [16] for a small clip within
a sequence. Once can observe that the results of our multi-
modal system is closer to the ground truth compared to the
results of [16].

5. Conclusion and future works
Pain is a temporal process that can usually be detected

from facial images. The proposed system in this paper uses
a spatiotemporal approach using a filter which extracts re-
leased energies of facial pixels in three modalities, RGB,
depth, and thermal, and groups them into histograms of ori-
entations for different facial regions. The integrals of each
of these histograms of orientations over time are then used
to find a pain index for each modality. These different pain
indexes are then fused into a final pain index. The experi-
mental results on a group of 12 elderly people show that the
proposed system can accurately detect the pain and recog-
nize its level into three classes of no-pain, weak and strong
pain, improving results of single RGB sequence analysis by
more than 6%.
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